[en] Fragment-based lead discovery is a usual strategy in drug discovery to identify innovative lead compounds. The success of this approach strongly relies on the capacity to detect weak binders and characterize their binding site. NMR and X-ray crystallography are the conventional technologies used to tackle this challenge. However, their large protein consumption and the cost of equipment reduce their accessibility. Here, an affinity capillary electrophoresis methodology was developed that enables the detection of mM binders, the determination of dissociation constants, and the characterization of the fragment binding site. On the basis of multiple equilibrium theory, dissociation constants in the μM-mM range were determined, and a new methodology is proposed to establish graphically if two fragments bind the same protein pocket. The applicability of this methodology was demonstrated experimentally on coagulation factor XIIa by evaluating pairs of fragments with expected behavior. This study reinforces the significance of using affinity capillary electrophoresis to gather valuable information for medicinal chemistry projects.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège Namur Research Institute for Life Sciences - NARILIS
Davoine, Clara ; Université de Liège / Université de Namur - ULiège / UNamur > Département de pharmacie > CIRM - Analyse des Médicaments / NARILIS - NAMEDIC
Pardo, Alissia ; Université de Liège - ULiège > Département de pharmacie > CIRM > ét. visiteur médecine
Pochet, Lionel; Université de Namur - UNamur > Département de pharmacie > NARILIS - NAMEDIC
Fillet, Marianne ; Université de Liège - ULiège > Département de pharmacie > CIRM - Analyse des médicaments
Language :
English
Title :
Fragment Hit Discovery and Binding Site Characterization by Indirect Affinity Capillary Electrophoresis: Application to Factor XIIa
Publication date :
09 November 2021
Journal title :
Analytical Chemistry
ISSN :
0003-2700
eISSN :
1520-6882
Publisher :
American Chemical Society, United States - District of Columbia
Volume :
93
Pages :
14802–14809
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Development of new compounds targeting coagulation factor XIIa using innovative microfluidic assays in the context of fragment-based drug discovery
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique Fonds Léon Fredericq ULiège - Université de Liège UNamur - Université de Namur
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Renaud, J.-P. ; Chung, C.-w. ; Danielson, U. H. ; Egner, U. ; Hennig, M. ; Hubbard, R. E. ; Nar, H. Biophysics in Drug Discovery: Impact, Challenges and Opportunities. Nat. Rev. Drug Discovery 2016, 15, 679 - 698, 10.1038/nrd.2016.123
Holdgate, G. Geschwindner, S. Breeze, A. Davies, G. Colclough, N. Temesi, D. Ward, L. Biophysical Methods in Drug Discovery from Small Molecule to Pharmaceutical. In Protein-Ligand Interactions ; Williams, M. A. Daviter, T., Eds.; Humana Press :, 2013 ; Vol. 1008, pp 327 - 355. 10.1007/978-1-62703-398-5_12.
