Acácio, V., Holmgren, M., Rego, F., Moreira, F., & Mohren, G. M. J. (2009). Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforestry Systems, 76, 389–400.
Almagro, M., Maestre, F. T., Martínez-López, J., Valencia, E., & Rey, A. (2015). Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands. Soil Biology and Biochemistry, 90, 214–223.
Austin, A. T., Méndez, M. S., & Ballaré, C. L. (2016). Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 113, 4392–4397.
Baker, N. R., & Allison, S. D. (2015). Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate. Ecology, 96, 1994–2003.
Barbosa, A., de Souza, F., Gomes, M., Dini, F., Monteiro, A., Cezar, J., Geraldes, W., & Mui, S. (2015). Effects of vegetation and seasonality on bacterial communities in Amazonian dark earth and adjacent soils. African Journal of Microbiology Research, 9(40), 2119–2134. https://doi.org/10.5897/ajmr2015.7453
Bastida, F., Hernández, T., Albaladejo, J., & García, C. (2013). Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biology and Biochemistry, 65, 12–21.
Bastida, F., López-Mondéjar, R., Baldrian, P., Andrés-Abellán, M., Jehmlich, N., Torres, I. F., García, C., & López-Serrano, F. R. (2019). When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem. Science of the Total Environment, 662, 276–286.
Bérard, A., Ben Sassi, M., Kaisermann, A., & Renault, P. (2015). Soil microbial community responses to heat wave components: drought and high temperature. Climate Research, 66(3), 243–264. https://doi.org/10.3354/cr01343
Bornman, J. F., Barnes, P. W., Robson, T. M., Robinson, S. A., Jansen, M. A. K., Ballare, C. L., & Flint, S. D. (2019). Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochemical and Photobiological Sciences, 18, 681–716.
Bornman, J. F., Paul, N., & Tang, X. (2011). Environmental effects of ozone depletion and its interactions with climate change: 2010 assessment: Introduction. Photochemical and Photobiological Sciences, 10, 174.
Bosco, T., Bertiller, M. B., & Carrera, A. L. (2016). Combined effects of litter features, UV radiation, and soil water on litter decomposition in denuded areas of the arid Patagonian Monte. Plant and Soil, 406, 71–82.
Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A., & Thies, J. E. (2006). Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Applied and Environmental Microbiology, 72, 4522–4531.
Calbó, J. (2010). Possible climate change scenarios with specific reference to Mediterranean regions. In S. Sabater & D. Barcelo, (Eds.), Water scarcity in the Mediterranean: Perspectives Under Global Change (Vol. 8, pp. 1–13). The Handbook of Environmental Chemistry, Springer-Verlag.
Caldwell, M. M., Bornman, J. F., Ballaré, C. L., Flint, S. D., & Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical and Photobiological Sciences, 6, 252–266.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from ilumina amplicon data. Nature Methods, 13, 581–583.
Curiel Yuste, J., Fernandez-Gonzalez, A. J., Fernandez-Lopez, M., Ogaya, R., Penuelas, J., Sardans, J., & Lloret, F. (2014). Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biology and Biochemistry, 69, 223–233.
Darenova, E., Holub, P., Krupkova, L., & Pavelka, M. (2017). Effect of repeated spring drought and summer heavy rain on managed grassland biomass production and CO2 efflux. Journal of Plant Ecology, 10, 476–485.
de Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M., Gweon, H. S., Hallin, S., Kaisermann, A., Keith, A. M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K. E., Oliver, A., Ostle, N., Prosser, J. I., Thion, C., Thomson, B., & Bardgett, R. D. (2018). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9, 3033.
Delgado-Baquerizo, M., & Eldridge, D. J. (2019). Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale. Ecosystems, 22, 1220–1231.
Díaz-Guerra, L., Verdaguer, D., Gispert, M., Pardini, G., Font, J., González, J. A., Peruzzi, E., Masciandaro, G., & Llorens, L. (2018). Effects of UV radiation and rainfall reduction on leaf and soil parameters related to C and N cycles of a Mediterranean shrubland before and after a controlled fire. Plant and Soil, 424, 503–524.
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 626–631.
