[en] The succession of migration barriers and different turbine types during downstream migration impede Atlantic salmon (Salmo salar L.) smolts from reaching the sea in time but is poorly studied. We investigated the isolated and cumulative impacts of 14 consecutive migration barriers (MBs) on downstream migration of 200 radio-tagged smolts over an 18.9 km stretch of gravel-bed river, by equipping five MBs with automated radio listening stations. At the level of isolated barriers, median research times (i.e. time between the first and the last detection upstream of a MB) varied between 0.1 and 0.7 h. The median crossing delays (i.e. time between the first detection upstream and the first detection downstream of a MB) varied between 1 and 2.9 h. Considering successive MBs, median cumulative crossing delays varied between 2.6 and 32.1 h and increased with the number of MBs. We observed a global mortality rate between 33% and 76%, increasing with the distance travelled and the associated number of MBs. Only 48% of the migrating smolts reached the end of the studied river stretch. Results suggest that the dynamics of the smolt downstream migration over this short highly fragmented stretch had a significant effect in terms of delays, mortalities and seaward escapement rate.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Renardy, Séverine ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Gestion des ressources aquatiques et aquaculture - UR FOCUS
Colson, Dylan; Profish Technology S.A.
Benitez, Jean-Philippe ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Gestion des ressources aquatiques et aquaculture - UR FOCUS
Dierckx, Arnaud ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Département de Biologie, Ecologie et Evolution
Detrait, Olivier; Service Public de Wallonie (SPW) > DDRCB-DCENN
Nzau Matondo, Billy ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Gestion des ressources aquatiques et aquaculture - UR FOCUS
Sonny, Damien; Profish Technology S.A.
Ovidio, Michaël ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Gestion des ressources aquatiques et aquaculture - UR FOCUS
Language :
English
Title :
Migration behaviour of Atlantic salmon smolts (Salmo salar L.) in a short and highly fragmented gravel-bed river stretch
Publication date :
09 July 2022
Journal title :
Ecology of Freshwater Fish
ISSN :
0906-6691
eISSN :
1600-0633
Publisher :
Blackwell, Oxford, United Kingdom
Volume :
31
Issue :
3
Pages :
499-514
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture SPW Agriculture, Ressources naturelles et Environnement - Service Public de Wallonie. Agriculture, Ressources naturelles et Environnement
Aarestrup, K., Nielsen, C., & Koed, A. (2002). Net ground speed of downstream migrating radio-tagged Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) smolts in relation to environmental factors. In E. B. Thorstad, I. A. Fleming, & T. F. Næsje, (Eds.), Aquatic Telemetry (pp. 95–102). Springer. https://doi.org/10.1007/978-94-017-0771-8_11
Brackley, R., Lucas, M. C., Thomas, R., Adams, C. E., & Bean, C. W. (2018). Comparison of damage to live v. euthanized Atlantic salmon Salmo salar smolts from passage through an Archimedean screw turbine. Journal of Fish Biology, 92(5), 1635–1644. https://doi.org/10.1111/jfb.13596
Brevé, N., Vis, H., Spierts, I., de Laak, G., Moquette, F., & Breukelaar, A. (2014). Exorbitant mortality of hatchery-reared Atlantic salmon smolts Salmo salar L., in the Meuse river system in the Netherlands. Journal of Coastal Conservation, 18(2), 97–109. https://doi.org/10.1007/s11852-013-0237-4
Cefas, A. (2012). Assessment of Damage to Smolts Caused by Archimedes Screw Hydropower Turbines. T. R: I. Potter, P. Davison and A. Moore, Lowestoft.
