[en] Despite providing interesting solutions to reduce the number of synthetic steps, to decrease energy consumption or to generate less waste, therefore contributing to a more sustainable way of producing important chemicals, the expansion of the use of homogeneous catalysis in industrial processes is hampered by several drawbacks. One of the most important is the difficulty to recycle the noble metals generating potential high costs and pollution of the synthesized products by metal traces detrimental to their applications. Supporting the metals on abundant and cheap biosourced polymers has recently appeared as an almost ideal solution: They are much easier to recover from the reaction medium and usually maintain high catalytic activity. The present bibliographical review focuses on the development of catalysts based on group 10 transition metals (nickel, palladium, platinum) supported on biopolymers obtained from wood, such as cellulose, hemicellulose, lignin, and their derivatives. The applications of these catalysts in organic synthesis or depollution are also addressed in this review with examples of C-C couplings, oxidation, or hydrogenation reactions.
Disciplines :
Chemistry
Author, co-author :
Negui, M.; Centre de Recherche de Royallieu, Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), CS60319, CEDEX, Compiègne, 60203, France
Zhang, Z.; Centre de Recherche de Royallieu, Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), CS60319, CEDEX, Compiègne, 60203, France
Foucher, C.; Centre de Recherche de Royallieu, Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), CS60319, CEDEX, Compiègne, 60203, France
Guénin, E.; Centre de Recherche de Royallieu, Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), CS60319, CEDEX, Compiègne, 60203, France
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > SMARTECH
Jeux, V.; Centre de Recherche de Royallieu, Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), CS60319, CEDEX, Compiègne, 60203, France
Terrasson, V.; Centre de Recherche de Royallieu, Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), CS60319, CEDEX, Compiègne, 60203, France
Language :
English
Title :
Wood-Sourced Polymers as Support for Catalysis by Group 10 Transition Metals
Publication date :
2022
Journal title :
Processes
eISSN :
2227-9717
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
Choplin, A.; Quignard, F. From Supported Homogeneous Catalysts to Heterogeneous Molecular Catalysts. Coord. Chem. Rev. 1998, 178–180, 1679–1702. [CrossRef]
Petterson, R.C. The Chemistry of Solid Wood—The Chemical Composition of Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1984; Volume 207, ISBN 978-0-8412-0796-7.
Kumbhar, A.; Salunkhe, R. Recent Advances in Biopolymer Supported Palladium in Organic Synthesis. Curr. Org. Chem. 2015, 19, 2075–2121. [CrossRef]
Munakata, N.; Reinhard, M. Palladium Catalysis for the Treatment of Contaminated Waters: A Review. In Physicochemical Groundwater Remediation; Smith, J.A., Burns, S.E., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 45–71. ISBN 978-0-306-46569-7.
Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent Advances in the Suzuki–Miyaura Cross-Coupling Reaction Using Efficient Catalysts in Eco-Friendly Media. Green Chem. 2019, 21, 381–405. [CrossRef]
Yamaguchi, J.; Muto, K.; Itami, K. Recent Progress in Nickel-Catalyzed Biaryl Coupling: Recent Progress in Nickel-Catalyzed Biaryl Coupling. Eur. J. Org. Chem. 2013, 2013, 19–30. [CrossRef]
Kadu, B.S. Suzuki–Miyaura Cross Coupling Reaction: Recent Advancements in Catalysis and Organic Synthesis. Catal. Sci. Technol. 2021, 11, 1186–1221. [CrossRef]
Mondal, S.; Ballav, T.; Biswas, K.; Ghosh, S.; Ganesh, V. Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. Eur. J. Org. Chem. 2021, 2021, 4566–4602. [CrossRef]
Mohajer, F.; Heravi, M.M.; Zadsirjan, V.; Poormohammad, N. Copper-Free Sonogashira Cross-Coupling Reactions: An Overview. RSC Adv. 2021, 11, 6885–6925. [CrossRef]
Zhou, T.; Szostak, M. Palladium-Catalyzed Cross-Couplings by C–O Bond Activation. Catal. Sci. Technol. 2020, 10, 5702–5739. [CrossRef]
Kanwal, I.; Mujahid, A.; Rasool, N.; Rizwan, K.; Malik, A.; Ahmad, G.; Shah, S.A.A.; Rashid, U.; Nasir, N.M. Palladium and Copper Catalyzed Sonogashira Cross Coupling an Excellent Methodology for C-C Bond Formation over 17 Years: A Review. Catalysts 2020, 10, 443. [CrossRef]
Ntainjua, N.E.; Taylor, S.H. The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons. Top. Catal. 2009, 52, 528–541. [CrossRef]
Nasrollahzadeh, M.; Sajjadi, M.; Shokouhimehr, M.; Varma, R.S. Recent Developments in Palladium (Nano)Catalysts Supported on Polymers for Selective and Sustainable Oxidation Processes. Coord. Chem. Rev. 2019, 397, 54–75. [CrossRef]
