Abstract :
[en] Fragment-based lead discovery is a usual strategy in drug discovery to identify innovative lead compounds. The success of this approach strongly relies on the capacity to detect weak binders and characterize their binding site. NMR and X-ray crystallography are the conventional technologies used to tackle this challenge. However, their large protein consumption and the cost of equipment reduce their accessibility. Here, an affinity capillary electrophoresis methodology was developed that enables the detection of mM binders, the determination of dissociation constants, and the characterization of the fragment binding site. On the basis of multiple equilibrium theory, dissociation constants in the μM-mM range were determined, and a new methodology is proposed to establish graphically if two fragments bind the same protein pocket. The applicability of this methodology was demonstrated experimentally on coagulation factor XIIa by evaluating pairs of fragments with expected behavior. This study reinforces the significance of using affinity capillary electrophoresis to gather valuable information for medicinal chemistry projects.
Name of the research project :
Development of new compounds targeting coagulation factor XIIa using innovative microfluidic assays in the context of fragment-based drug discovery
Scopus citations®
without self-citations
6