[en] Plasmids carrying metal resistance genes (MRGs) have been suggested to be key ecological players in the adaptation of metal-impacted microbial communities, making them promising drivers of bio-remediation processes. However, the impact of metals on plasmid-mediated spread of MRGs through selection, plasmid loss, and transfer is far from being fully understood. In the present study, we used two-member bacterial communities to test the impact of lead on the dispersal of the IncP plasmid pKJK5 from a Pseudomonas putida KT2440 plasmid donor and two distinct recipients, Variovorax paradoxus B4 or Delftia acidovorans SPH-1 after 4 and 10 days of mating. Two versions of the plasmid were used, carrying or not carrying the lead resistance pbrTRABCD operon, to assess the importance of fitness benefit and conjugative potential for the dispersal of the plasmid. The spread dynamics of metal resistance conveyed by the conjugative plasmid were dependent on the recipient and the lead concentration: For V. paradoxus, the pbr operon did not facilitate neither lead resistance nor variation in plasmid spread. The growth gain brought by the pbr operon to D. acidovorans SPH-1 and P. putida KT2440 at 1 mM Pb enhanced the spread of the plasmid. At 1.5 mM Pb after 4 days, the proteomics results revealed an oxidative stress response and an increased abundance of pKJK5-encoded conjugation and partitioning proteins, which most likely increased the transfer of the control plasmid to D. acidovorans SPH-1 and ensured plasmid maintenance. As a consequence, we observed an increased spread of pKJK5-gfp. Conversely, the pbr operon reduced the oxidative stress response and impeded the rise of conjugation- and partitioning-associated proteins, which slowed down the spread of the pbr carrying plasmid. Ultimately, when a fitness gain was recorded in the recipient strain, the spread of MRG-carrying plasmids was facilitated through positive selection at an intermediate metal concentration, while a high lead concentration induced oxidative stress with positive impacts on proteins encoding plasmid conjugation and partitioning.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bahl M. I., Hansen L. H., Sørensen S. J., (2007). Impact of conjugal transfer on the stability of IncP-1 plasmid pKJK5 in bacterial populations. FEMS Microbiol. Lett. 266 250–256. 10.1111/j.1574-6968.2006.00536.x 17132149
Bahl M. I., Hansen L. H., Sørensen S. J., (2009). “Persistence Mechanisms of Conjugative Plasmids,” in Horizontal Gene Transfer: Genomes in Flux, eds Gogarten M. B., Gogarten J. P., Olendzenski L. C., (Totowa, NJ: Humana Press), 10.1007/978-1-60327-853-9
Bahl M. I., Sørensen S. J., Hansen L. H., (2004). Quantification of plasmid loss in Escherichia coli cells by use of flow cytometry. FEMS Microbiol. Lett. 232 45–49. 10.1016/S0378-1097(04)00015-1
Bates S., Cashmore A. M., Wilkins B. M., (1998). IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the Tra2 mating system. J. Bacteriol. 180 6538–6543.
Bell A., Hancock R. E. W., (1989). Outer membrane protein H1 of Pseudomonas aeruginosa: purification of the protein and cloning and nucleotide sequence of the gene. J. Bacteriol. 171 3211–3217. 10.1128/jb.171.6.3211-3217.1989 2498288
Chenier D., Beriault R., Mailloux R., Baquie M., Abramia G., Lemire J., et al. (2008). Involvement of fumarase C and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells evoked by aluminum and gallium toxicity. Appl. Environ. Microbiol. 74 3977–3984. 10.1128/AEM.02702-07 18469122
Cortes L., Wopereis H., Tartiere A., Piquenot J., Gouw J. W., Tims S., et al. (2019). Metaproteomic and 16S rRNA gene sequencing analysis of the infant fecal microbiome. Int. J. Mol. Sci. 20 9–12. 10.3390/ijms20061430 30901843
Cyriaque V., Géron A., Billon G., Nesme J., Werner J., Gillan D. C., et al. (2020a). Metal-induced bacterial interactions promote diversity in river-sediment microbiomes. FEMS Microbiol. Ecol. 96:5826176. 10.1093/femsec/fiaa076 32343356
Cyriaque V., Jacquiod S., Riber L., Abu Al-soud W., Gillan D. C., Sørensen S. J., et al. (2020b). Selection and propagation of IncP conjugative plasmids following long-term anthropogenic metal pollution in river sediments. J. Hazard. Mater. 382:121173. 10.1016/j.jhazmat.2019.121173 31563088
Garbisu C., Garaiyurrebaso O., Epelde L., Grohmann E., Alkorta I., (2017). Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front. Microbiol. 8:1966. 10.3389/fmicb.2017.01966 29062312
Gillan D. C., Danis B., Pernet P., Joly G., Dubois P., (2005). Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl. Environ. Microbiol. 71 679–690. 10.1128/AEM.71.2.679
Gillan D. C., Roosa S., Kunath B., Billon G., Wattiez R., (2015). The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environ. Microbiol. 17 1991–2005. 10.1111/1462-2920.12627 25244307