Chen, H.; Sun, J. Selective Hydrogenation of Phenol for Cyclohexanone: A Review. J. Ind. Eng. Chem. 2021, 94, 78–91. [CrossRef]
Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120, 683–733. [CrossRef] [PubMed]
Mishra, R.K.; Ha, S.K.; Verma, K.; Tiwari, S.K. Recent Progress in Selected Bio-Nanomaterials and Their Engineering Applications: An Overview. J. Sci. Adv. Mater. Devices 2018, 3, 263–288. [CrossRef]
He, X.; Lu, W.; Sun, C.; Khalesi, H.; Mata, A.; Andaleeb, R.; Fang, Y. Cellulose and Cellulose Derivatives: Different Colloidal States and Food-Related Applications. Carbohydr. Polym. 2021, 255, 117334. [CrossRef] [PubMed]
Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P.; Santas, R. Fiber Dimensions, Lignin and Cellulose Content of Various Plant Materials and Their Suitability for Paper Production. Ind. Crops Prod. 2004, 19, 245–254. [CrossRef]
Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [CrossRef]
Abdul Khalil, H.P.S.; Davoudpour, Y.; Islam, M.N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydr. Polym. 2014, 99, 649–665. [CrossRef]
Islam, M.T.; Alam, M.M.; Patrucco, A.; Montarsolo, A.; Zoccola, M. Preparation of Nanocellulose: A Review. AATCC J. Res. 2014, 1, 17–23. [CrossRef]
Wang, X.; Hu, P.; Xue, F.; Wei, Y. Cellulose-Supported N-Heterocyclic Carbene-Palladium Catalyst: Synthesis and Its Applications in the Suzuki Cross-Coupling Reaction. Carbohydr. Polym. 2014, 114, 476–483. [CrossRef] [PubMed]
Dong, Y.; Wu, X.; Chen, X.; Wei, Y. N-Methylimidazole Functionalized Carboxymethycellulose-Supported Pd Catalyst and Its Applications in Suzuki Cross-Coupling Reaction. Carbohydr. Polym. 2017, 160, 106–114. [CrossRef] [PubMed]
Dong, Y.; Bi, J.; Zhang, S.; Zhu, D.; Meng, D.; Ming, S.; Qin, K.; Liu, Q.; Guo, L.; Li, T. Palladium Supported on N-Heterocyclic Carbene Functionalized Hydroxyethyl Cellulose as a Novel and Efficient Catalyst for the Suzuki Reaction in Aqueous Media. Appl. Surf. Sci. 2020, 531, 147392. [CrossRef]
Yılmaz Baran, N.; Baran, T.; Menteş, A. Fabrication and Application of Cellulose Schiff Base Supported Pd(II) Catalyst for Fast and Simple Synthesis of Biaryls via Suzuki Coupling Reaction. Appl. Catal. A Gen. 2017, 531, 36–44. [CrossRef]
Dong, Y.; Bi, J.; Zhu, D.; Meng, D.; Ming, S.; Guo, W.; Chen, Z.; Liu, Q.; Guo, L.; Li, T. Functionalized Cellulose with Multiple Binding Sites for a Palladium Complex Catalyst: Synthesis and Catalyst Evaluation in Suzuki–Miyaura Reactions. Cellulose 2019, 26, 7355–7370. [CrossRef]
Baran, T.; Yılmaz Baran, N.; Menteş, A. Preparation, Structural Characterization, and Catalytic Performance of Pd(II) and Pt(II) Complexes Derived from Cellulose Schiff Base. J. Mol. Struct. 2018, 1160, 154–160. [CrossRef]
Seyednejhad, S.; Khalilzadeh, M.A.; Sadeghifar, H.; Zareyee, D. Cellulose Nanocrystals-Palladium, a Novel Recyclable Catalyst for Coupling Reaction. Eurasian Chem. Commun. 2020, 2, 349–361. [CrossRef]
Sun, P.; Yang, J.; Chen, C.; Xie, K.; Peng, J. Synthesis of a Cellulosic Pd(Salen)-Type Catalytic Complex as a Green and Recyclable Catalyst for Cross-Coupling Reactions. Catal. Lett. 2020, 150, 2900–2910. [CrossRef]
Sabaqian, S.; Nemati, F.; Nahzomi, H.T.; Heravi, M.M. Palladium Acetate Supported on Amidoxime-Functionalized Magnetic Cellulose: Synthesis, DFT Study and Application in Suzuki Reaction. Carbohydr. Polym. 2017, 177, 165–177. [CrossRef] [PubMed]
Dong, Y.; Lai, Y.; Wang, X.; Gao, M.; Xue, F.; Chen, X.; Ma, Y.; Wei, Y. Design and Synthesis of Amine-Functionalized Cellulose with Multiple Binding Sites and Their Application in C C Bond Forming Reactions. Int. J. Biol. Macromol. 2019, 130, 778–785. [CrossRef] [PubMed]
Hu, P.; Dong, Y.; Wu, X.; Wei, Y. 2-Aminopyridine Functionalized Cellulose Based Pd Nanoparticles: An Efficient and Ecofriendly Catalyst for the Suzuki Cross-Coupling Reaction. Front. Chem. Sci. Eng. 2016, 10, 389–395. [CrossRef]
Jebali, Z.; Granados, A.; Nabili, A.; Boufi, S.; do Rego, A.M.B.; Majdoub, H.; Vallribera, A. Cationic Cellulose Nanofibrils as a Green Support of Palladium Nanoparticles: Catalyst Evaluation in Suzuki Reactions. Cellulose 2018, 25, 6963–6975. [CrossRef]
Sun, Y.; Mohammadnia, M. Synthesis and Characterization of Pd Based on [2,2′-Bipyridin]-4-Amine Functionalized Nano Cellulose as a Novel and Recyclable Nano Catalyst for Suzuki Reaction. Inorg. Chem. Commun. 2020, 118, 107993. [CrossRef]
Salamatmanesh, A.; Heydari, A.; Nahzomi, H.T. Stabilizing Pd on Magnetic Phosphine-Functionalized Cellulose: DFT Study and Catalytic Performance under Deep Eutectic Solvent Assisted Conditions. Carbohydr. Polym. 2020, 235, 115947. [CrossRef]
Du, Q.; Li, Y. Air-Stable, Recyclable, and Time-Efficient Diphenylphosphinite Cellulose-Supported Palladium Nanoparticles as a Catalyst for Suzuki–Miyaura Reactions. Beilstein J. Org. Chem. 2011, 7, 378–385. [CrossRef]