Flores-Rentería, D., Curiel Yuste, J., Rincón, A., Brearley, F. Q., García-Gil, J. C., & Valladares, F. (2015). Habitat fragmentation can modulate drought effects on the plant-soil-microbial system in Mediterranean holm oak (Quercus ilex) forests. Microbial Ecology, 69, 798–812.
Harborne, J. B. (1976). Progress in botany. Phytochemistry, 15, 1571.
Hättenschwiler, S., Tiunov, A. V., & Scheu, S. (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191–218.
Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F., & Taylor, M. (2017). Bacteria as emerging indicators of soil condition. Applied and Environmental Microbiology, 83, 1–13.
Hopmans, J. W., & Bristow, K. L. (2001). Review: Soil and environmental analysis physical Mehods. Geoderma, 103, 355–357.
IPCC. (2012). In C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, F.-K. Plattner, S.K. Allen, M. Tignor & P.M. Midgley (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (p. 582). Cambridge University Press.
Ivanova, A. A., Kulichevskaya, I. S., Merkel, A. Y., Toshchakov, S. V., & Dedysh, S. N. (2016). High diversity of planctomycetes in soils of two lichen-dominated sub-arctic ecosystems of northwestern siberia. Frontiers in Microbiology, 7, 1–13. https://doi.org/10.3389/fmicb.2016.02065
Jacobs, J. L., & Sundin, G. W. (2001). Effect of solar UV-B radiation on a phyllosphere bacterial community. Applied and Environmental Microbiology, 67, 5488–5496.
Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa i libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72, 1719–1728.
Jeffery, S., Harris, J. A., Rickson, R. J., & Ritz, K. (2009). The spectral quality of light influences the temporal development of the microbial phenotype at the arable soil surface. Soil Biology and Biochemistry, 41, 553–560.
Johnson, D. (2003). Response of terrestrial microorganisms to ultraviolet-B radiation in ecosystems. Research in Microbiology, 154, 315–320.
Karmakar, R., Das, I., Dutta, D., & Rakshit, A. (2016). Potential effects of climate change on soil properties: A review. Science International, 4, 51–73.
Kotilainen, T., Tegelberg, R., Julkunen-Tiitto, R., Lindfors, A., Aphalo, P. J., & Meteorological, F. (2008). Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics. Global Change Biology, 14, 1294–1304.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79, 5112–5120.
Kumar, V. B. N., Kampe, B., Rösch, P., & Popp, J. (2015). Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy. Analyst, 140, 4584–4593.
Li, Y., Chen, L., & Wen, H. (2015). Changes in the composition and diversity of bacterial communities 13 years after soil reclamation of abandoned mine land in eastern China. Ecological Research, 30, 357–366.
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., & Knight, R. (2011). UniFrac: An effective distance metric for microbial community comparison. ISME Journal, 5, 169–172.
Maccario, L., Carpenter, S. D., Deming, J. W., Vogel, T. M., & Larose, C. (2019). Sources and selection of snow-specific microbial communities in a Greenlandic sea ice snow cover. Scientific Reports, 9, 1–14.
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B., Quero, J. L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M. A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J. R., Huber-Sannwald, E., Jankju, M., … Singh, B. K. (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112, 15684–15689.
Masciandaro, G., Macci, C., Doni, S., Maserti, B. E., Leo, A. C. B., Ceccanti, B., & Wellington, E. (2008). Comparison of extraction methods for recovery of extracellular β-glucosidase in two different forest soils. Soil Biology and Biochemistry, 40, 2156–2161.
Moroenyane, I., Tripathi, B. M., Dong, K., Sherman, C., Steinberger, Y., & Adams, J. (2018). Bulk soil bacterial community mediated by plant community in Mediterranean ecosystem, Israel. Applied Soil Ecology, 124, 104–109.
Muñoz-Rojas, M., Erickson, T. E., Martini, D., Dixon, K. W., & Merritt, D. J. (2016). Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological Indicators, 63, 14–22.
Naylor, D., Coleman-Derr, D. (2018). Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 8, 2223. https://doi.org/10.3389/fpls.2017.02223
Pieristè, M., Forey, E., Lounès-Hadj Sahraoui, A., Meglouli, H., Laruelle, F., Delporte, P., Robson, T. M., & Chauvat, M. (2020). Spectral composition of sunlight affects the microbial functional structure of beech leaf litter during the initial phase of decomposition. Plant and Soil, 451, 515–530.