Gougoulias C., Shaw L. J., (2012). Evaluation of the environmental specificity of fluorescence in situ hybridization (FISH) using fluorescence-activated cell sorting (FACS) of probe (PSE1284)-positive cells extracted from rhizosphere soil. Syst. Appl. Microbiol. 35 533–540. 10.1016/j.syapm.2011.11.009 22264503
Guo Q., Li N., Xie S., (2019). Heavy metal spill influences bacterial communities in freshwater sediments. Arch. Microbiol. 201 847–854. 10.1007/s00203-019-01650-y 30888453
Hall J. P. J., Wood A. J., Harrison E., Brockhurst M. A., (2016). Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 113 8260–8265. 10.1073/pnas.1600974113 27385827
Hesse E., O’Brien S., Tromas N., Bayer F., Luján A. M., van Veen E. M., et al. (2018). Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 21 117–127. 10.1111/ele.12878 29161760
Hynninen A., Touzé T., Pitkänen L., Mengin-Lecreulx D., Virta M., (2009). An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol. Microbiol. 74 384–394. 10.1111/j.1365-2958.2009.06868.x 19737357
Jacquiod S., Brejnrod A., Morberg S. M., Abu Al-Soud W., Sørensen S. J., Riber L., (2017). Deciphering conjugative plasmid permissiveness in wastewater microbiomes. Mol. Ecol. 26 3556–3571. 10.1111/mec.14138 28390108
Jacquiod S., Cyriaque V., Riber L., Al-soud W. A., Gillan D. C., Wattiez R., et al. (2018). Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. J. Hazard. Mater. 344 299–307. 10.1016/j.jhazmat.2017.09.046 29055834
Jarosławiecka A., Piotrowska-Seget Z., (2014). Lead resistance in micro-organisms. Microbiology (United Kingdom) 160 12–25. 10.1099/mic.0.070284-0 24124204
Juggins S., (2019). rioja: Analysis of Quaternary Science Data.
Jurburg S. D., Nunes I., Brejnrod A., Jacquiod S., Priemé A., Sørensen S. J., et al. (2017). Legacy effects on the recovery of soil bacterial communities from extreme temperature perturbation. Front. Microbiol. 8:1832. 10.3389/fmicb.2017.01832 28993764
Klümper U., Dechesne A., Riber L., Brandt K. K., Gülay A., Sørensen S. J., et al. (2017). Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 11 152–165. 10.1038/ismej.2016.98 27482924
Klümper U., Riber L., Dechesne A., Sannazzarro A., Hansen L. H., Sørensen S. J., et al. (2015). Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9 934–945. 10.1038/ismej.2014.191 25333461
Kommerein N., Stumpp S. N., Musken M., Ehlert N., Winkel A., Haussler S., et al. (2017). An oral multispecies biofilm model for high content screening applications. PLoS One 12:e0173973. 10.1371/journal.pone.0173973 28296966
Kottara A., Hall J. P. J., Harrison E., Brockhurst M. A., (2018). Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol. Ecol. 94:fix172. 10.1093/femsec/fix172 29228229
Kurth C., Schieferdecker S., Athanasopoulou K., Seccareccia I., Nett M., (2016). Variochelins, lipopeptide siderophores from variovorax boronicumulans discovered by genome mining. J. Nat. Prod. 79 865–872. 10.1021/acs.jnatprod.5b00932 27023373
Kwon M. J., Yang J. S., Lee S., Lee G., Ham B., Boyanov M. I., et al. (2015). Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au-Ag mine tailings. J. Hazard. Mater. 296 147–157. 10.1016/j.jhazmat.2015.04.035 25917692
Lanka E., Barth P. T., (1981). Plasmid RP4 specifies a deoxyribonucleic acid primase involved in its conjugal transfer and maintenance. J. Bacteriol. 148 769–781.
Lawson T. S., Connally R. E., Vemulpad S., Piper J. A., (2012). Dimethyl formamide-free, urea-NaCl fluorescence in situ hybridization assay for Staphylococcus aureus. Lett. Appl. Microbiol. 54 263–266. 10.1111/j.1472-765X.2011.03197.x 22176341
Leroy B., De Meur Q., Moulin C., Wegria G., Wattiez R., (2015). New insight into the photoheterotrophic growth of the isocytrate lyase-lacking purple bacterium rhodospirillum rubrum on acetate. Microbiology (United Kingdom) 161 1061–1072. 10.1099/mic.0.000067 25737481
Lopatkin A. J., Meredith H. R., Srimani J. K., Pfeiffer C., Durrett R., You L., (2017). Persistence and reversal of plasmid-mediated antibiotic resistance. Nat. Commun. 8:1689. 10.1038/s41467-017-01532-1 29162798
Lopatkin A. J., Sysoeva T. A., You L., (2016). Dissecting the effects of antibiotics on horizontal gene transfer: analysis suggests a critical role of selection dynamics. Bioassays 38 1283–1292. 10.1002/bies.201600133.Dissecting
Monchy S., Benotmane M. A., Janssen P., Vallaeys T., Taghavi S., Van Der Lelie D., et al. (2007). Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J. Bacteriol. 189 7417–7425. 10.1128/JB.00375-07 17675385
Naik M. M., Dubey S. K., (2011). Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr. Microbiol. 62 409–414. 10.1007/s00284-010-9722-2 20661573
Ni C., Horton D. J., Rui J., Henson M. W., Jiang Y., Huang X., et al. (2016). High concentrations of bioavailable heavy metals impact freshwater sediment microbial communities. Ann. Microbiol. 66 1003–1012. 10.1007/s13213-015-1189-8
Nishida H., Oshima T., (2019). DNA Traffic in the Environment. Singapore: Springer Singapore.