Wang, X.; Xu, Y.; Wang, F.; Wei, Y. Functionalized Cellulose-Supported Triphenylphosphine and Its Application in Suzuki Cross-Coupling Reactions. J. Appl. Polym. Sci. 2015, 132, 41427. [CrossRef]
Xiao, J.; Lu, Z.; Li, Y. Carboxymethylcellulose-Supported Palladium Nanoparticles Generated in Situ from Palladium(II) Carboxymethylcellulose: An Efficient and Reusable Catalyst for Suzuki–Miyaura and Mizoroki–Heck Reactions. Ind. Eng. Chem. Res. 2015, 54, 790–797. [CrossRef]
Martins, G.; dos Santos, M.; Rodrigues, M.; Sucupira, R.; Meneghetti, L.; Monteiro, A.; Suarez, P. Cellulose Oxidation and the Use of Carboxyl Cellulose Metal Complexes in Heterogeneous Catalytic Systems to Promote Suzuki-Miyaura Coupling and C−O Bond Formation Reaction. J. Braz. Chem. Soc. 2017, 34, 21–22. [CrossRef]
Faria, V.W.; Oliveira, D.G.M.; Kurz, M.H.S.; Gonçalves, F.F.; Scheeren, C.W.; Rosa, G.R. Palladium Nanoparticles Supported in a Polymeric Membrane: An Efficient Phosphine-Free “Green” Catalyst for Suzuki–Miyaura Reactions in Water. RSC Adv. 2014, 4, 13446–13452. [CrossRef]
Jokar, M.; Naeimi, H.; Nabi Bidhendi, G. Preparation and Characterization of Cellulose Sulfate/Pd Nanocatalsysts with Remarkable Efficiency for Suzuki–Miyaura Reaction. Appl. Organomet. Chem. 2021, 35, e6266. [CrossRef]
Li, D.; Jiang, J.; Cai, C. Palladium Nanoparticles Anchored on Amphiphilic Janus-Type Cellulose Nanocrystals for Pickering Interfacial Catalysis. Chem. Commun. 2020, 56, 9396–9399. [CrossRef]
Zhang, K.; Shen, M.; Liu, H.; Shang, S.; Wang, D.; Liimatainen, H. Facile Synthesis of Palladium and Gold Nanoparticles by Using Dialdehyde Nanocellulose as Template and Reducing Agent. Carbohydr. Polym. 2018, 186, 132–139. [CrossRef]
Aabaka, S.R.; Mao, J.; Lavanya, M.; Venkateswarlu, K.; Huang, Z.; Mao, J.; Yang, X.; Lin, C. Nanocellulose Supported PdNPs as in Situ Formed Nano Catalyst for the Suzuki Coupling Reaction in Aqueous Media: A Green Approach and Waste to Wealth. J. Organomet. Chem. 2021, 937, 121719. [CrossRef]
Chen, F.; Huang, M.; Li, Y. Synthesis of a Novel Cellulose Microencapsulated Palladium Nanoparticle and Its Catalytic Activities in Suzuki–Miyaura and Mizoroki–Heck Reactions. Ind. Eng. Chem. Res. 2014, 53, 8339–8345. [CrossRef]
Jamwal, N.; Sodhi, R.K.; Gupta, P.; Paul, S. Nano Pd(0) Supported on Cellulose: A Highly Efficient and Recyclable Heterogeneous Catalyst for the Suzuki Coupling and Aerobic Oxidation of Benzyl Alcohols under Liquid Phase Catalysis. Int. J. Biol. Macromol. 2011, 49, 930–935. [CrossRef] [PubMed]
Easson, M.W.; Jordan, J.H.; Bland, J.M.; Hinchliffe, D.J.; Condon, B.D. Application of Brown Cotton-Supported Palladium Nanoparticles in Suzuki–Miyaura Cross-Coupling Reactions. ACS Appl. Nano Mater. 2020, 3, 6304–6309. [CrossRef]
Dewan, A.; Sarmah, M.; Bharali, P.; Thakur, A.J.; Boruah, P.K.; Das, M.R.; Bora, U. Pd Nanoparticles-Loaded Honeycomb Structured Bio-Nanocellulose as a Heterogeneous Catalyst for Heteroaryl Cross-Coupling Reaction. ACS Sustain. Chem. Eng. 2021, 9, 954–966. [CrossRef]
Zheng, G.; Kaefer, K.; Mourdikoudis, S.; Polavarapu, L.; Vaz, B.; Cartmell, S.E.; Bouleghlimat, A.; Buurma, N.J.; Yate, L.; de Lera, Á.R.; et al. Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. J. Phys. Chem. Lett. 2015, 6, 230–238. [CrossRef] [PubMed]
Baruah, D.; Das, R.N.; Hazarika, S.; Konwar, D. Biogenic Synthesis of Cellulose Supported Pd(0) Nanoparticles Using Hearth Wood Extract of Artocarpus Lakoocha Roxb—A Green, Efficient and Versatile Catalyst for Suzuki and Heck Coupling in Water under Microwave Heating. Catal. Commun. 2015, 72, 73–80. [CrossRef]
Kempasiddaiah, M.; Kandathil, V.; Dateer, R.B.; Sasidhar, B.S.; Patil, S.A. Immobilizing Biogenically Synthesized Palladium Nanoparticles on Cellulose Support as a Green and Sustainable Dip Catalyst for Cross-Coupling Reaction. Cellulose 2020, 27, 3335–3357. [CrossRef]
Kandathil, V.; Kempasiddaiah, M.; Sasidhar, B.S.; Patil, S.A. From Agriculture Residue to Catalyst Support; A Green and Sustainable Cellulose-Based Dip Catalyst for C C Coupling and Direct Arylation. Carbohydr. Polym. 2019, 223, 115060. [CrossRef]
Kandathil, V.; Veetil, A.K.; Patra, A.; Moolakkil, A.; Kempasiddaiah, M.; Somappa, S.B.; Rout, C.S.; Patil, S.A. A Green and Sustainable Cellulosic-Carbon-Shielded Pd–MNP Hybrid Material for Catalysis and Energy Storage Applications. J. Nanostruct. Chem. 2021, 11, 395–407. [CrossRef]
Soltani, S.S.; Taheri-Ledari, R.; Farnia, S.M.F.; Maleki, A.; Foroumadi, A. Synthesis and Characterization of a Supported Pd Complex on Volcanic Pumice Laminates Textured by Cellulose for Facilitating Suzuki–Miyaura Cross-Coupling Reactions. RSC Adv. 2020, 10, 23359–23371. [CrossRef]