Coutant, C. C., & Whitney, R. R. (2000). Fish quipped in relation to passage through hydropower turbines: a review. Transactions of the American Fisheries Society, 129(2), 351–380. https://doi.org/10.1577/1548-8659(2000)129<0351:FBIRTP>2.0.CO;2
Duncan, J. P., Deng, Z. D., Arnold, J. L., Fu, T., Trumbo, B. A., Carlson, T. J., & Zhou, D. (2018). Physical and ecological evaluation of a fish-friendly surface spillway. Ecological Engineering, 110, 107–116. https://doi.org/10.1016/j.ecoleng.2017.10.012
Fjeldstad, H.-P., Pulg, U., & Forseth, T. (2018). Safe two-way migration for salmonids and eel past hydropower structures in Europe: A review and recommendations for best-practice solutions. Marine and Freshwater Research, 69(12), 1834. https://doi.org/10.1071/MF18120
Fullerton, A. H., Burnett, K. M., Steel, E. A., Flitcroft, R. L., Pess, G. R., Feist, B. E., Torgersen, C. E., Miller, D. J., & Sanderson, B. L. (2010). Hydrological connectivity for riverine fish: Measurement challenges and research opportunities. Freshwater Biology, 55(11), 2215–2237. https://doi.org/10.1111/j.1365-2427.2010.02448.x
Furey, N. B., Martins, E. G., & Hinch, S. G. (2021). Migratory salmon smolts exhibit consistent interannual depensatory predator swamping: Effects on telemetry-based survival estimates. Ecology of Freshwater Fish, 30(1), 18–30. https://doi.org/10.1111/eff.12556
Havn, T. B., Sæther, S. A., Thorstad, E. B., Teichert, M. A. K., Heermann, L., Diserud, O. H., Borcherding, J., Tambets, M., & Økland, F. (2017). Downstream migration of Atlantic salmon smolts past a low head hydropower station quipped with Archimedes screw and Francis turbines. Ecological Engineering, 105, 262–275. https://doi.org/10.1016/j.ecoleng.2017.04.043
Havn, T. B., Thorstad, E. B., Borcherding, J., Heermann, L., Teichert, M. A. K., Ingendahl, D., Tambets, M., Sæther, S. A., & Økland, F. (2020). Impacts of a weir and power station on downstream migrating Atlantic salmon smolts in a German river. River Research and Applications, 36(5), 784–796. https://doi.org/10.1002/rra.3590
Hogan, T. W., Cada, G. F., & Amaral, S. V. (2014). The status of environmentally enhanced hydropower turbines. Fisheries, 39(4), 164–172. https://doi.org/10.1080/03632415.2014.897195
Holbrook, C. M., Kinnison, M. T., & Zydlewski, J. (2011). Survival of migrating Atlantic Salmon Smolts through the Penobscot River, Maine: A prerestoration assessment. Transactions of the American Fisheries Society, 140(5), 1255–1268. https://doi.org/10.1080/00028487.2011.618356
Huet, M. (1949). Aperçu des relations entre la pente et les populations piscicoles des eaux courantes. Schweizerische Zeitschrift Für Hydrologie, 11(3–4), 332–351.
Huusko, R., Hyvärinen, P., Jaukkuri, M., Mäki-Petäys, A., Orell, P., & Erkinaro, J. (2018). Survival and migration speed of radio-tagged Atlantic salmon (Salmo salar) smolts in two large rivers: One without and one with dams. Canadian Journal of Fisheries and Aquatic Sciences, 75(8), 1177–1184. https://doi.org/10.1139/cjfas-2017-0134
Kärgenberg, E., Thorstad, E. B., Järvekülg, R., Sandlund, O. T., Saadre, E., Økland, F., Thalfeldt, M., & Tambets, M. (2020). Behaviour and mortality of downstream migrating Atlantic salmon smolts at a small power station with multiple migration routes. Fisheries Management and Ecology, 27(1), 32–40. https://doi.org/10.1111/fme.12382
Karppinen, P., Jounela, P., Huusko, R., & Erkinaro, J. (2014). Effects of release timing on migration behaviour and survival of hatchery-reared Atlantic salmon smolts in a regulated river. Ecology of Freshwater Fish, 23(3), 438–452. https://doi.org/10.1111/eff.12097
Katopodis, C., & Williams, J. G. (2012). The development of fish passage research in a historical context. Ecological Engineering, 48, 8–18. https://doi.org/10.1016/j.ecoleng.2011.07.004
Koed, A., Baktoft, H., & Bak, B. D. (2006). Causes of mortality of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) smolts in a restored river and its estuary. River Research and Applications, 22(1), 69–78. https://doi.org/10.1002/rra.894
Koed, A., Jepsen, N., Aarestrup, K., & Nielsen, C. (2002). Initial mortality of radio-tagged Atlantic salmon (Salmo salar L.) smolts following release downstream of a hydropower station. In E. B. Thorstad, I. A. Fleming, & T. F. Næsje, (Eds.), Aquatic Telemetry (pp. 31–37). Springer. https://doi.org/10.1007/978-94-017-0771-8_5
