Leavitt, P. R. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Paleolimnol. 9, 109–127 (1993).
Gueneli, N. et al. 1.1-Billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proc. Natl Acad. Sci. USA 115, E6978–E6986 (2018).
French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).
Vinnichenko, G., Jarrett, A. J. M., Hope, J. M. & Brocks, J. J. Discovery of the oldest known biomarkers provides evidence for phototrophic bacteria in the 1.73 Ga Wollogorang Formation, Australia. Geobiology 18, 544–559 (2020).
François, C. et al. Contributions of U-Th-Pb dating on the diagenesis and sediment sources of the lower group (BI) of the Mbuji-Mayi Supergroup (Democratic Republic of Congo). Precambrian Res. 298, 202–219 (2017).
Baludikay, B. K. et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia. Int. J. Coal Geol. 191, 80–94 (2018).
Baludikay, B. K., Storme, J. Y., François, C., Baudet, D. & Javaux, E. J. A diverse and exquisitely preserved organic-walled microfossil assemblage from the Meso-Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for Proterozoic biostratigraphy. Precambrian Res. 281, 166–184 (2016).
Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510 (2013).
Adam, Z. R., Skidmore, M. L., Mogk, D. W. & Butterfield, N. J. A Laurentian record of the earliest fossil eukaryotes. Geology 45, 387–390 (2017).
Tang, Q. et al. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian Res. 236, 157–181 (2013).
Krings, M. Stigonema (Nostocales, Cyanobacteria) in the Rhynie chert (Lower Devonian, Scotland). Rev. Palaeobot. Palynol. 295, 104505 (2021).
Agić, H., Moczydłowska, M. & Yin, L. Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton – A window into the early eukaryote evolution. Precambrian Res. 297, 101–130 (2017).
Beghin, J. et al. Microfossils from the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 291, 63–82 (2017).
Butterfield, N. J., Knoll, A. H. & Sweet, K. Paleobiology of the Neoproterowic Svanbergfjellet formation, Spitsbergen. Foss. Strat. 34, (1994).
Leiming, Y., Xunlai, Y., Fanwei, M. & Jie, H. Protists of the upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Res. 141, 49–66 (2005).
Loron, C. & Moczydłowska, M. Tonian (Neoproterozoic) eukaryotic and prokaryotic organic-walled microfossils from the upper Visingsö Group, Sweden. Palynology 6122, 1–35 (2017).
Grey, K., Walter, M. R. & Calver, C. R. Neoproterozoic biotic diversification: snowball Earth or aftermath of the Acraman impact? Geology 31, 459–462 (2003).
Nowak, H. et al. Filamentous eukaryotic algae with a possible Cladophoralean affinity from the Middle Ordovician Winneshiek Lagerstätte in Iowa, USA. Geobios 50, 303–309 (2017).
Prasad, B., Uniyal, S. N. & Asher, R. Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobotanist 54, 13–60 (2005).
Barghoorn, E. S. & Schopf, J. W. Microorganisms from the Late Precambrian of Central Australia. Science 150, 337–339 (1965).
Carlisle, E. M., Jobbins, M., Pankhania, V., Cunningham, J. A. & Donoghue, P. C. J. Experimental taphonomy of organelles and the fossil record of early eukaryote evolution. Sci. Adv. 7, 1–9 (2021).
Sun, W. et al. Nucleus preservation in early Ediacaran Weng’an embryo-like fossils, experimental taphonomy of nuclei and implications for reading the eukaryote fossil record: Taphonomy and preservation of nuclei. Interface Focus 10, 20200015 (2020).
Butterfield, N. J. A Vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30, 231–252 (2004).
Hofmann, H. J. & Jackson, G. D. Shale-facies microfossils from the proterozoic Bylot Supergroup, Baffin Island, Canada. J. Paleontol. 68, 1–35 (1994).
Hermann, T. N. & Podkovyrov, V. N. On the nature of the Precambrian microfossils Arctacellularia and Glomovertella. Paleontol. J. 42, 655–664 (2008).
Javaux, E. J., Knoll, A. H. & Walter, M. Recognizing and interpreting the fossils of early eukaryotes. Orig. Life Evol. Biosph. 33, 75–94 (2003).
Javaux, E. J., Knoll, A. H. & Walter, M. R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121–132 (2004).
Butterfield, N. J. Oxygen, animals and oceanic ventilation: An alternative view. Geobiology 7, 1–7 (2009).
Komárek, J. in Süßwasserflora von Mitteleuropa (eds. Büdel, B., Gärtner, G., Krienitz, L. & Schagerl, M.) 1–1130 (Springer Spektrum, 2013).
Graham, L. E. & Wilcox, L. W. Algae (Prentice Hall, 2000).