Niakan, M.; Masteri-Farahani, M.; Karimi, S.; Shekaari, H. Hydrophilic Role of Deep Eutectic Solvents for Clean Synthesis of Biphenyls over a Magnetically Separable Pd-Catalyzed Suzuki-Miyaura Coupling Reaction. J. Mol. Liq. 2021, 324, 115078. [CrossRef]
Kale, D.; Rashinkar, G.; Kumbhar, A.; Salunkhe, R. Facile Suzuki-Miyaura Cross Coupling Using Ferrocene Tethered N Heterocyclic Carbene-Pd Complex Anchored on Cellulose. React. Funct. Polym. 2017, 116, 9–16. [CrossRef]
Mhaldar, P.; Vibhute, S.; Rashinkar, G.; Pore, D. Highly Effective Cellulose Supported 2-Aminopyridine Palladium Complex (Pd(II)-AMP-Cell@Al2O3) for Suzuki-Miyaura and Mizoroki–Heck Cross-Coupling. React. Funct. Polym. 2020, 152, 104586. [CrossRef]
Kumbhar, A.; Jadhav, S.; Kamble, S.; Rashinkar, G.; Salunkhe, R. Palladium Supported Hybrid Cellulose–Aluminum Oxide Composite for Suzuki–Miyaura Cross Coupling Reaction. Tetrahedron Lett. 2013, 54, 1331–1337. [CrossRef]
Karami, K.; Saadatzadeh, H.; Ramezanpour, A. Synthesis and Characterization of Palladium Nanoparticles Immobilized on Modified Cellulose Nanocrystals as Heterogeneous Catalyst for Reduction of Nitroaromatic Compounds. ChemistrySelect 2021, 6, 2746–2759. [CrossRef]
Li, D.; Zhang, J.; Cai, C. Pd Nanoparticles Supported on Cellulose as a Catalyst for Vanillin Conversion in Aqueous Media. J. Org. Chem. 2018, 83, 7534–7538. [CrossRef]
Lin, B.; Liu, X.; Zhang, Z.; Chen, Y.; Liao, X.; Li, Y. Pd(0)–CMC@Ce(OH) 4 Organic/Inorganic Hybrid as Highly Active Catalyst for the Suzuki–Miyaura Reaction. J. Colloid Interface Sci. 2017, 497, 134–143. [CrossRef] [PubMed]
Jadhav, S.; Jagdale, A.; Kamble, S.; Kumbhar, A.; Salunkhe, R. Palladium Nanoparticles Supported on a Titanium Dioxide Cellulose Composite (PdNPs@TiO2–Cell) for Ligand-Free Carbon–Carbon Cross Coupling Reactions. RSC Adv. 2016, 6, 3406– 3420. [CrossRef]
Nishikata, T.; Tsutsumi, H.; Gao, L.; Kojima, K.; Chikama, K.; Nagashima, H. Adhesive Catalyst Immobilization of Palladium Nanoparticles on Cotton and Filter Paper: Applications to Reusable Catalysts for Sequential Catalytic Reactions. Adv. Synth. Catal. 2014, 356, 951–960. [CrossRef]
Baran, T.; Sargin, I.; Kaya, M.; Menteş, A. Green Heterogeneous Pd(II) Catalyst Produced from Chitosan-Cellulose Micro Beads for Green Synthesis of Biaryls. Carbohydr. Polym. 2016, 152, 181–188. [CrossRef]
Yılmaz Baran, N.; Baran, T.; Menteş, A. Production of Novel Palladium Nanocatalyst Stabilized with Sustainable Chitosan/Cellulose Composite and Its Catalytic Performance in Suzuki-Miyaura Coupling Reactions. Carbohydr. Polym. 2018, 181, 596–604. [CrossRef]
Wang, B.; Ran, M.; Fang, G.; Wu, T.; Tian, Q.; Zheng, L.; Romero-Zerón, L.; Ni, Y. Palladium Nano-Catalyst Supported on Cationic Nanocellulose–Alginate Hydrogel for Effective Catalytic Reactions. Cellulose 2020, 27, 6995–7008. [CrossRef]
Baran, T. Ultrasound-Accelerated Synthesis of Biphenyl Compounds Using Novel Pd(0) Nanoparticles Immobilized on Bio Composite. Ultrason. Sonochem. 2018, 45, 231–237. [CrossRef] [PubMed]
Sarkar, S.M.; Rahman, M.L.; Chong, K.F.; Yusoff, M.M. Poly(Hydroxamic Acid) Palladium Catalyst for Heck Reactions and Its Application in the Synthesis of Ozagrel. J. Catal. 2017, 350, 103–110. [CrossRef]
Islam, M.S.; Rahman, M.L.; Yusoff, M.M.; Sarkar, S.M. Highly Active Bio-Waste Cellulose Supported Poly(Amidoxime) Palladium(II) Complex for Heck Reactions. J. Clean. Prod. 2017, 149, 1045–1050. [CrossRef]
Mohammadnia, M.; Poormirzaei, N. Preparation and Characterization of Pd Supported on 5-Carboxyoxindole Functionalized Cell@Fe3 O4 Nanoparticles as a Novel Magnetic Catalyst for the Heck Reaction. Nanoscale Adv. 2021, 3, 1917–1926. [CrossRef]
Du, Q.; Li, Y. Application of an Air-and-Moisture-Stable Diphenylphosphinite Cellulose-Supported Nanopalladium Catalyst for a Heck Reaction. Res. Chem. Intermed. 2012, 38, 1807–1817. [CrossRef]
Keshipour, S.; Shojaei, S.; Shaabani, A. Palladium Nano-Particles Supported on Ethylenediamine-Functionalized Cellulose as a Novel and Efficient Catalyst for the Heck and Sonogashira Couplings in Water. Cellulose 2013, 20, 973–980. [CrossRef]
Xu, Y.; Xue, M.; Li, J.; Zhang, L.; Cui, Y. Synthesis of a Cellulose Xanthate Supported Palladium(0) Complex and Its Catalytic Behavior in the Heck Reaction. React. Kinet. Mech. Catal. 2010, 497, 134–143. [CrossRef]
Rezayat, M.; Blundell, R.K.; Camp, J.E.; Walsh, D.A.; Thielemans, W. Green One-Step Synthesis of Catalytically Active Palladium Nanoparticles Supported on Cellulose Nanocrystals. ACS Sustain. Chem. Eng. 2014, 2, 1241–1250. [CrossRef]
Xu, Y.; Zhang, L.; Cui, Y. Catalytic Performance of Cellulose Supported Palladium Complex for Heck Reaction in Water. J. Appl. Polym. Sci. 2008, 110, 2996–3000. [CrossRef]