Larinier, M. (2008). Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia, 609(1), 97–108. https://doi.org/10.1007/s10750-008-9398-9
Larinier, M., Dumond, L., Lagarrigue, T., Frey, A., & Travade, F. (2020). Performance of a large partial-depth guide wall to divert downstream migrating Atlantic salmon smolts at Tuilières dam, Dordogne River. Knowledge & Management of Aquatic Ecosystems, 421, 15. https://doi.org/10.1051/kmae/2020010
Larinier, M., & Travade, F. (2002). Downstream migration: problems and facilities. Bulletin Français de la Pêche et de la Pisciculture, 364(supplément), 181–207. https://doi.org/10.1051/kmae/2002102
Lothian, A. J., Newton, M., Barry, J., Walters, M., Miller, R. C., & Adams, C. E. (2018). Migration pathways, speed and mortality of Atlantic salmon (Salmo salar) smolts in a Scottish river and the near-shore coastal marine environment. Ecology of Freshwater Fish, 27(2), 549–558. https://doi.org/10.1111/eff.12369
Marschall, E. A., Mather, M. E., Parrish, D. L., Allison, G. W., & McMenemy, J. R. (2011). Migration delays caused by anthropogenic barriers: Modeling dams, temperature, and success of migrating salmon smolts. Ecological Applications, 21(8), 3014–3031. https://doi.org/10.1890/10-0593.1
McCormick, S. D., Hansen, L. P., Quinn, T. P., & Saunders, R. L. (1998). Movement, migration, and smolting of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 55(S1), 77–92. https://doi.org/10.1139/d98-011
Moore, A., Privitera, L., Ives, M. J., Uzyczak, J., & Beaumont, W. R. C. (2018). The effects of a small hydropower scheme on the migratory behaviour of Atlantic salmon Salmo salar smolts. Journal of Fish Biology, 93(3), 469–476. https://doi.org/10.1111/jfb.13660
Mueller, M., Sternecker, K., Milz, S., & Geist, J. (2020). Assessing turbine passage effects on internal fish injury and delayed mortality using X-ray imaging. PeerJ, 8, e9977. https://doi.org/10.7717/peerj.9977
Newton, M., Barry, J., Dodd, J. A., Lucas, M. C., Boylan, P., & Adams, C. E. (2019). A test of the cumulative effect of river weirs on downstream migration success, speed and mortality of Atlantic salmon (Salmo salar) smolts: An empirical study. Ecology of Freshwater Fish, 28(1), 176–186. https://doi.org/10.1111/eff.12441
Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and Flow regulation of the World’s large river systems. Science, 308(5720), 405–408. https://doi.org/10.1126/science.1107887
Ovidio, M., Dierckx, A., Bunel, S., Grandry, L., Spronck, C., & Benitez, J. P. (2017). Poor performance of a retrofitted downstream bypass revealed by the analysis of approaching behaviour in combination with a trapping system: retrofitted downstream bypass system. River Research and Applications, 33(1), 27–36. https://doi.org/10.1002/rra.3062
Ovidio, M., Enders, E. C., Hallot, E. J., Roy, M. L., Philippart, J. C., Petit, F., & Roy, A. G. (2007). Mobility and home-range use of Atlantic salmon parr over short time scales. Aquatic Living Resources, 20, 95–101. https://doi.org/10.1051/alr:2005020
Ovidio, M., Renardy, S., Dierckx, A., Nzau Matondo, B., & Benitez, J.-P. (2021). Improving bypass performance and passage success of Atlantic salmon smolts at an old fish-hostile hydroelectric power station: A challenging task. Ecological Engineering, 160, 106148. https://doi.org/10.1016/j.ecoleng.2021.106148
Ovidio, M., Sonny, D., Watthez, Q., Goffaux, D., Detrait, O., Orban, P., Nzau Matondo, B., Renardy, S., Dierckx, A., & Benitez, J.-P. (2020). Evaluation of the performance of successive multispecies improved fishways to reconnect a rehabilitated river. Wetlands Ecology and Management, 28(4), 641–654. https://doi.org/10.1007/s11273-020-09737-w
Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D., & Reeves, G. H. (1998). Why aren’t there more Atlantic salmon (Salmo salar)? Canadian Journal of Fisheries and Aquatic Sciences, 55(S1), 281–287. https://doi.org/10.1139/d98-012
Pauwels, I. S., Baeyens, R., Toming, G., Schneider, M., Buysse, D., Coeck, J., & Tuhtan, J. A. (2020). Multi-species assessment of injury, mortality, and physical conditions during downstream passage through a large archimedes hydrodynamic screw (Albert Canal, Belgium). Sustainability, 12(20), 8722. https://doi.org/10.3390/su12208722
Reitan, O., Hvidsten, N. A., & Hansen, L. P. (1987). Bird predation on hatchery reared Atlantic salmon smolts, Salmo salar L., released in the River Eira, Norway. Fauna Norvegica, Series A, 8, 35–38.
