[en] Mosasaurid squamates were the dominant amniote predators in marine ecosystems during most of the Late Cretaceous. Evidence from multiple sites worldwide of a global mosasaurid community restructuring across the Campanian–Maastrichtian transition may have wide-ranging implications for the evolution of diversity of these top oceanic predators. In this study, we use a suite of biomechanical traits and functionally descriptive ratios to investigate how the morphofunctional disparity of mosasaurids evolved through time and space prior to the Cretaceous-Palaeogene (K/Pg) mass extinction. Our results suggest that the worldwide taxonomic turnover in mosasaurid community composition from Campanian to Maastrichtian is reflected by a notable increase in morphofunctional disparity on a global scale, but especially driven the North American record. Ecomorphospace occupation becomes more polarised during the late Maastrichtian, as the morphofunctional disparity of mosasaurids plateaus in the Southern Hemisphere and decreases in the Northern Hemisphere. We show that these changes are not associated with strong modifications in mosasaurid size, but rather with the functional capacities of their skulls, and that mosasaurid morphofunctional disparity was in decline in several provincial communities before the K-Pg mass extinction. Our study highlights region-specific patterns of disparity evolution, and the importance of assessing vertebrate extinctions both globally and regionally. Ecomorphological differentiation in mosasaurid communities, coupled with declines in other formerly abundant marine reptile groups, indicates widespread restructuring of higher trophic levels in marine food webs was well underway when the K-Pg mass extinction took place.
Research Center/Unit :
Geology - ULiège
Precision for document type :
Other
Disciplines :
Zoology Earth sciences & physical geography
Author, co-author :
Maclaren, James ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab
Kelley NP, Pyenson ND. 2015 Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 348, aaa3716. (doi: 10. 1126/SCIENCE. AAA3716)
Stubbs TL, Benton MJ. 2016 Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction. Paleobiology 42, 547-573. (doi: 10. 1017/PAB. 2016. 15)
Cross SRR, Moon BC, Stubbs TL, Rayfield EJ, Benton MJ. 2022 Climate, competition, and the rise of mosasauroid ecomorphological disparity. Palaeontology 65, e12590. (doi: 10. 1111/PALA. 12590)
Bardet N, Houssaye A, Vincent P, Pereda Suberbiola X, Amaghzaz M, Jourani E, Meslouh S. 2014 Mosasaurids (Squamata) from the Maastrichtian phosphates of Morocco: biodiversity, palaeobiogeography and palaeoecology based on tooth morphoguilds. Gondwana Res. 27, 1068-1078. (doi: 10. 1016/j. gr. 2014. 08. 014)
Martin JE, Vincent P, Tacail T, Khaldoune F, Jourani E, Bardet N, Balter V. 2017 Calcium isotopic evidence for vulnerable marine ecosystem structure prior to the K/Pg extinction. Curr. Biol. 27, 1641-1644. e2. (doi: 10. 1016/J. CUB. 2017. 04. 043/ATTACHMENT/09B06FB7-54D0-4121-A985-7D93C049CDB1/MMC1. PDF)
Russell DA. 1967 Systematics and morphology of American mosasaurs. In Bulletin of the Peabody Museum of Natural History, Yale University, USA, pp. 1-242. Connecticut, NJ: Yale University.
Kiernan CR. 2002 Stratigraphic distribution and habitat segregation of mosasaurs in the Upper Cretaceous of western and central Alabama, with an historical review of Alabama mosasaur discoveries. J. Vertebr. Paleontol. 22, 91-103. (doi: 10. 1671/0272-4634(2002)022[0091: SDAHSO]2. 0. CO; 2)
Driscoll DA, Dunhill AM, Stubbs TL, Benton MJ. 2019 The mosasaur fossil record through the lens of fossil completeness. Palaeontology 62, 51-75. (doi: 10. 1111/pala. 12381)
Lindgren J. 2004 Stratigraphical distribution of Campanian and Maastrichtian mosasaurs in Sweden: evidence of an intercontinental marine extinction event? GFF 126, 221-229. (doi: 10. 1080/11035890401262221)
Tanimoto M. 2005 Mosasaur remains from the Upper Cretaceous Izumi Group of southwest Japan. Netherlands J. Geosci. Geologie en Mijnbouw 84, 373-378. (doi: 10. 1017/S0016774600021156)
Sato T, Konishi T, Hirayama R, Caldwell MW. 2012 A review of the Upper Cretaceous marine reptiles from Japan. Cretaceous Res. 37, 319-340. (doi: 10. 1016/j. cretres. 2012. 03. 009)
Jiménez-Huidobro P, Simões TR, Caldwell MW. 2017 Mosasauroids from Gondwanan continents. J. Herpetol. 51, 355-364. (doi: 10. 1670/16-017)
Cappetta H, Bardet N, Pereda Suberbiola X, Adnet S, Akkrim D, Amalik M, Benabdallah A. 2014 Marine vertebrate faunas from the Maastrichtian phosphates of Benguérir (Ganntour Basin, Morocco): biostratigraphy, palaeobiogeography and palaeoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 217-238. (doi: 10. 1016/j. palaeo. 2014. 04. 020)
Simões TR, Vernygora O, Paparella I, Jimenez-Huidobro P, Caldwell MW. 2017 Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group. PLoS ONE 12, 1-20. (doi: 10. 1371/journal. pone. 0176773)
Leblanc ARH, Caldwell MW, Bardet N. 2012 A new mosasaurine from the Maastrichtian (Upper Cretaceous) phosphates of Morocco and its implications for mosasaurine systematics. J. Vertebr. Paleontol. 32, 82-104. (doi: 10. 1080/02724634. 2012. 624145)
Cignoni P, Callieri M, Corsini M, Dellapiane M, Ganovelli F, Ranzuglia G. 2008 MeshLab: an opensource mesh processing tool. In Eurographics Italian chapter conference (eds V Scarano, R de Chiara, U Erra), pp. 1-8. Salerno, Italy: The Eurographics Association.