Cirtiu, C.M.; Dunlop-Brière, A.F.; Moores, A. Cellulose Nanocrystallites as an Efficient Support for Nanoparticles of Palladium: Application for Catalytichydrogenation and Heck Coupling under Mild Conditions. Green Chem. 2011, 13, 288–291. [CrossRef]
Niakan, M.; Masteri-Farahani, M.; Shekaari, H.; Karimi, S. Pd Supported on Clicked Cellulose-Modified Magnetite-Graphene Oxide Nanocomposite for C-C Coupling Reactions in Deep Eutectic Solvent. Carbohydr. Polym. 2021, 251, 117109. [CrossRef] [PubMed]
Ashiri, S.; Mehdipour, E. Preparation of a Novel Palladium Catalytic Hydrogel Based on Graphene Oxide/Chitosan NPs and Cellulose Nanowhiskers. RSC Adv. 2018, 8, 32877–32885. [CrossRef]
Rajender Reddy, K.; Kumar, N.S.; Surendra Reddy, P.; Sreedhar, B.; Lakshmi Kantam, M. Cellulose Supported Palladium(0) Catalyst for Heck and Sonogashira Coupling Reactions. J. Mol. Catal. A Chem. 2006, 252, 12–16. [CrossRef]
Rasouli, M.A.; Ranjbar, P.R. Reductive Ullmann Coupling of Aryl Halides by Palladium Nanoparticles Supported on Cellulose, a Recoverable Heterogeneous Catalyst. Z. Für Nat. B 2013, 68, 946–950. [CrossRef]
Kempasiddaiah, M.; Kandathil, V.; Dateer, R.B.; Sasidhar, B.S.; Patil, S.A.; Patil, S.A. Palladium-Catalyzed Denitrogenative Cross-Coupling of Aryl Halides with Arylhydrazines under Mild Reaction Conditions. Transit. Met. Chem. 2021, 46, 273–281. [CrossRef]
Jokar, M.; Naeimi, H.; Nabi Bidhendi, G. Design and Preparation of Platinum Anchored on Cellulose as Heterogeneous Nanocatalyst for Synthesis of Bis-Coumarin Derivatives. Polycycl. Aromat. Compd. 2021, 68, 1–12. [CrossRef]
Buisson, P.; Quignard, F. Polysaccharides: Natural Polymeric Supports for Aqueous Phase Catalysts in the Allylic Substitution Reaction. Aust. J. Chem. 2002, 55, 73. [CrossRef]
Quignard, F.; Choplin, A. Cellulose: A New Bio-Support for Aqueous Phase Catalysts. Chem. Commun. 2001, 34, 21–22. [CrossRef]
Seyednejhad, S.; Khalilzadeh, M.A.; Zareyee, D.; Sadeghifar, H.; Venditti, R. Cellulose Nanocrystal Supported Palladium as a Novel Recyclable Catalyst for Ullmann Coupling Reactions. Cellulose 2019, 26, 5015–5031. [CrossRef]
Petkova, D.; Borlinghaus, N.; Sharma, S.; Kaschel, J.; Lindner, T.; Klee, J.; Jolit, A.; Haller, V.; Heitz, S.; Britze, K.; et al. Hydrophobic Pockets of HPMC Enable Extremely Short Reaction Times in Water. ACS Sustain. Chem. Eng. 2020, 8, 12612–12617. [CrossRef]
Li, S.; Wang, J.; Jin, J.; Tong, J.; Shen, C. Recyclable Cellulose-Derived Fe3O4@Pd NPs for Highly Selective C–S Formation by Heterogeneously C–H Sulfenylation of Indoles. Catal. Lett. 2020, 150, 2409–2414. [CrossRef]
Keshipour, S.; Adak, K. Pd(0) Supported on N-Doped Graphene Quantum Dot Modified Cellulose as an Efficient Catalyst for the Green Reduction of Nitroaromatics. RSC Adv. 2016, 6, 89407–89412. [CrossRef]
Li, D.; Lu, G.; Cai, C. Modified Cellulose with Tunable Surface Hydrophilicity/Hydrophobicity as a Novel Catalyst Support for Selective Reduction of Nitrobenzene. Catal. Commun. 2020, 137, 105949. [CrossRef]
Wu, X.; Lu, C.; Zhang, W.; Yuan, G.; Xiong, R.; Zhang, X. A Novel Reagentless Approach for Synthesizing Cellulose Nanocrystal Supported Palladium Nanoparticles with Enhanced Catalytic Performance. J. Mater. Chem. A 2013, 1, 8645. [CrossRef]
Wu, X.; Shi, Z.; Fu, S.; Chen, J.; Berry, R.M.; Tam, K.C. Strategy for Synthesizing Porous Cellulose Nanocrystal Supported Metal Nanocatalysts. ACS Sustain. Chem. Eng. 2016, 4, 5929–5935. [CrossRef]
Li, X.; Dong, F.; Zhang, L.; Xu, Q.; Zhu, X.; Liang, S.; Hu, L.; Xie, H. Cellulosic Protic Ionic Liquids Hydrogel: A Green and Efficient Catalyst Carrier for Pd Nanoparticles in Reduction of 4-Nitrophenol in Water. Chem. Eng. J. 2019, 372, 516–525. [CrossRef]
Yu, H.; Oh, S.; Han, Y.; Lee, S.; Jeong, H.S.; Hong, H.-J. Modified Cellulose Nanofibril Aerogel: Tunable Catalyst Support for Treatment of 4-Nitrophenol from Wastewater. Chemosphere 2021, 285, 131448. [CrossRef]
Zeynizadeh, B.; Karami, S. Synthesis of Ni Nanoparticles Anchored on Cellulose Using Different Reducing Agents and Their Applications towards Reduction of 4-Nitrophenol. Polyhedron 2019, 166, 196–202. [CrossRef]
Kamal, T.; Khan, S.B.; Asiri, A.M. Nickel Nanoparticles-Chitosan Composite Coated Cellulose Filter Paper: An Efficient and Easily Recoverable Dip-Catalyst for Pollutants Degradation. Environ. Pollut. 2016, 218, 625–633. [CrossRef] [PubMed]
Islam, M.T.; Sultana, K.A.; Noveron, J.C. Borohydride-Free Catalytic Reduction of Organic Pollutants by Platinum Nanoparticles Supported on Cellulose Fibers. J. Mol. Liq. 2019, 296, 111988. [CrossRef]
Nasir Baig, R.B.; Varma, R.S. Magnetic Carbon-Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions. ACS Sustain. Chem. Eng. 2014, 2, 2155–2158. [CrossRef]
