Alhajali, S., Yousef, S. & Naoum, B. Appropriate concrete for nuclear reactor shielding. Appl. Radiat. Isot. 10.1016/j.apradiso.2015.09.001 (2016). DOI: 10.1016/j.apradiso.2015.09.001
Glinicki, M. A., Antolik, A. & Gawlicki, M. Evaluation of compatibility of neutron-shielding boron aggregates with Portland cement in mortar. Constr. Build. Mater. 10.1016/j.conbuildmat.2017.12.228 (2018). DOI: 10.1016/j.conbuildmat.2017.12.228
Aygün, B. High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 10.1016/j.net.2019.08.017 (2019). DOI: 10.1016/j.net.2019.08.017
Bergaoui, K. et al. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis. Appl. Radiat. Isot. 10.1016/j.apradiso.2014.09.004 (2014). DOI: 10.1016/j.apradiso.2014.09.004
Carpenter, J. M. & Yelon, W. B. 2. Neutron Sources. in 99–196 (2009). doi: https://doi.org/10.1016/s0076-695x(08)60555-4
Choi, J. S. et al. Neutron-absorbing coatings for safe storage of fissile materials with enhanced shielding & criticality safety. in Materials Science and Technology Conference and Exhibition, MS and T’07 - ‘Exploring Structure, Processing, and Applications Across Multiple Materials Systems’ (2007).
Trkov, A. et al. IRDFF-II: A New Neutron Metrology Library. (2019).
Guembou Shouop, C. J., BAK, S.-I., NDONTCHUENG MOYO, M., NGUELEM, E. J. & Strivay, D. Barite concrete for 252Cf spontaneous neutron shielding based on Monte Carlo computation. in NuMat2020: The Nuclear Materials Conference (2020).
Shin, J. W., Hong, S. W., Bak, S. I., Kim, D. Y. & Kim, C. Y. GEANT4 and PHITS simulations of the shielding of neutrons from the 252Cf source. J. Korean Phys. Soc. 10.3938/jkps.65.591 (2014). DOI: 10.3938/jkps.65.591
AGENCY, I. A. E. Radiation Protection and Safety in Industrial Radiography (IAEA 1999) Safety Reports Series No. 13. (1999).
Price, M. S. T. IAEA Safety Standards Series, STI-1: Regulations for the safe transport of radioactive material—1996 Edition (STI/PUB/998). Int. J. Radioact. Mater. Transp. (1997). doi: https://doi.org/10.1179/rmt.1997.8.1.2
IAEA. Safety Reports Series No. 38: Applying Radiation Safety Standards in Radiotherapy. IAEA Press (2006). doi: https://doi.org/10.1016/j.ijrobp.2007.01.007
Guembou Shouop, C. J. Radiation protection optimization in fixed industrial radiography-based Phits Monte Carlo code simulation. in IAEA International Conference on Radiation Safety: Improving Radiation Protection in Practice (2020).
IAEA. Safety Report: Lesson Learned From Accidents in Industrial Radiography. (1998).
Guembou Shouop, C. J. Radioactive Waste Management option for Cameroon: Current Practices towards an optimized management strategy in the future. in International School on Radioactive Waste Cementation (ed. ICTP) 16–22 (ICTP, 2020). http://indigo.ictp/event/9129/17/0.pdf
Osmanlioglu, A. E. Management of spent sealed radioactive sources in Turkey. Health Phys. 10.1097/01.HP.0000214659.60964.bf (2006). DOI: 10.1097/01.HP.0000214659.60964.bf
Antoine, J. M. R., Grant, C. N. & Dennis, H. T. (19) (PDF) Cradle to Grave Control of Radioactive Sources: The ARCAL Regional Effort. (2016). Available at: https://www.researchgate.net/publication/313423257_Cradle_to_Grave_Control_of_Radioactive_Sources_The_ARCAL_Regional_Effort. (Accessed: 19th December 2021)
IAEA. Sustaining Cradle-to-Grave Control of Radioactive Sources | IAEA. (2017). Available at: https://www.iaea.org/projects/tc/int9182. (Accessed: 19th December 2021)
IAEA. Fostering Cradle-to-Grave Management of Radioactive Sources: Interregional Project Concludes, Paving the Way for Future Activities | IAEA. (2020). Available at: https://www.iaea.org/newscenter/news/fostering-cradle-to-grave-management-of-radioactive-sources-interregional-project-concludes-paving-the-way-for-future-activities. (Accessed: 19th December 2021)
Khripunov, I. Risk-based approach in the self-assessment of nuclear security culture for users of radioactive sources. Int. J. Nucl. Secur. 10.7290/ijns050102 (2019). DOI: 10.7290/ijns050102
Da Costa, E. L. C., Gomes, J. D. R. L., Gomes, R. D. S., Costa, M. L. D. L. & Thomé Filho, Z. D. The regulatory control over radiation sources: the Brazilian experience and some lessons learned from industrial applications. Brazilian J. Radiat. Sci. 10.15392/bjrs.v7i2a.671 (2019). DOI: 10.15392/bjrs.v7i2a.671
Fernandez, N. N. High-risk radioactive sources: Cradle-to-grave physical protection. J. Nucl. Mater. Manag. 2, 2 (2008).