Lamoree, B. ; Hubbard, R. E. Current Perspectives in Fragment-Based Lead Discovery (FBLD). Essays Biochem. 2017, 61, 453 - 464, 10.1042/EBC20170028
Konteatis, Z. What Makes a Good Fragment in Fragment-Based Drug Discovery?. Expert Opin. Drug Discovery 2021, 16, 723 - 726, 10.1080/17460441.2021.1905629
Davoine, C. ; Fillet, M. ; Pochet, L. Capillary Electrophoresis as a Fragment Screening Tool to Cross-Validate Hits from Chromogenic Assay: Application to FXIIa. Talanta 2021, 226, 122163, 10.1016/j.talanta.2021.122163
Farcaş, E. ; Pochet, L. ; Crommen, J. ; Servais, A.-C. ; Fillet, M. Capillary Electrophoresis in the Context of Drug Discovery. J. Pharm. Biomed. Anal. 2017, 144, 195 - 212, 10.1016/j.jpba.2017.02.022
Olabi, M. ; Stein, M. ; Wätzig, H. Affinity Capillary Electrophoresis for Studying Interactions in Life Sciences. Methods 2018, 146, 76 - 92, 10.1016/j.ymeth.2018.05.006
Chu, Y. H. ; Avila, L. Z. ; Biebuyck, H. A. ; Whitesides, G. M. Using Affinity Capillary Electrophoresis to Identify the Peptide in a Peptide Library That Binds Most Tightly to Vancomycin. J. Org. Chem. 1993, 58, 648 - 652, 10.1021/jo00055a017
Austin, C. ; Pettit, S. N. ; Magnolo, S. K. ; Sanvoisin, J. ; Chen, W. ; Wood, S. P. ; Freeman, L. D. ; Pengelly, R. J. ; Hughes, D. E. Fragment Screening Using Capillary Electrophoresis (CEfrag) for Hit Identification of Heat Shock Protein 90 ATPase Inhibitors. J. Biomol. Screening 2012, 17, 868 - 876, 10.1177/1087057112445785
Farcaş, E. ; Hanson, J. ; Pochet, L. ; Fillet, M. Capillary Electrophoretic Mobility Shift Displacement Assay for the Assessment of Weak Drug-Protein Interactions. Anal. Chim. Acta 2018, 1034, 214 - 222, 10.1016/j.aca.2018.06.024
Pierceall, W. E. Zhang, L. Hughes, D. E. Affinity Capillary Electrophoresis Analyses of Protein-Protein Interactions in Target-Directed Drug Discovery. In Protein-Protein Interactions ; Fu, H., Ed.; Humana Press :, 2004 ; Vol. 261, pp 187 - 198. 10.1385/1-59259-762-9:187.
Colton, I. J. ; Carbeck, J. D. ; Rao, J. ; Whitesides, G. M. Affinity Capillary Electrophoresis: A Physical-Organic Tool for Studying Interactions in Biomolecular Recognition. Electrophoresis 1998, 19, 367 - 382, 10.1002/elps.1150190303
Nilsson, M. ; Johansson, G. ; Isaksson, R. Determination of Dissociation Constants by Competitive Binding in Partial Filling Capillary Electrophoresis. Electrophoresis 2004, 25, 1022 - 1027, 10.1002/elps.200305786
Davoine, C. Bouckaert, C. Fillet, M. Pochet, L. Factor XII/XIIa Inhibitors: Their Discovery, Development, and Potential Indications. European Journal of Medicinal Chemistry ; Elsevier Masson SAS, December 2020, 208, p 112753. 10.1016/j.ejmech.2020.112753.
Robert, S. ; Bertolla, C. ; Masereel, B. ; Dogné, J.-M. ; Pochet, L. Novel 3-Carboxamide-Coumarins as Potent and Selective FXIIa Inhibitors. J. Med. Chem. 2008, 51, 3077 - 3080, 10.1021/jm8002697
Bouckaert, C. ; Serra, S. ; Rondelet, G. ; Dolušić, E. ; Wouters, J. ; Dogné, J.-M. ; Frédérick, R. ; Pochet, L. Synthesis, evaluation and structure-activity relationship of new 3-carboxamide coumarins as FXIIa inhibitors. Eur. J. Med. Chem. 2016, 110, 181 - 194, 10.1016/j.ejmech.2016.01.023
Bouckaert, C. ; Zhu, S. ; Govers-Riemslag, J. W. P. ; Depoorter, M. ; Diamond, S. L. ; Pochet, L. Discovery and Assessment of Water Soluble Coumarins as Inhibitors of the Coagulation Contact Pathway. Thromb. Res. 2017, 157, 126 - 133, 10.1016/j.thromres.2017.07.015
Iversen, P. W. Beck, B. Chen, Y.-F. Dere, W. Devanarayan, V. Eastwood, B. J. Farmen, M. W. Iturria, S. J. Montrose, C. Moore, R. A. Weidner, J. R. Sittampalam, G. S. HTS Assay Validation, 2004.