Xie, Z.-T.; Asoh, T.-A.; Uyama, H. Monolithic Cellulose Supported Metal Nanoparticles as Green Flow Reactor with High Catalytic Efficiency. Carbohydr. Polym. 2019, 214, 195–203. [CrossRef] [PubMed]
Zhang, D.-Y.; Zhang, X.-Q.; Yao, X.-H.; Wan, Y.; Song, P.; Liu, Z.-Y.; Fu, Y.-J. Microwave-Assisted Synthesis of PdNPs by Cellulose Solution to Prepare 3D Porous Microspheres Applied on Dyes Discoloration. Carbohydr. Polym. 2020, 247, 116569. [CrossRef] [PubMed]
Gu, J.; Hu, C.; Zhang, W.; Dichiara, A.B. Reagentless Preparation of Shape Memory Cellulose Nanofibril Aerogels Decorated with Pd Nanoparticles and Their Application in Dye Discoloration. Appl. Catal. B Environ. 2018, 237, 482–490. [CrossRef]
Nadagouda, M.N.; Desai, I.; Cruz, C.; Yang, D.J. Novel Pd Based Catalyst for the Removal of Organic and Emerging Contaminants. RSC Adv. 2012, 2, 7540. [CrossRef]
Islam, M.T.; Rosales, J.A.; Saenz-Arana, R.; Ghadimi, S.J.; Noveron, J.C. Rapid Synthesis of Ultrasmall Platinum Nanoparticles Supported on Macroporous Cellulose Fibers for Catalysis. Nanoscale Adv. 2019, 1, 2953–2964. [CrossRef]
Li, G.; Li, Y.; Wang, Z.; Liu, H. Green Synthesis of Palladium Nanoparticles with Carboxymethyl Cellulose for Degradation of Azo-Dyes. Mater. Chem. Phys. 2017, 187, 133–140. [CrossRef]
Li, D.; Zhang, J.; Jiang, J.; Cai, C. Amphiphilic Cellulose Supported PdNi Alloy Nanoparticles towards Biofuel Upgrade under Mild Conditions. Catal. Commun. 2019, 122, 43–46. [CrossRef]
Meng, J.; Liu, Y.; Shi, X.; Chen, W.; Zhang, X.; Yu, H. Recyclable Nanocellulose-Confined Palladium Nanoparticles with Enhanced Room-Temperature Catalytic Activity and Chemoselectivity. Sci. China Mater. 2021, 64, 621–630. [CrossRef]
Shaikh, M.N. Pd Nanoparticles on Green Support as Dip-Catalyst: A Facile Transfer Hydrogenation of Olefins and N-Heteroarenes in Water. RSC Adv. 2019, 9, 28199–28206. [CrossRef]
Phillips, J.M.; Ahamed, M.; Duan, X.; Lamb, R.N.; Qu, X.; Zheng, K.; Zou, J.; Chalker, J.M.; Raston, C.L. Chemoselective and Continuous Flow Hydrogenations in Thin Films Using a Palladium Nanoparticle Catalyst Embedded in Cellulose Paper. ACS Appl. Bio Mater. 2019, 2, 488–494. [CrossRef] [PubMed]
Santos, M.R.; Rodrigues, M.V.R.; Santos, A.B.S.; Valerio, M.G.; Martins, G.B.C.; Sucupira, R.R.; Meneghetti, L.; Suarez, P.A.Z. Metal-Cellulose Catalytic Systems for Biodiesel Preparation and Reductive Stabilization. J. Mol. Catal. A Chem. 2016, 422, 131–141. [CrossRef]
Kaushik, M.; Basu, K.; Benoit, C.; Cirtiu, C.M.; Vali, H.; Moores, A. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization. J. Am. Chem. Soc. 2015, 137, 6124–6127. [CrossRef]
Yamada, T.; Teranishi, W.; Park, K.; Jiang, J.; Tachikawa, T.; Furusato, S.; Sajiki, H. Development of Carbon-Neutral Cellulose Supported Heterogeneous Palladium Catalysts for Chemoselective Hydrogenation. ChemCatChem 2020, 12, 4052–4058. [CrossRef]
Liu, J.; He, F.; Durham, E.; Zhao, D.; Roberts, C.B. Polysugar-Stabilized Pd Nanoparticles Exhibiting High Catalytic Activities for Hydrodechlorination of Environmentally Deleterious Trichloroethylene. Langmuir 2008, 24, 328–336. [CrossRef]
Zhang, M.; Bacik, D.B.; Roberts, C.B.; Zhao, D. Catalytic Hydrodechlorination of Trichloroethylene in Water with Supported CMC-Stabilized Palladium Nanoparticles. Water Res. 2013, 47, 3706–3715. [CrossRef]
Bacik, D.B.; Zhang, M.; Zhao, D.; Roberts, C.B.; Seehra, M.S.; Singh, V.; Shah, N. Synthesis and Characterization of Supported Polysugar-Stabilized Palladium Nanoparticle Catalysts for Enhanced Hydrodechlorination of Trichloroethylene. Nanotechnology 2012, 23, 294004. [CrossRef]
Sikora, E.; Katona, K.K.; Muránszky, G.; Bánhidi, O.; Kristály, F.; Szabó, J.T.; Windisch, M.; Fiser, B.; Vanyorek, L. Cellulose-Based Catalyst Design for Efficient Chlorate Reduction. Arab. J. Chem. 2021, 14, 103202. [CrossRef]
Zhang, X.; Shi, H.; Chi, Q.; Liu, X.; Chen, L. Cellulose-Supported Pd Nanoparticles: Effective for the Selective Oxidation of Glucose into Gluconic Acid. Polym. Bull. 2020, 77, 1003–1014. [CrossRef]
Bahluli, R.; Keshipour, S. Microcrystalline Cellulose Modified with Fe(II)– and Ni(II)–Phthalocyanines: Syntheses, Characterizations, and Catalytic Applications. Polyhedron 2019, 169, 176–182. [CrossRef]
Kebede, M.A.; Imae, T.; Sabrina; Wu, C.-M.; Cheng, K.-B. Cellulose Fibers Functionalized by Metal Nanoparticles Stabilized in Dendrimer for Formaldehyde Decomposition and Antimicrobial Activity. Chem. Eng. J. 2017, 311, 340–347. [CrossRef]
Keshipour, S.; Khaltech, N.K. Pd and Fe3O4 Nanoparticles Supported on N-(2-Aminoethyl)Acetamide Functionalized Cellulose as an Efficient Catalyst for Epoxidation of Styrene. Int. J. Nanosci. Nanotechnol. 2017, 13, 219–226.