Czarwinski, R. & Weiss, W. Safety and security of radioactive sources-international provisions. Kerntechnik 10.3139/124.100262 (2005). DOI: 10.3139/124.100262
Limbanyen, K., Soponkanabhorn, T., Chanyotha, S., Chankow, N. & Krobbuaban, P. Application of a systematic technique for the characterization of Naturally Occurring Radioactive Materials (NORM) at Bongkot field and Songkhla petroleum development support base. in Society of Petroleum Engineers - Asia Pacific Health, Safety, Security and Environment Conference and Exhibition 2007 - ‘Responsible Performance: Are We Doing the Best We Can’ (2007). doi: https://doi.org/10.2523/108873-ms
Dials, G. E. & Eriksson, L. G. Wipp - A safely operating, expandable, proof of principle for deep geological disposal of long-lived radioactive materials. in American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008 (2008).
Guembou Shouop, C. J., Bak, S. I., Ndontchueng Moyo, M., Nguelem Mekongtso, E. J. & Strivay, D. New Cf-252 neutron source shielding design based Monte Carlo simulation using material combination. AIP Adv. 10.1063/1.5144923 (2020). DOI: 10.1063/1.5144923
Mitchell, L. J. et al. Gamma-ray and neutron background comparison of US metropolitan areas. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. (2015). doi: https://doi.org/10.1016/j.nima.2015.01.020
Zhang, G. Monte Carlo Simulation of Mixed Neutron-Gamma Radiation Fields and Dosimetry Devices. (Elektrotechnik und Informationstechnik des Karlsruher Instituts f¨ur Technologie (KIT), 2011).
Guembou Shouop, C. J. shielding design and safety measures around 60Co, 192Ir, and 252Cf sources in industrial radiography facilities based on phits monte carlo simulations. (KAIST - Korea Advanced Institute of Science and Technology, 2020).
Sato, T. et al. Overview of particle and heavy ion transport code system PHITS. Ann. Nucl. Energy 10.1016/j.anucene.2014.08.023 (2015). DOI: 10.1016/j.anucene.2014.08.023
Shouop, G. et al. Monte Carlo method for gamma spectrometry based on GEANT4 toolkit: Efficiency calibration of BE6530 detector. J. Environ. Radioact. 189, 109–119 (2018). DOI: 10.1016/j.jenvrad.2018.03.015
Sato, T. et al. Particle and heavy ion transport code system, PHITS, version 252. J. Nucl. Sci. Technol. 10.1080/00223131.2013.814553 (2013). DOI: 10.1080/00223131.2013.814553
Iwamoto, Y. et al. Benchmark study of the recent version of the PHITS code. J. Nucl. Sci. Technol. 10.1080/00223131.2017.1297742 (2017). DOI: 10.1080/00223131.2017.1297742
Sato, T. et al. Overview of the PHITS code and its application to medical physics. Prog. Nucl. Sci. Technol. 10.15669/pnst.4.879 (2014). DOI: 10.15669/pnst.4.879
Sihver, L. et al. An update about recent developments of the PHITS code. Adv. Sp. Res. 10.1016/j.asr.2010.01.002 (2010). DOI: 10.1016/j.asr.2010.01.002
Sato, T. et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J. Nucl. Sci. Technol. 10.1080/00223131.2017.1419890 (2018). DOI: 10.1080/00223131.2017.1419890
Niita, K. et al. PHITS overview. AIP Conf. Proc. 10.1063/1.2720457 (2007). DOI: 10.1063/1.2720457
Guembou Shouop, C. J. & Sang-In, B. Shielding design for high-intensity Co-60 and Ir-192 gamma sources used in industrial radiography based on PHITS Monte Carlo simulations. Eur. Phys. J. Plus 10.1140/epjp/s13360-020-00797-8 (2020). DOI: 10.1140/epjp/s13360-020-00797-8
Petoussi-Henss, N. et al. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann. ICRP 40, 1–257 (2010). DOI: 10.1016/j.icrp.2011.10.001
Niita, K., Matsuda, N., Iwamoto, Y., Iwase, H. & Sato, T. PHITS : Particle and Heavy Ion Transport code System, Version 2. 23. JAEA-Data/Code (2010).