Norman A., Hansen L. H., Sørensen S. J., (2009). Conjugative plasmids: vessels of the communal gene pool. Philos. Trans. R. Soc. B Biol. Sci. 364 2275–2289. 10.1098/rstb.2009.0037 19571247
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2019). Vegan: Community Ecology Package. R Package Version 2.5-6.
Pal C., Bengtsson-Palme J., Kristiansson E., Larsson D. G. J., (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16:964. 10.1186/s12864-015-2153-5 26576951
Parra B., Tortella G. R., Cuozzo S., Martínez M., (2019). Negative effect of copper nanoparticles on the conjugation frequency of conjugative catabolic plasmids. Ecotoxicol. Environ. Saf. 169 662–668. 10.1016/j.ecoenv.2018.11.057 30496999
Perry J. A., Wright G. D., (2013). The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front. Microbiol. 4:138. 10.3389/fmicb.2013.00138 23755047
Pinilla-Redondo R., Cyriaque V., Jacquiod S., Sørensen S. J., Riber L., (2018). Monitoring plasmid-mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. Plasmid 99 56–67. 10.1016/j.plasmid.2018.08.002 30086339
Pu Q., Fan X., Li H., An X., Lassen S. B., Su J., (2021). Cadmium enhances conjugative plasmid transfer to a fresh water microbial community. Environ. Pollut. 268:115903. 10.1016/j.envpol.2020.115903 33120155
Rosche T. M., Siddique A., Larsen M. H., Figurski D. H., (2000). Incompatibility protein IncC and global regulator KorB interact in active partition of promiscuous plasmid RK2. J. Bacteriol. 182 6014–6026. 10.1128/JB.182.21.6014-6026.2000 11029420
Schröder G., Krause S., Zechner E. L., Traxler B., Yeo H. J., Lurz R., et al. (2002). TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates? J. Bacteriol. 184 2767–2779. 10.1128/JB.184.10.2767-2779.2002 11976307
Smets B. F., Morrow J. B., Pinedo C. A., (2003). Plasmid introduction in metal-stressed, subsurface-derived microcosms: plasmid fate and community response. Appl. Environ. Microbiol. 69 4087–4097. 10.1128/AEM.69.7.4087
Sun M. Y., Dafforn K. A., Johnston E. L., Brown M. V., (2013). Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ. Microbiol. 15 2517–2531. 10.1111/1462-2920.12133 23647974
Taghavi S., Lesaulnier C., Monchy S., Wattiez R., Mergeay M., Lelie D., (2009). Lead(II) resistance in Cupriavidus metallidurans CH34: Interplay between plasmid and chromosomally-located functions. Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 96 171–182. 10.1007/s10482-008-9289-0 18953667
Wang P., Zhang S., Wang C., Lu J., (2012). Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotoxicol. Environ. Saf. 78 28–34. 10.1016/j.ecoenv.2011.11.008 22138147
Wang Q., Liu L., Hou Z., Wang L., Ma D., Yang G., et al. (2020). Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. Sci. Total Environ. 717:137055. 10.1016/j.scitotenv.2020.137055 32065888
Warnes G. R., Bolker B., Bonebakker L., Gentleman R., Liaw W. H. A., Lumley T., et al. (2016). Package “gplots”: Various R programming Tools for Plotting Data. R Packag. Version 2.17.0. 1–68. 10.1111/j.0022-3646.1997.00569.x
Xu F. F., Imlay J. A., (2012). Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl. Environ. Microbiol. 78 3614–3621. 10.1128/AEM.07368-11 22344668
Yamaguchi N., Ohba H., Nasu M., (2006). Simple detection of small amounts of Pseudomonas cells in milk by using a microfluidic device. Lett. Appl. Microbiol. 43 631–636. 10.1111/j.1472-765X.2006.02013.x 17083709
Zhang S., Wang Y., Song H., Lu J., Yuan Z., Guo J., (2019). Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environ. Int. 129 478–487. 10.1016/j.envint.2019.05.054 31158594
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.