Keshipour, S.; Kalam Khalteh, N. Oxidation of Ethylbenzene to Styrene Oxide in the Presence of Cellulose-Supported Pd Magnetic Nanoparticles: Oxidation of Ethylbenzene to Styrene Oxide. Appl. Organomet. Chem. 2016, 30, 653–656. [CrossRef]
Mirosanloo, A.; Zareyee, D.; Khalilzadeh, M.A. Recyclable Cellulose Nanocrystal Supported Palladium Nanoparticles as an Efficient Heterogeneous Catalyst for the Solvent-Free Synthesis of Coumarin Derivatives via von Pechmann Condensation: Heterogeneous Nanocatalyst. Appl. Organomet. Chem. 2018, 32, e4546. [CrossRef]
Ahmar, H.; Keshipour, S.; Hosseini, H.; Fakhari, A.R.; Shaabani, A.; Bagheri, A. Electrocatalytic Oxidation of Hydrazine at Glassy Carbon Electrode Modified with Ethylenediamine Cellulose Immobilized Palladium Nanoparticles. J. Electroanal. Chem. 2013, 690, 96–103. [CrossRef]
Moradpour, A.; Ghaffarinejad, A.; Maleki, A.; Eskandarpour, V.; Motaharian, A. Low Loaded Palladium Nanoparticles on Ethylenediamine-Functionalized Cellulose as an Efficient Catalyst for Electrochemical Hydrogen Production. RSC Adv. 2015, 5, 70668–70674. [CrossRef]
Vijayaramalingam, K.; Karthikeyan, A.; Selvarani, V.; Kiruthika, S.; Muthukumaran, B. Enhanced Electrocatalytic Activity of Pd–Ir–Ni, Pd–Ir–Mo and Pd–Ir–Rh Nanoparticles Supported on Cellulose-Based Carbon (CC) for Membraneless Sodium Perborate Fuel Cells (MLSPBFCs). J. App. Pharm. Sci. 2018, 34, 129–137. [CrossRef]
Nechita, P.; Mirela, R.; Ciolacu, F. Xylan Hemicellulose: A Renewable Material with Potential Properties for Food Packaging Applications. Sustainability 2021, 13, 13504. [CrossRef]
Huang, L.-Z.; Ma, M.-G.; Ji, X.-X.; Choi, S.-E.; Si, C. Recent Developments and Applications of Hemicellulose From Wheat Straw: A Review. Front. Bioeng. Biotechnol. 2021, 9, 690773. [CrossRef]
Farhat, W.; Venditti, R.; Ayoub, A.; Prochazka, F.; Fernández-de-Alba, C.; Mignard, N.; Taha, M.; Becquart, F. Towards Thermoplastic Hemicellulose: Chemistry and Characteristics of Poly-(ε-Caprolactone) Grafting onto Hemicellulose Backbones. Mater. Des. 2018, 153, 298–307. [CrossRef]
Pereira, C.S.; Silveira, R.L.; Dupree, P.; Skaf, M.S. Effects of Xylan Side-Chain Substitutions on Xylan–Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass. Biomacromolecules 2017, 18, 1311–1321. [CrossRef] [PubMed]
Chen, W.; Zhong, L.; Peng, X.; Wang, K.; Chen, Z.; Sun, R. Xylan-Type Hemicellulose Supported Palladium Nanoparticles: A Highly Efficient and Reusable Catalyst for the Carbon–Carbon Coupling Reactions. Catal. Sci. Technol. 2014, 4, 1426–1435. [CrossRef]
Du, F.; Zhang, L.; Ma, J.; Peng, X. Hemicelluloses Supported Palladium/Xylan Nanocomposites Containing N and O Ligands: Highly-Performance Heterogeneous Catalysts for Suzuki Reaction. Carbohydr. Polym. 2019, 217, 224–231. [CrossRef]
Chen, W.; Zhong, L.; Peng, X.; Lin, J.; Sun, R. Xylan-Type Hemicelluloses Supported Terpyridine–Palladium(II) Complex as an Efficient and Recyclable Catalyst for Suzuki–Miyaura Reaction. Cellulose 2014, 21, 125–137. [CrossRef]
He, M.; Song, T.; Qi, H.; Xiang, Z. An Environment-Friendly Dip-Catalyst with Xylan-Based Catalytic Paper Coatings. Carbohydr. Polym. 2022, 275, 118707. [CrossRef]
Wu, C.; Peng, X.; Zhong, L.; Li, X.; Sun, R. Green Synthesis of Palladium Nanoparticles via Branched Polymers: A Bio-Based Nanocomposite for C–C Coupling Reactions. RSC Adv. 2016, 6, 32202–32211. [CrossRef]
Hosoya, T.; Kawamoto, H.; Saka, S. Cellulose–Hemicellulose and Cellulose–Lignin Interactions in Wood Pyrolysis at Gasification Temperature. J. Anal. Appl. Pyrolysis 2007, 80, 118–125. [CrossRef]
Zhang, Z.; Terrasson, V.; Guénin, E. Lignin Nanoparticles and Their Nanocomposites. Nanomaterials 2021, 11, 1336. [CrossRef] [PubMed]
El Mansouri, N.-E.; Salvadó, J. Analytical Methods for Determining Functional Groups in Various Technical Lignins. Ind. Crops Prod. 2007, 26, 116–124. [CrossRef]
Fu, K.; Yue, Q.; Gao, B.; Sun, Y.; Zhu, L. Preparation, Characterization and Application of Lignin-Based Activated Carbon from Black Liquor Lignin by Steam Activation. Chem. Eng. J. 2013, 228, 1074–1082. [CrossRef]
Zevallos Torres, L.A.; Lorenci Woiciechowski, A.; de Andrade Tanobe, V.O.; Karp, S.G.; Guimarães Lorenci, L.C.; Faulds, C.; Soccol, C.R. Lignin as a Potential Source of High-Added Value Compounds: A Review. J. Clean. Prod. 2020, 263, 121499. [CrossRef]
Guillén, E.; Rico, R.; López-Romero, J.M.; Bedia, J.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Pd-Activated Carbon Catalysts for Hydrogenation and Suzuki Reactions. Appl. Catal. A Gen. 2009, 368, 113–120. [CrossRef]
Guo, X.; Zhang, S.; Shan, X. Adsorption of Metal Ions on Lignin. J. Hazard. Mater. 2008, 151, 134–142. [CrossRef]
Coccia, F.; Tonucci, L.; d’Alessandro, N.; D’Ambrosio, P.; Bressan, M. Palladium Nanoparticles, Stabilized by Lignin, as Catalyst for Cross-Coupling Reactions in Water. Inorg. Chim. Acta 2013, 399, 12–18. [CrossRef]
Nasrollahzadeh, M.; Bidgoli, N.S.S.; Issaabadi, Z.; Ghavamifar, Z.; Baran, T.; Luque, R. Hibiscus rosasinensis L. Aqueous Extract Assisted Valorization of Lignin: Preparation of Magnetically Reusable Pd NPs@Fe3O4-Lignin for Cr(VI) Reduction and SuzukiMiyaura Reaction in Eco-Friendly Media. Int. J. Biol. Macromol. 2020, 148, 265–275. [CrossRef]