Dubský, P. ; Ördögová, M. ; Malý, M. ; Riesová, M. CEval: All-in-One Software for Data Processing and Statistical Evaluations in Affinity Capillary Electrophoresis. J. Chromatogr. A 2016, 1445, 158 - 165, 10.1016/j.chroma.2016.04.004
Altria, K. D. ; Kelly, M. A. ; Clark, B. J. The Use of a Short-End Injection Procedure to Achieve Improved Performance in Capillary Electrophoresis. Chromatographia 1996, 43, 153 - 158, 10.1007/BF02292944
Preisler, J. ; Yeung, E. S. Characterization of Nonbonded Poly(Ethylene Oxide) Coating for Capillary Electrophoresis via Continuous Monitoring of Electroosmotic Flow. Anal. Chem. 1996, 68, 2885 - 2889, 10.1021/ac960260s
Bisswanger, H. Enzyme Kinetics: Principles and Methods ; Wiley-VCH Verlag GmbH & KGaA :, 2008.
Tans, G. ; Janssen-Claessen, T. ; Rosing, J. ; Griffin, J. H. Studies on the Effect of Serine Protease Inhibitors on Activated Contact Factors. Application in Amidolytic Assays for Factor XIIa, Plasma Kallikrein and Factor XIa. Eur. J. Biochem. 1987, 164, 637 - 642, 10.1111/j.1432-1033.1987.tb11174.x
Haas, J. V. Eastwood, B. J. Iversen, P. W. Devanarayan, V. Weidner, J. R. Minimum Significant Ratio - A Statistic to Assess Assay Variability, 2004.
Copeland, R. A. Evaluation of Enzyme Inhibitors in Drug Discovery : A Guide for Medicinal Chemists and Pharmacologists, nd ed.; John Wiley & Sons :, 2013.
Dementiev, A. ; Silva, A. ; Yee, C. ; Li, Z. ; Flavin, M. T. ; Sham, H. ; Partridge, J. R. Structures of Human Plasma β-Factor XIIa Cocrystallized with Potent Inhibitors. Blood Adv 2018, 2, 549 - 558, 10.1182/bloodadvances.2018016337
Yonetani, T. [26] The Yonetani-Theorell Graphical Method for Examining Overlapping Subsites of Enzyme Active Centers. In Methods in enzymology ; Academic Press, Inc., 1982 ; Vol. 87, pp 500 - 509. 10.1016/S0076-6879(82)87028-6.
Iwata, H. ; Oki, H. ; Okada, K. ; Takagi, T. ; Tawada, M. ; Miyazaki, Y. ; Imamura, S. ; Hori, A. ; Lawson, J. D. ; Hixon, M. S. ; Kimura, H. ; Miki, H. A Back-to-Front Fragment-Based Drug Design Search Strategy Targeting the DFG-Out Pocket of Protein Tyrosine Kinases. ACS Med. Chem. Lett. 2012, 3, 342 - 346, 10.1021/ml3000403
Backman, T. W. H. ; Cao, Y. ; Girke, T. ChemMine Tools: An Online Service for Analyzing and Clustering Small Molecules. Nucleic Acids Res. 2011, 39, W486 - W491, 10.1093/nar/gkr320
Debela, M. ; Magdolen, V. ; Grimminger, V. ; Sommerhoff, C. ; Messerschmidt, A. ; Huber, R. ; Friedrich, R. ; Bode, W. ; Goettig, P. Crystal Structures of Human Tissue Kallikrein 4: Activity Modulation by a Specific Zinc Binding Site. J. Mol. Biol. 2006, 362, 1094 - 1107, 10.1016/j.jmb.2006.08.003
Burkhard, P. ; Taylor, P. ; Walkinshaw, M. D. An example of a protein ligand found by database mining: description of the docking method and its verification by a 2.3 Å X-ray structure of a Thrombin-Ligand complex. J. Mol. Biol. 1998, 277, 449 - 466, 10.1006/jmbi.1997.1608