Schneider CA, Rasband WS, Eliceiri KW. 2012 NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675. (doi: 10. 1038/nmeth. 2089)
Fischer V, Benson RBJ, Druckenmiller PS, Ketchum HF, Bardet N. 2018 The evolutionary history of polycotylid plesiosaurians. R. Soc. Open Sci. 5, 172177. (doi: 10. 1098/RSOS. 172177)
Button DJ, Zanno LE. 2020 Repeated evolution of divergent modes of herbivory in non-avian dinosaurs. Curr. Biol. 30, 158-168. e4. (doi: 10. 1016/J. CUB. 2019. 10. 050)
Paradis E, Claude J, Strimmer K. 2004 APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290. (doi: 10. 1093/bioinformatics/btg412)
Oksanen J et al. 2018 vegan: Community Ecology Package. R package version 2. 5-6.
Bardet N. 2012 Maastrichtian marine reptiles of the Mediterranean Tethys: a palaeobiogeographical approach. Bull. Soc. Geol. Fr. 183, 573-596. (doi: 10. 2113/gssgfbull. 183. 6. 573)
Guillerme T. 2018 dispRity: a modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755-1763. (doi: 10. 1111/2041-210X. 13022)
Ciampaglio CN, Kemp M, McShea DW. 2009 Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27, 695-715. (doi: 10. 1666/0094-8373(2001)027<0695: DCIMOP>2. 0. CO; 2)
Legendre P. 2008 Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 1, 3-8. (doi: 10. 1093/JPE/RTM001)
R Core Development Team 2008 R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See http://www. R-project. org/.
Strong CRC, Caldwell MW, Konishi T, Palci A. 2020 A new species of longirostrine plioplatecarpine mosasaur (Squamata: Mosasauridae) from the Late Cretaceous of Morocco, with a re-evaluation of the problematic taxon 'Platecarpus' ptychodon. J. Syst. Paleontol. 18, 1769-1804. (doi: 10. 1080/14772019. 2020. 1818322)
Lingham-Soliar T. 2002 First occurrence of premaxillary caniniform teeth in the varanoidea: presence in the extinct mosasaur Goronyosaurus (Squamata: Mosasauridae) and its functional and paleoecological implications. Lethaia 35, 187-190. (doi: 10. 1080/002411602320184033)
Longrich NR, Bardet N, Khaldoune F, Yazami OK, Jalil NE. 2021 Pluridens serpentis, a new mosasaurid (Mosasauridae: Halisaurinae) from the Maastrichtian of Morocco and implications for mosasaur diversity. Cretaceous Res. 126, 104882. (doi: 10. 1016/J. CRETRES. 2021. 104882)
Close RA et al. 2019 Diversity dynamics of Phanerozoic terrestrial tetrapods at the localcommunity scale. Nat. Ecol. Evol. 3, 590-597. (doi: 10. 1038/s41559-019-0811-8)
Upchurch P, Mannion PD, Benson RBJ, Butler RJ, Carrano MT. 2011 Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geol. Soc. Lond. Special Publications 358, 209-240. (doi: 10. 1144/SP358. 14)
Longrich NR, Scriberas J, Wills MA. 2016 Severe extinction and rapid recovery of mammals across the Cretaceous-Palaeogene boundary, and the effects of rarity on patterns of extinction and recovery. J. Evol. Biol. 29, 1495-1512. (doi: 10. 1111/JEB. 12882)
Condamine FL, Guinot G, Benton MJ, Currie PJ. 2021 Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 1-16. (doi: 10. 1038/s41467-021-23754-0)
Tutin SL, Butler RJ. 2017 The completeness of the fossil record of plesiosaurs, marine reptiles from the Mesozoic. Acta Palaeontol. Pol. 62, 563. (doi: 10. 4202/APP. 00355. 2017)
Maidment SCR, Dean CD, Mansergh RI, Butler RJ. 2021 Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America. Proc. R. Soc. B 288, 20210692. (doi: 10. 1098/RSPB. 2021. 0692)
Vavrek MJ, Larsson HC. 2010 Low beta diversity of Maastrichtian dinosaurs of North America. Proc. Natl Acad. Sci. USA 107, 8265-8268. (doi: 10. 1073/PNAS. 0913645107)
Zaffos A, Finnegan S, Peters SE. 2017 Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. USA 114, 5653-5658. (doi: 10. 1073/PNAS. 1702297114)
