The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.
2022. [BCAB] Influence of location, weather condition, maturity, and plant disease on chemical profiles of dragon fruit (Hylocereus spp.) branches grown in Vietnam.pdf
Branch; Chemical composition; Dragon fruit; Lignocellulosic; Fatty acid
Abstract :
[en] The diversity in growing conditions, maturity, or diseases directly affects the chemical profiles of plants. This research aimed to characterize the exhaustive chemical constituents of dragon fruit branches harvested on two common seasons at multiple maturities, with or without plant disease, from four different sites in Binh Thuan province, Vietnam. Based on the dry solid, these branches consisted of high amounts of ash (9.38–16.10%), total extractives (18.01–28.96%), and lignin (11.20–16.86%), an intermediate amount of protein (4.63–11.82%), and diversified quantities of cellulose (3.59–16.84%), hemicellulose (5.35–24.15%), monosaccharides (rhamnose, arabinose, xylose, mannose, glucose, and galactose), and fatty acids (C12:0, C14:0, C16:0, C18:1, C18:2, and C18:3 gamma). The season did not influence the amounts of ash, total extractives, and lignin. Nevertheless, the protein and hemicellulose contents of the branches collected in the dry season were higher than those gathered in the rainy season, while the glucose and cellulose values were in the opposite trend. Regarding plant disease, stem rotting syndrome reduced the amount of protein, while brown spot condition enhanced it, whereas both diseases did not alter other chemical characteristics of these branches. Furthermore, the lignin, cellulose, and glucose contents escalated, while the ash, hemicellulose, and galactose values lessened with their maturity. Notably, the contents of protein and total extractives diminished when the maturity was higher than 8 years. The results in this study suggest that dragon fruit branches could be recognized as suitable lignocellulosic biomass with sufficient micronutrients, including nitrogen content for biogas production and other waste valorization processes.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Crane JH, Balerdi CF (2005) Pitaya (Dragon fruit) growing in the Florida home landscape, https://edis.ifas.ufl.edu/pdffiles/HS/HS30300.pdf Accessed June 1st.
Jiang YL, Liao YY, Lin TS, Lee CL, Yen CR, Yang WJ (2012) The photoperiod-regulated bud formation of red pitaya (Hylocereus sp.). HortScience horts 47:1063 DOI: 10.21273/HORTSCI.47.8.1063
Le Bellec F, Vaillant F, Imbert E (2006) Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits 61:237–250 DOI: 10.1051/fruits:2006021
Tsai Y, Lin CG, Chen WL, Huang YC, Chen CY, Huang KF, Yang CH (2019) Evaluation of the antioxidant and wound-healing properties of extracts from different parts of Hylocereus polyrhizus. Agronomy 9(1):27 DOI: 10.3390/agronomy9010027
Balendres MA, Bengoa JC (2019) Diseases of dragon fruit (Hylocereus species): etiology and current management options. Crop Protection 126:104920 DOI: 10.1016/j.cropro.2019.104920
Zee F, Yen CR, Nishina M (2004) Pitaya (dragon fruit, strawberry pear), http://hdl.handle.net/10125/2403 Accessed June 1st.
Jiang YL, Liao YY, Lin MT, Yang WJ (2016) Bud development in response to night-breaking treatment in the noninductive period in red pitaya (Hylocereus sp.). HortScience horts 51:690 DOI: 10.21273/HORTSCI.51.6.690
Luu TTH, Le TL, Huynh N, Quintela-Alonso P (2021) Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech Journal of Food Sciences 39:71–94 DOI: 10.17221/139/2020-CJFS
Tenore GC, Novellino E, Basile A (2012) Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. Journal of Functional Foods 4:129–136 DOI: 10.1016/j.jff.2011.09.003
Wichienchot S, Jatupornpipat M, Rastall RA (2010) Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chem 120:850–857 DOI: 10.1016/j.foodchem.2009.11.026
Hoat TX, Quan VM, Hien NTT, Ngoc NTB, Minh H, Thanh NVL (2018) Dragon fruit production in Vietnam: achievements and challenges, https://ap.fftc.org.tw/article/1292 Accessed June 1st.
Nie Q, Gao GL, Fan QJ, Qiao G, Wen XP, Liu T, Peng ZJ, Cai YQ (2015) Isolation and characterization of a catalase gene “HuCAT3” from pitaya (Hylocereus undatus) and its expression under abiotic stress. Gene 563:63–71 DOI: 10.1016/j.gene.2015.03.007
Nobel PS, De La Barrera E (2004) CO2 uptake by the cultivated hemiepiphytic cactus, Hylocereus undatus. Annals of Applied Biology 144:1–8 DOI: 10.1111/j.1744-7348.2004.tb00310.x
Rojas-Sandoval J, Praciak A (2020) Hylocereus undatus (dragon fruit), https://www.cabi.org/isc/datasheet/27317 Accessed June 1st.
Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K, Rohwer J GBittrich V (eds). Flowering plants · dicotyledons: magnoliid, hamamelid and caryophyllid families 10.1007/978-3-662-02899-5_17 161–197 (Springer Berlin Heidelberg: Berlin, Heidelberg).