Bajaj, S. P. ; Schmidt, A. E. ; Agah, S. ; Bajaj, M. S. ; Padmanabhan, K. High Resolution Structures of P-Aminobenzamidine- and Benzamidine-VIIa/Soluble Tissue Factor. J. Biol. Chem. 2006, 281, 24873 - 24888, 10.1074/jbc.M509971200
Jahnke, W. ; Erlanson, D. A. ; de Esch, I. J. P. ; Johnson, C. N. ; Mortenson, P. N. ; Ochi, Y. ; Urushima, T. Fragment-to-Lead Medicinal Chemistry Publications in 2019. J. Med. Chem. 2020, 63, 15494 - 15507, 10.1021/acs.jmedchem.0c01608
Melkko, S. ; Zhang, Y. ; Dumelin, C. E. ; Scheuermann, J. ; Neri, D. Isolation of High-Affinity Trypsin Inhibitors from a DNA-Encoded Chemical Library. Angew. Chem. 2007, 119, 4755 - 4758, 10.1002/ANGE.200700654
Scheuermann, J. ; Dumelin, C. E. ; Melkko, S. ; Zhang, Y. ; Mannocci, L. ; Jaggi, M. ; Sobek, J. ; Neri, D. DNA-Encoded Chemical Libraries for the Discovery of MMP-3 Inhibitors. Bioconjugate Chem. 2008, 19, 778 - 785, 10.1021/BC7004347
Wichert, M. ; Krall, N. ; Decurtins, W. ; Franzini, R. M. ; Pretto, F. ; Schneider, P. ; Neri, D. ; Scheuermann, J. Dual-Display of Small Molecules Enables the Discovery of Ligand Pairs and Facilitates Affinity Maturation. Nat. Chem. 2015, 7, 241 - 249, 10.1038/nchem.2158
Zimmermann, G. ; Neri, D. DNA-Encoded Chemical Libraries: Foundations and Applications in Lead Discovery. Drug Discovery Today 2016, 21, 1828 - 1834, 10.1016/J.DRUDIS.2016.07.013
Davis, B. J. ; Erlanson, D. A. Learning from our mistakes: The ’unknown knowns’ in fragment screening. Bioorg. Med. Chem. Lett. 2013, 23, 2844 - 2852, 10.1016/j.bmcl.2013.03.028
McGovern, S. L. ; Helfand, B. T. ; Feng, B. ; Shoichet, B. K. A Specific Mechanism of Nonspecific Inhibition. J. Med. Chem. 2003, 46, 4265 - 4272, 10.1021/jm030266r
Jadhav, A. ; Ferreira, R. S. ; Klumpp, C. ; Mott, B. T. ; Austin, C. P. ; Inglese, J. ; Thomas, C. J. ; Maloney, D. J. ; Shoichet, B. K. ; Simeonov, A. Quantitative Analyses of Aggregation, Autofluorescence, and Reactivity Artifacts in a Screen for Inhibitors of a Thiol Protease. J. Med. Chem. 2010, 53, 37 - 51, 10.1021/jm901070c
Shoichet, B. K. Screening in a Spirit Haunted World. Drug Discovery Today 2006, 11, 607 - 615, 10.1016/j.drudis.2006.05.014
Lewis, L. M. ; Engle, L. J. ; Pierceall, W. E. ; Hughes, D. E. ; Shaw, K. J. Affinity Capillary Electrophoresis for the Screening of Novel Antimicrobial Targets. J. Biomol. Screening 2004, 9, 303 - 308, 10.1177/1087057104263439
Gärtner, A. ; Ruff, A. J. ; Schwaneberg, U. A 96-Multiplex Capillary Electrophoresis Screening Platform for Product Based Evolution of P450 BM3. Sci. Rep. 2019, 9, 1 - 11, 10.1038/s41598-019-52077-w
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.