Nasrollahzadeh, M.; Issaabadi, Z.; Varma, R.S. Magnetic Lignosulfonate-Supported Pd Complex: Renewable Resource-Derived Catalyst for Aqueous Suzuki–Miyaura Reaction. ACS Omega 2019, 4, 14234–14241. [CrossRef]
Baran, T.; Sargin, I. Green Synthesis of a Palladium Nanocatalyst Anchored on Magnetic Lignin-Chitosan Beads for Synthesis of Biaryls and Aryl Halide Cyanation. Int. J. Biol. Macromol. 2020, 155, 814–822. [CrossRef] [PubMed]
Marulasiddeshwara, M.B.; Kumar, P.R. Synthesis of Pd(0) Nanocatalyst Using Lignin in Water for the Mizoroki–Heck Reaction under Solvent-Free Conditions. Int. J. Biol. Macromol. 2016, 83, 326–334. [CrossRef] [PubMed]
Madrahalli Bharamanagowda, M.; Panchangam, R.K. Fe3O4-Lignin@Pd-NPs: A Highly Efficient, Magnetically Recoverable and Recyclable Catalyst for Mizoroki-Heck Reaction under Solvent-free Conditions. Appl. Organomet. Chem. 2020, 34, 265–275. [CrossRef]
Marulasiddeshwara, M.B.; Raghavendra Kumar, P. Phosphine and Copper-Free Sonogashira Coupling Reaction Catalyzed by Lignin Supported Palladium Nanoparticles. Mater. Today Proc. 2018, 5, 20811–20818. [CrossRef]
Orooji, Y.; Pakzad, K.; Nasrollahzadeh, M.; Tajbakhsh, M. Novel Magnetic Lignosulfonate-Supported Pd Complex as an Efficient Nanocatalyst for N-Arylation of 4-Methylbenzenesulfonamide. Int. J. Biol. Macromol. 2021, 182, 564–573. [CrossRef]
Nasrollahzadeh, M.; Shafiei, N.; Nezafat, Z.; Bidgoli, N.S.S. Recent Progresses in the Application of Lignin Derived (Nano)Catalysts in Oxidation Reactions. Mol. Catal. 2020, 489, 110942. [CrossRef]
Coccia, F.; Tonucci, L.; Bosco, D.; Bressan, M.; d’Alessandro, N. One-Pot Synthesis of Lignin-Stabilised Platinum and Palladium Nanoparticles and Their Catalytic Behaviour in Oxidation and Reduction Reactions. Green Chem. 2012, 14, 1073. [CrossRef]
Fazio, E.; Gökce, B.; De Giacomo, A.; Meneghetti, M.; Compagnini, G.; Tommasini, M.; Waag, F.; Lucotti, A.; Zanchi, C.G.; Ossi, P.M.; et al. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials 2020, 10, 2317. [CrossRef]
Mohazzab, B.F.; Jaleh, B.; Nasrollahzadeh, M.; Khazalpour, S.; Sajjadi, M.; Varma, R.S. Upgraded Valorization of Biowaste: Laser-Assisted Synthesis of Pd/Calcium Lignosulfonate Nanocomposite for Hydrogen Storage and Environmental Remediation. ACS Omega 2020, 5, 5888–5899. [CrossRef]
Chen, S.; Wang, G.; Sui, W.; Parvez, A.M.; Dai, L.; Si, C. Novel Lignin-Based Phenolic Nanosphere Supported Palladium Nanoparticles with Highly Efficient Catalytic Performance and Good Reusability. Ind. Crops Prod. 2020, 145, 112164. [CrossRef]
Di Pietrantonio, K.; Coccia, F.; Tonucci, L.; d’Alessandro, N.; Bressan, M. Hydrogenation of Allyl Alcohols Catalyzed by Aqueous Palladium and Platinum Nanoparticles. RSC Adv. 2015, 5, 68493–68499. [CrossRef]
Marulasiddeshwara, M.B.; Raghavendra Kumar, P. Hydrogenation of Carbonyl Compounds to Alcohols Catalyzed by Lignin Supported Palladium Nanoparticles. Mater. Today Proc. 2019, 9, 295–305. [CrossRef]
Chen, X.; Yuan, B.; Yu, F.; Liu, Y.; Xie, C.; Yu, S. Hydrogenation of α-Pinene over Platinum Nanoparticles Reduced and Stabilized by Sodium Lignosulfonate. ACS Omega 2020, 5, 8902–8911. [CrossRef]
Bedia, J.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Pd Supported on Mesoporous Activated Carbons with High Oxidation Resistance as Catalysts for Toluene Oxidation. Appl. Catal. B Environ. 2010, 94, 8–18. [CrossRef]
Li, X.; Lv, Y.; Pan, D. Pt Catalysts Supported on Lignin-Based Carbon Dots for Methanol Electro-Oxidation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 569, 110–118. [CrossRef]
Zhou, H.; Hong, S.; Zhang, H.; Chen, Y.; Xu, H.; Wang, X.; Jiang, Z.; Chen, S.; Liu, Y. Toward Biomass-Based Single-Atom Catalysts and Plastics: Highly Active Single-Atom Co on N-Doped Carbon for Oxidative Esterification of Primary Alcohols. Appl. Catal. B Environ. 2019, 256, 117767. [CrossRef]
Fernandez-Ruiz, C.; Bedia, J.; Bonal, P.; Rodriguez, J.J.; Gómez-Sainero, L.M. Chloroform Conversion into Ethane and Propane by Catalytic Hydrodechlorination with Pd Supported on Activated Carbons from Lignin. Catal. Sci. Technol. 2018, 8, 3926–3935. [CrossRef]
Wang, D.; Li, G.; Zhang, C.; Wang, Z.; Li, X. Nickel Nanoparticles Inlaid in Lignin-Derived Carbon as High Effective Catalyst for Lignin Depolymerization. Bioresour. Technol. 2019, 289, 121629. [CrossRef]
Du, B.; Liu, C.; Wang, X.; Han, Y.; Guo, Y.; Li, H.; Zhou, J. Renewable Lignin-Based Carbon Nanofiber as Ni Catalyst Support for Depolymerization of Lignin to Phenols in Supercritical Ethanol/Water. Renew. Energy 2020, 147, 1331–1339. [CrossRef]
Heinrich, F.; Keßler, M.T.; Dohmen, S.; Singh, M.; Prechtl, M.H.G.; Mathur, S. Molecular Palladium Precursors for Pd0 Nanoparticle Preparation by Microwave Irradiation: Synthesis, Structural Characterization and Catalytic Activity. Eur. J. Inorg. Chem. 2012, 2012, 6027–6033. [CrossRef]
Lin, X.; Wu, M.; Wu, D.; Kuga, S.; Endo, T.; Huang, Y. Platinum Nanoparticles Using Wood Nanomaterials: Eco-Friendly Synthesis, Shape Control and Catalytic Activity for p-Nitrophenol Reduction. Green Chem. 2011, 13, 283–287. [CrossRef]