Dean CD, Chiarenza AA, Maidment SCR. 2020 Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology 63, 881-901. (doi: 10. 1111/PALA. 12492)
Chiarenza AA, Mannion PD, Lunt DJ, Farnsworth A, Jones LA, Kelland SJ, Allison PA. 2019 Ecological niche modelling does not support climaticallydriven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10, 1-14. (doi: 10. 1038/s41467-019-08997-2)
Madzia D, Cau A. 2020 Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas. PeerJ 8, e8941. (doi: 10. 7717/peerj. 8941)
Berry K. 2017 New paleontological constraints on the paleogeography of the Western Interior Seaway near the end of the Cretaceous (late Campanian-Maastrichtian) with a special emphasis on the paleogeography of southern Colorado, U. S. A. Rocky Mountain Geol. 52, 1-16. (doi: 10. 24872/RMGJOURNAL. 52. 1. 1)
Slattery J, Cobban WA, McKinnery KC, Harries PJ, Sandness AL. 2013 Early Cretaceous to Paleocene paleogeography of the Western Interior Seaway: the interaction of eustasy and tectonism. In Wyoming Geological Association Handbook (ed. M Bingle-Davis), Wyoming Geological Association 68th Annual Field Conf, Casper, Wyoming, pp. 22-60.
Hornung JJ, Reich M, Frerichs U. 2018 A mosasaur fauna (Squamata: Mosasauridae) from the Campanian (Upper Cretaceous) of Hannover, northern Germany. Alcheringa 42, 543-559. (doi: 10. 1080/03115518. 2018. 1434899)
Nicholls EL, Russell AP. 1990 Paleobiogeography of the Cretaceous Western Interior Seaway of North America: the vertebrate evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 79, 149-169. (doi: 10. 1016/0031-0182(90)90110-S)
Jagt JWM. 2005 Stratigraphic ranges of mosasaurs in Belgium and the Netherlands (Late Cretaceous) and cephalopod-based correlations with North America. Netherlands J. Geosci. Geologie en Mijnbouw 84, 283-301. (doi: 10. 1017/S0016774600021065)
Linnert C, Engelke J, Wilmsen M, Mutterlose J. 2016 The impact of the Maastrichtian cooling on the marine nutrient regime-evidence from midlatitudinal calcareous nannofossils. Paleoceanography 31, 694-714. (doi: 10. 1002/2015PA002916)
Lindgren J, Caldwell MW, Konishi T, Chiappe LM. 2010 Convergent evolution in aquatic tetrapods: insights from an exceptional fossil mosasaur. PLoS ONE 5, 1-10. (doi: 10. 1371/journal. pone. 0011998)
Schumacher BA. 2011 A 'Woollgari Zone Mosasaur' (Squamata; Mosasauridae) from the Carlile Shale (Lower Middle Turonian) of Central Kansas and the Stratigraphic Overlap of Early Mosasaurs and Pliosaurid Plesiosaurs. Trans. Kansas Acad. Sci. 114, 1-14. (doi: 10. 1660/062. 114. 0101)
O'gorman JP, Gasparini Z. 2013 Revision of Sulcusuchus erraini (Sauropterygia, Polycotylidae) from the Upper Cretaceous of Patagonia, Argentina. Alcheringa 37, 163-176. (doi: 10. 1080/03115518. 2013. 736788)
Fischer V, Zverkov NG, Arkhangelsky MS, Stenshin IM, Blagovetshensky IV, Uspensky GN. 2021 A new elasmosaurid plesiosaurian from the Early Cretaceous of Russia marks an early attempt at neck elongation. Zool. J. Linn. Soc. 192, 1167-1194. (doi: 10. 1093/ZOOLINNEAN/ZLAA103)
Foth C, Ascarrunz E, Joyce WG. 2017 Still slow, but even steadier: an update on the evolution of turtle cranial disparity interpolating shapes along branches. R. Soc. Open Sci. 4, 170899. (doi: 10. 1098/RSOS. 170899)
Stubbs TL, Pierce SE, Elsler A, Anderson PSL, Rayfield EJ, Benton MJ. 2021 Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation. Proc. R. Soc. B 288, 20210069. (doi: 10. 1098/RSPB. 2021. 0069)
MacLaren JA, Bennion RF, Bardet N, Fischer V. 2022 Global ecomorphological restructuring of dominant marine reptiles prior to the K/Pg mass extinction. FigShare.
MacLaren JA, Bennion RF, Bardet N, Fischer V. 2022 Global ecomorphological restructuring of dominant marine reptiles prior to the K/Pg mass extinction. bioRxiv. 2021. 12. 30. 474572. (doi: 10. 1101/2021. 12. 30. 474572)