Pimienta-Barrios E, Nobel PS (1994) Pitaya (Stenocereus spp., Cactaceae): an ancient and modern fruit crop of Mexico. Econ Bot 48:76–83 DOI: 10.1007/BF02901385
Lobo R, Bender G, Tanizaki G, Fernandez de Soto J, Aguiar J (2013) Pitahaya or dragon fruit production in California: a research update, https://ucanr.edu/sites/sdsmallfarms/files/172469.pdf Accessed June 1st.
Nerd A, Sitrit Y, Kaushik RA, Mizrahi Y (2002) High summer temperatures inhibit flowering in vine pitaya crops (Hylocereus spp.). Sci Hortic 96:343–350 DOI: 10.1016/S0304-4238(02)00093-6
Wu LC, Hsu HW, Chen YC, Chiu CC, Lin YI, Ho JAA (2006) Antioxidant and antiproliferative activities of red pitaya. Food Chem 95:319–327 DOI: 10.1016/j.foodchem.2005.01.002
Mizrahi Y, Nerd A, Nobel PS (1996) Cacti as crops. In: Horticultural Reviews 10.1002/9780470650608.ch6 291–319.
Hien PTT (2019) The Dragon fruit export challenge and experiences in Vietnam, https://ap.fftc.org.tw/article/1598 Accessed June 1st.
Wang R, Shi W, Dong P (2020) Mapping dragon fruit croplands from space using remote sensing of artificial light at night. Remote Sensing 12:4139 DOI: 10.3390/rs12244139
Vinh PQ, Binh NT, Thanh Huong BT (2012) Drought zoning for Binh Thuan province, Vietnam base on ETo calculator and GIS. In: GeoInformatics for Spatial-Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS) 2012 (Vietnam, 2012). https://gisws.media.osaka-cu.ac.jp/gisideas12/viewabstract.php?id=446. Accessed 7 Nov 2021
Le HTT, Ngoc T, NHens L, (2015) Assessment of the irrigation capacity during the dry season using remote sensing and geographical information (case study in the Binh Thuan Province, Vietnam). Int J Geosci 6:7 DOI: 10.4236/ijg.2015.611095
Anderson EF (2001) The cactus family. Timber Press, Portland
Reddy DAK (2021) Dragon fruit – a new introduction in the Indian market. Just Agriculture e-Magazine 1(8):12–15
Hieu NT, Hoa NV (2016) Management strategies of major pitaya diseases in Vietnam. In: Improving pitaya production and marketing: International Workshop Proceedings, pp 129–142. https://www.fftc.org.tw/htmlarea_file/activities/20150817121105/13-15P10.pdf. Accessed 5 May 2021
Tuan LNA, Du BD, Ha LDT, Dzung LTK, Van Phu D, Hien NQ (2019) Induction of chitinase and brown spot disease resistance by oligochitosan and nanosilica–oligochitosan in dragon fruit plants. Agricultural Research 8:184–190 DOI: 10.1007/s40003-018-0384-9
Makris DP, Boskou G, Andrikopoulos NK (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal 20:125–132 DOI: 10.1016/j.jfca.2006.04.010
Juárez-Cruz A, Livera M, Sosa-Montes E, Goytia-Jiménez M, González-Hernández V, Bárcena-Gama R (2012) Composición química de tallos inmaduros de Acanthocereus spp. e Hylocereus undatus (Haw.) Britton & Rose. Revista Fitotecnia Mexicana publ por la Sociedad Mexicana de Fitogenética 35:171–175 DOI: 10.35196/rfm.2012.2.171
Ortiz-Hernández YD, Carrillo-Salazar JA (2012) Pitahaya (Hylocereus spp.): a short review. Comunicata Scientiae 3:220–237
Som AM, Ahmat N, Abdul Hamid HA, Azizuddin N (2019) A comparative study on foliage and peels of Hylocereus undatus (white dragon fruit) regarding their antioxidant activity and phenolic content. Heliyon 5:e01244 DOI: 10.1016/j.heliyon.2019.e01244
Ismail O, Abdel-Aziz M, Ghareeb M, Hassan RYA (2017) Exploring the biological activities of the Hylocereus polyrhizus extract. Journal of Innovations in Pharmaceutical and Biological Sciences 4:1–6
Idris J, Md Som A, Musa M, Ku Hamid KH, Husen R, Muhd Rodhi MN (2013) Dragon fruit foliage plant-based coagulant for treatment of concentrated latex effluent: comparison of treatment with ferric sulfate. Journal of Chemistry 2013:230860 DOI: 10.1155/2013/230860
Hames B, Ruiz RO, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis. NREL Laboratory Analytical Procedure (NREL/TP-510-42620), pp 1–10. https://www.nrel.gov/docs/gen/fy08/42620.pdf. Accessed 1 Oct 2019
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. NREL Laboratory Analytical Procedure (NREL/TP-510–42622). https://www.nrel.gov/docs/gen/fy08/42622.pdf. Accessed 1 Oct 2019
Hames B, Scarlata C, Sluiter A (2008) Determination of protein content in biomass. NREL Laboratory Analytical Procedure (NREL/TP-510–42625). https://www.nrel.gov/docs/gen/fy08/42625.pdf. Accessed 1 Oct 2019
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. NREL Laboratory Analytical Procedure (NREL/TP-510–42619). https://www.nrel.gov/docs/gen/fy08/42619.pdf. Accessed 1 Oct 2019
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedure (NREL/TP-510–42618). https://www.nrel.gov/docs/gen/fy11/42618.pdf. Accessed 1 Oct 2019
Durán DA, Figueroa Á, Gualdrón MA, Sierra R (2018) Potential of tropical fruit waste in bioenergy processes and bioproducts design. In: 26th European Biomass Conference and Exhibition 10.5071/26thEUBCE2018-1AV.2.18 166–174.