Niita, K. et al. PHITS-a particle and heavy ion transport code system. Radiat. Meas. 10.1016/j.radmeas.2006.07.013 (2006). DOI: 10.1016/j.radmeas.2006.07.013
Vega-Carrillo, H. R. & Martinez-Ovalle, S. A. Few groups neutron spectra, and dosimetric features, of isotopic neutron sources. Appl. Radiat. Isot. 117, 42–50 (2016). DOI: 10.1016/j.apradiso.2016.03.027
Leddicottee, G. W. The preparation, properties, apisd uses of americium-241, alpha-, gamma-, and neutron sources. Oak Ridge Natl. Lab. Rep. (1962).
Tohamy, M., Elmaghraby, E. K. & Comsan, M. N. H. Reevaluation of the neutron emission probabilities from 241 Am–Be neutron source. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. (2019). doi: https://doi.org/10.1016/j.nima.2019.162387
Kotb, N. et al. Characterization of 241AM-BE neutron source using threshold foil activation technique. Al-Azhar Bull. Sci. 10.21608/absb.2019.67880 (2019). DOI: 10.21608/absb.2019.67880
Tohamy, M., Elmaghraby, E. K. & Comsan, M. N. H. Integral cross section of isomeric state formation in (neutron, nucleon) reactions using an Am–Be source. Appl. Radiat. Isot. 10.1016/j.apradiso.2020.109340 (2020). DOI: 10.1016/j.apradiso.2020.109340
Tohamy, M., Abbas, K., Nonneman, S., Rodriguez, D. C. & Rossi, F. Improved experimental evaluation and model validation of a 252Cf irradiator for delayed gamma-ray spectrometry applications. Appl. Radiat. Isot. 10.1016/j.apradiso.2021.109694 (2021). DOI: 10.1016/j.apradiso.2021.109694
Ahmed, G. S. M., Tohamy, M., Bühler, P. & Comsan, M. N. H. Measurements of the cross-section of 1 1 1 Cd (n, n ′) 1 1 1 m Cd reaction for 2 4 1 Am/Be neutrons. Mod. Phys. Lett. A 10.1142/S021773232150084X (2021). DOI: 10.1142/S021773232150084X
Sato, T. et al. Recent improvements of particle and heavy ion transport code system: PHITS. EPJ Web Conf. 10.1051/epjconf/201715306008 (2017). DOI: 10.1051/epjconf/201715306008
Hashimoto, S., Iwamoto, O., Iwamoto, Y., Sato, T. & Niita, K. PHITS simulation of quasi-monoenergetic neutron sources from 7Li(p, n) reactions. Energy Proc. 10.1016/j.egypro.2014.11.869 (2015). DOI: 10.1016/j.egypro.2014.11.869
NIITA, K. et al. Recent Developments of the PHITS code. Prog. Nucl. Sci. Technol. (2011). doi: https://doi.org/10.15669/pnst.1.1
PHITS. PHITS Ver. 3.25 User’s Manual English version. (2021).
Guembou Shouop, C. J., Ndontchueng Moyo, M., Nguelem Mekongtso, E. J., Cho, K. & Strivay, D. Erratum to: Radiological protection requirements with regard to cosmic-ray exposure during air travel. Eur. Phys. J. Plus 10.1140/epjp/s13360-021-01401-3 (2021). DOI: 10.1140/epjp/s13360-021-01401-3
Guembou Shouop, C. J., Ndontchueng Moyo, M., Nguelem Mekongtso, E. J., Cho, K. & Strivay, D. Radiological protection requirements with regard to cosmic ray exposure during air travel. Eur. Phys. J. Plus 10.1140/epjp/s13360-020-00468-8 (2020). DOI: 10.1140/epjp/s13360-020-00468-8
IAEA. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. IAEA Safety Sandards Series No. GSR Part 3. IAEA Saf. Stand. (2011).
IAEA. IAEA Safety Glossary 2018 Edition IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS. IAEA Libr. Cat. Publ. Data (2019).
IAEA. IAEA Safety Standards Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards INTERIM EDITION General Safety Requirements Part 3 No. GSR Part 3 (Interim). Gen. Saf. Requir. part 3 (2014).
IAEA. Basic Principles Objectives IAEA Nuclear Energy Series Locating and Characterizing Disused Sealed Radioactive Sources in Historical Waste. IAEA Nucl. Energy Ser. (2009).
Guembou Shouop, C. J., Moyo, M. N., Mekongtso, E. J. N., Ateba, J. F. B. & Strivay, D. 241Am/Be source optimum geometry for DSRS management-based Monte Carlo simulations. AIP Adv. 11, 115024 (2021).