Renardy, S., Benitez, J.-P., Tauzin, A., Dierckx, A., Nzau Matondo, B., & Ovidio, M. (2020). How and where to pass? Atlantic salmon smolt’s behaviour at a hydropower station offering multiple migration routes. Hydrobiologia, 847(2), 469–485. https://doi.org/10.1007/s10750-019-04108-w
Renardy, S., Takriet, A., Benitez, J.-P., Dierckx, A., Baeyens, R., Coeck, J., Pauwels, I. S., Mouton, A., Archambeau, P., Dewals, B., Pirotton, M., Erpicum, S., & Ovidio, M. (2021). Trying to choose the less bad route: Individual migratory behaviour of Atlantic salmon smolts (Salmo salar L.) approaching a bifurcation between a hydropower station and a navigation canal. Ecological Engineering, 169(3), https://doi.org/10.1016/j.ecoleng.2021.106304
Scruton, D. A., McKinley, R. S., Kouwen, N., Eddy, W., & Booth, R. K. (2003). Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts. River Research and Applications, 19(5–6), 605–617. https://doi.org/10.1002/rra.735
Stich, D. S., Bailey, M. M., & Zydlewski, J. D. (2014). Survival of Atlantic salmon Salmo salar smolts through a hydropower complex: Smolt survival through a hydropower complex. Journal of Fish Biology, 85(4), 1074–1096. https://doi.org/10.1111/jfb.12483
Szabo-Meszaros, M., Forseth, T., Baktoft, H., Fjeldstad, H., Silva, A. T., Gjelland, K. Ø., Økland, F., Uglem, I., & Alfredsen, K. (2019). Modelling mitigation measures for smolt migration at dammed river sections. Ecohydrology, 12(7), https://doi.org/10.1002/eco.2131
Teichert, N., Benitez, J. P., Dierckx, A., Tétard, S., de Oliveira, E., Trancart, T., Feunteun, E., & Ovidio, M. (2020). Development of an accurate model to predict the phenology of Atlantic salmon smolt spring migration. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(8), 1552–1565. https://doi.org/10.1002/aqc.3382
Thorstad, E. B., Havn, T. B., Saether, S. A., Heermann, L., Teichert, M. A. K., Diserud, O. H., Tambets, M., Borcherding, J., & Økland, F. (2017). Survival and behaviour of Atlantic salmon smolts passing a run-of-river hydropower facility with a movable bulb turbine. Fisheries Management and Ecology, 24(3), 199–207. https://doi.org/10.1111/fme.12216
Thorstad, E. B., Whoriskey, F., Uglem, I., Moore, A., Rikardsen, A. H., & Finstad, B. (2012). A critical life stage of the Atlantic salmon Salmo salar: Behaviour and survival during the smolt and initial post-smolt migration. Journal of Fish Biology, 81(2), 500–542. https://doi.org/10.1111/j.1095-8649.2012.03370.x
Tomanova, S., Courret, D., Alric, A., De Oliveira, E., Lagarrigue, T., & Tétard, S. (2018). Protecting efficiently sea-migrating salmon smolts from entering hydropower plant turbines with inclined or oriented low bar spacing racks. Ecological Engineering, 122, 143–152. https://doi.org/10.1016/j.ecoleng.2018.07.034
Tomanova, S., Courret, D., Richard, S., Tedesco, P. A., Mataix, V., Frey, A., Lagarrigue, T., Chatellier, L., & Tétard, S. (2021). Protecting the downstream migration of salmon smolts from hydroelectric power plants with inclined racks and optimized bypass water discharge. Journal of Environmental Management, 284, 112012. https://doi.org/10.1016/j.jenvman.2021.112012
Urke, H. A., Kristensen, T., Ulvund, J. B., & Alfredsen, J. A. (2013). Riverine and fjord migration of wild and hatchery-reared Atlantic salmon smolts. Fisheries Management and Ecology, 20(6), 544–552. https://doi.org/10.1111/fme.12042
Vikström, L., Leonardsson, K., Leander, J., Shry, S., Calles, O., & Hellström, G. (2020). Validation of Francis-Kaplan Turbine Blade Strike Models for Adult and Juvenile Atlantic Salmon (Salmo Salar L.) and Anadromous Brown Trout (Salmo Trutta L.) passing high head turbines. Sustainability, 12(16), 6384. https://doi.org/10.3390/su12166384
Williams, J. G., Armstrong, G., Katopodis, C., Larinier, M., & Travade, F. (2012). Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions. River Research and Applications, 28(4), 407–417. https://doi.org/10.1002/rra.1551