Novais RM, Gameiro T, Carvalheiras J, Seabra MP, Tarelho LAC, Labrincha JA, Capela I (2018) High pH buffer capacity biomass fly ash-based geopolymer spheres to boost methane yield in anaerobic digestion. J Clean Prod 178:258–267 DOI: 10.1016/j.jclepro.2018.01.033
Podmirseg SM, Seewald MSA, Knapp BA, Bouzid O, Biderre-Petit C, Peyret P, Insam H (2013) Wood ash amendment to biogas reactors as an alternative to landfilling? A preliminary study on changes in process chemistry and biology. Waste Manage Res 31:829–842 DOI: 10.1177/0734242X13497077
Bin Y, Hongzhang C (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Biores Technol 101:9114–9119 DOI: 10.1016/j.biortech.2010.07.033
Bruun S, Jensen JW, Magid J, Lindedam J, Engelsen SB (2010) Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy. Ind Crops Prod 31:321–326 DOI: 10.1016/j.indcrop.2009.11.011
Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811 DOI: 10.1093/jxb/eru039
Kainthola J, Kalamdhad AS, Goud VV (2019) A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem 84:81–90 DOI: 10.1016/j.procbio.2019.05.023
Wróblewska H, Komorowicz M, Pawłowski J, Cichy W (2008) Chemical and energetical properites of selected lignocellulosic raw materials. Folia For Pol 40:67–78
Welker CM, Balasubramanian VK, Petti C, Rai KM, DeBolt S, Mendu V (2015) Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 8:7654–7676 DOI: 10.3390/en8087654
Chang XF, Chandra R, Berleth T, Beatson RP (2008) Rapid, microscale, acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana. J Agric Food Chem 56:6825–6834 DOI: 10.1021/jf800775f
Mendu V, Harman-Ware AE, Crocker M, Jae J, Stork J, Morton S, Placido A, Huber G, DeBolt S (2011) Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnol Biofuels 4:43 DOI: 10.1186/1754-6834-4-43
Rambo MKD, Schmidt FL, Ferreira MMC (2015) Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 144:696–703 DOI: 10.1016/j.talanta.2015.06.045
Qi B, Vu A, Wickramasinghe SR, Qian X (2018) Glucose production from lignocellulosic biomass using a membrane-based polymeric solid acid catalyst. Biomass Bioenerg 117:137–145 DOI: 10.1016/j.biombioe.2018.07.017
Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442 DOI: 10.1007/s10570-011-9497-z
Meng F, Wang G, Du X, Wang Z, Xu S, Zhang Y (2019) Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Compos B Eng 160:341–347 DOI: 10.1016/j.compositesb.2018.08.048
Nascimento DM, Almeida JS, Dias AF, Figueirêdo MCB, Morais JPS, Feitosa JPA, Rosa MDF (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohyd Polym 110:456–463 DOI: 10.1016/j.carbpol.2014.04.053
Oliveira FBD, Bras J, Pimenta MTB, Curvelo AADS, Belgacem MN (2016) Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Ind Crops Prod 93:48–57 DOI: 10.1016/j.indcrop.2016.04.064
Li Y, Zhang R, Liu G, Chen C, He Y, Liu X (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Biores Technol 149:565–569 DOI: 10.1016/j.biortech.2013.09.063
Menardo S, Cacciatore V, Balsari P (2015) Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion. Biores Technol 180:154–161 DOI: 10.1016/j.biortech.2014.12.104
Tsapekos P, Kougias PG, Angelidaki I (2015) Anaerobic mono- and co-digestion of mechanically pretreated meadow grass for biogas production. Energy Fuels 29:4005–4010 DOI: 10.1021/ef5027949
Obileke K, Nwokolo N, Makaka G, Mukumba P, Onyeaka H (2021) Anaerobic digestion: technology for biogas production as a source of renewable energy—a review. Energy & Environment 32:191–225 DOI: 10.1177/0958305X20923117
Patel A, Sarkar O, Rova U, Christakopoulos P, Matsakas L (2021) Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-a review. Bioresource Technology 321:124457 DOI: 10.1016/j.biortech.2020.124457
Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99 DOI: 10.1016/j.cej.2013.09.002
Mengmeng C, Hong C, Qingliang Z, Shirley SN, Jie R (2009) Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Biores Technol 100:1399–1405 DOI: 10.1016/j.biortech.2008.09.014
Similar publications
Sorry the service is unavailable at the moment. Please try again later.