Premaor, E., Saxena, R. K., Souza, P. Ade & Kalkreuth, W. Fungal spores and fruiting bodies from Miocene deposits of the Pelotas Basin. Braz. Rev. Micropaleontol. 61, 255–270 (2018).
Taylor, T. N., Krings, M. & Taylor, E. L. Fossil Fungi (Academic Press, 2015).
Gladyshev, V. N. & Zhang, Y. Metallomics and the Cell (Springer, 2013).
Lewan, M. D. & Maynard, J. B. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim. Cosmochim. Acta 46, 2547–2560 (1982).
Algeo, T. J. & Maynard, J. B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 206, 289–318 (2004).
Baludikay, B. K. Biostratigraphie, paléoécologie et évolution thermique du Supergroupe Mésoprotérozoïque de Mbuji-Mayi, RdCongo. PhD thesis, Université de Liège. (2018).
Baker, E. W. & Louda, J. W. in Biological Markers in the Sedimentary Record (ed. Johns, R. B.) (Elsevier, 1986).
Verne-Mismer, J., Ocampo, R., Callot, H. J. & Albrecht, P. New chlorophyll fossils from moroccan oil shales. Porphyrins derived from chlorophyll C3 or a related pigment? Tetrahedron Lett. 31, 1751–1754 (1990).
Nesbitt, J. A., Robertson, J. M., Swerhone, L. A. & Lindsay, M. B. J. Nickel geochemistry of oil sands fluid petroleum coke deposits, Alberta, Canada. Facets 3, 469–486 (2018).
Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).
Xia, K., Bleam, W. & Helmke, P. A. Studies of the nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 61, 2223–2235 (1997).
Schuth, N. et al. Biomimetic mono- and dinuclear Ni(I) and Ni(II) complexes studied by X-ray absorption and emission spectroscopy and quantum chemical calculations. J. Phys. Conf. Ser. 712, 8–12 (2016).
Nesbitt, J. A., Lindsay, M. B. J. J. & Chen, N. Geochemical characteristics of oil sands fluid petroleum coke. Appl. Geochem. 76, 148–158 (2017).
Lytle, F. W. Cold Lake Asphaltene V. and Ni X. A. S. Spectra. International X-ray Absorption Society XAFS Database. (1983).
Delpomdor, F., Bonneville, S., Baert, K. & Préat, A. An introduction to the Precambrian petroleum system in the Sankuru-Mbuji-Mayi-Lomami-Lovoy Basin, South-Central Democratic Republic of Congo. J. Pet. Geol. 41, 5–27 (2018).
Rasmussen, B., Muhling, J. R. & Fischer, W. W. Ancient oil as a source of Carbonaceous matter in 1.88-billion-year-old gunflint stromatolites and microfossils. Astrobiology 21, 655–672 (2021).
Callot, H. J., Ocampo, R. & Albrecht, P. Sedimentary porphyrins: correlations with biological precursors. Energy Fuels 4, 635–639 (1990).
Cihlář, J Füssy, Z. Oborník, M. in Advances in Botanical Research (ed. Grimm, B.) (Academic Press, 2019).
Gledhill, M. The determination of heme b in marine phyto- and bacterioplankton. Mar. Chem. 103, 393–403 (2007).
Xu, Y., Ibrahim, I. M. & Harvey, P. J. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiol. Biochem. 106, 305–315 (2016).
Ferreira, V. S., Pinto, R. F. & Sant’Anna, C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. J. Appl. Microbiol. 120, 661–670 (2016).
Hanna, D. A. et al. Heme bioavailability and signaling in response to stress in yeast cells. J. Biol. Chem. 293, 12378–12393 (2018).
Hanna, D. A., Martinez-Guzman, O. & Reddi, A. R. Heme gazing: illuminating eukaryotic heme trafficking, dynamics, and signaling with fluorescent heme sensors. Biochemistry 56, 1815–1823 (2017).
Donegan, R. K., Moore, C. M., Hanna, D. A. & Reddi, A. R. Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic. Biol. Med. 133, 88–100 (2019).
Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).
Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2018).
Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).
Yang, E. C. et al. Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Sci. Rep. 6, 1–11 (2016).
Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl. Acad. Sci. USA 114, E7737–E7745 (2017).
Grey, K. A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorph acritarchs and other acid insoluble microfossils. (Geological Survey of Western Australia, 1999).
Sforna, M. C. et al. Patterns of metal distribution in hypersaline microbialites during early diagenesis: implications for the fossil record. Geobiology 15, 259–279 (2017).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Schopf, J. W. in The Proterozoic Biosphere (eds. Schopf, J. W. & Klein, C.) (Cambridge Univ. Press, 1992).