Pinto, O. H. B., Costa, F. S., Rodrigues, G. R., da Costa, R. A., da Rocha Fernandes, G., Júnior, O. R. P., & Barreto, C. C. (2021). Soil Acidobacteria strain AB23 resistance to oxidative stress through production of carotenoids. Microbial Ecology, 81, 169–179.
Poncelet, D. M., Cavender, N., Cutright, T. J., & Senko, J. M. (2014). An assessment of microbial communities associated with surface mining-disturbed overburden. Environmental Monitoring and Assessment, 186, 1917–1929.
Pourreza, M., Hosseini, S. M., Safari Sinegani, A. A., Matinizadeh, M., & Dick, W. A. (2014). Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma, 213, 95–102.
Preece, C., & Peñuelas, J. (2016). Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant and Soil, 409, 1–17.
Preece, C., Verbruggen, E., Liu, L., Weedon, J. T., & Peñuelas, J. (2019). Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology and Biochemistry, 131, 28–39.
R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
Rinnan, R., Nerg, A. M., Ahtoniemi, P., Suokanerva, H., Holopainen, T., Kyrö, E., & Bååth, E. (2008). Plant-mediated effects of elevated ultraviolet-B radiation on peat microbial communities of a subarctic mire. Global Change Biology, 14, 925–937.
Rodríguez, J., González-Pérez, J. A., Turmero, A., Hernández, M., Ball, A. S., González-Vila, F. J., & Arias, M. E. (2018). Physico-chemical and microbial perturbations of Andalusian pine forest soils following a wildfire. Science of the Total Environment, 634, 650–660.
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., & Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4, 1340–1351.
Sáenz de Miera, L. E., Pinto, R., Gutierrez-Gonzalez, J. J., Calvo, L., & Ansola, G. (2020). Wildfire effects on diversity and composition in soil bacterial communities. Science of the Total Environment, 726, 138636.
Sanchez-Lorenzo, A., Enriquez-Alonso, A., Calbó, J., González, J. A., Wild, M., Folini, D., Norris, J. R., & Vicente-Serrano, S. M. (2017). Fewer clouds in the Mediterranean: Consistency of observations and climate simulations. Scientific Reports, 7, 41475.
Sardans, J., & Peñuelas, J. (2013). Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant and Soil, 365, 1–33.
Shihan, A., Hättenschwiler, S., Milcu, A., Joly, F. X., Santonja, M., & Fromin, N. (2017). Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biology and Fertility of Soils, 53, 171–185.
Siles, J. A., Rachid, C. T. C. C., Sampedro, I., García-Romera, I., & Tiedje, J. M. (2014). Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS One, 9, e103035.
Smith, W. K., Gao, W., Steltzer, H., Wallenstein, M. D., & Tree, R. (2010). Moisture availability influences the effect of ultraviolet-B radiation on leaf litter decomposition. Global Change Biology, 16, 484–495.
Snider, J. R., Goin, C., Miller, R. V., Boston, P. J., & Northup, D. E. (2009). Ultraviolet radiation sensitivity in cave bacteria: Evidence of adaptation to the subsurface? International Journal of Speleology, 38, 11–22.
Spain, A. M., Krumholz, L. R., & Elshahed, M. S. (2009). Abundance, composition, diversity and novelty of soil Proteobacteria. ISME Journal, 3, 992–1000.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
Sun, Y., Shi, Y. L., Wang, H., Zhang, T., Yu, L. Y., Sun, H., & Zhang, Y. Q. (2018). Diversity of bacteria and the characteristics of actinobacteria community structure in Badain Jaran Desert and Tengger Desert of China. Frontiers in Microbiology, 9, 1–14.
Van Der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.
Verdaguer, D., Jansen, M. A. K., Llorens, L., Morales, L. O., & Neugart, S. (2017). UV-A radiation effects on higher plants: Exploring the known unknown. Plant Science, 255, 72–81.
Wang, J., Liu, L., Wang, X., & Chen, Y. (2015). The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation. Global Change Biology, 21, 2095–2104.
Yuste, J. C., Peñuelas, J., Estiarte, M., Garcia-Mas, J., Mattana, S., Ogaya, R., Pujol, M., & Sardans, J. (2011). Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Global Change Biology, 17, 1475–1486.