Mineral content; nutrients uptake; photosystem; root morphology
Abstract :
[en] Salt stress is considered one of the major constraints limiting plant growth. Here, tomato plants were grown in hydroponic culture with two salt sodium chloride concentrations (S1 = 2.8 dS m−1 and S2 = 4.8 dS m−1). Under salt treatment, a significant decrease in chlorophyll content index and shoot and
root dry weight were observed. We found that copper (Cu) was accumulated significantly in the shoot
and sodium (Na) was significantly accumulated in the root. Furthermore, a significant nutrient imbalance indicated by a decrease in phosphorus (P), and potassium (K) uptake was measured. These decreases were accompanied by an increase in Na and Cu contents. A decrease in chlorophyll fluorescence yield was also observed indicating an inhibition at photosystem I acceptor sites. It seems that the downregulation of the electron transport between photosystem II and photosystem II under salt stress could be due to an imbalance in nutrient uptake.
Loudari, Aicha ; University Mohammed VI Polytechnic -UM6P/ Université de Liège - ULiège > Plant stress Physiology Lab / TERRA Research Center
Benadis, Chahinez; University Mohammed VI Polytechnic -UM6P
Naciri, Rachida; University Mohammed VI Polytechnic -UM6P
Soulaimani, Aziz; University Mohammed VI Polytechnic -UM6P
Zeroual, Youssef; University Mohammed VI Polytechnic -UM6P
El Gharous, Mohamed; University Mohammed VI Polytechnic -UM6P
Kalaji, Hazem M.; Institute of Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, > Department of Plant Physiology
Oukarroum, Abdallah; University Mohammed VI Polytechnic -UM6P
Language :
English
Title :
Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture
Alternative titles :
[fr] Le stress salin affecte la nutrition minérale des pousses et des racines et la fluorescence de la chlorophylle a des plantes de tomates cultivés en hydroponie
Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P., 2008. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol. 18: 656–660. doi: 10.1016/j.cub.2008.04.034
Ahanger MA, Agarwal RM., 2017. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem. 115: 449–460. doi: 10.1016/j.plaphy.2017.04.017
Ahanger MA, Mir RA, Alyemeni MN, Ahmad P., 2020. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol Biochem. 147: 31–42. doi: 10.1016/j.plaphy.2019.12.007
Allakhverdiev SI, Murata N., 2008. Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res. doi: 10.1007/s11120-008-9334-x.
Allakhverdiev SI, Sakamoto A, Nishiyama Y, Murata N., 2000. Inactivation of photosystems I and II in response to osmotic stress in Synechococcus. Contribution of water channels. Plant Physiol. doi: 10.1104/pp.122.4.1201.
Almeida DM, Margarida Oliveira M, Saibo NJM., 2017. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol. doi: 10.1590/1678-4685-gmb-2016-0106.
Arif MR, Islam MT, Robin AHK., 2019. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants. doi: 10.3390/plants8070192.
Asrar H, Hussain T, Hadi SMS, Gul B, Nielsen BL, Khan MA., 2017. Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) Staph. Environ Exp Bot. 135: 86–95. doi: 10.1016/j.envexpbot.2016.12.008
Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, et al. 2018. Soil quality–a critical review. Soil Biol Biochem. doi: 10.1016/j.soilbio.2018.01.030.
Conde A, Silva P, Agasse A, Conde C, Gerós H., 2011. Mannitol transport and mannitol dehydrogenase activities are coordinated in olea Europaea under salt and osmotic stresses. Plant Cell Physiol. doi: 10.1093/pcp/pcr121.
Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI., 2014. Plant salt-tolerance mechanisms. Trends Plant Sci. 19 (6): 371–379. doi: 10.1016/j.tplants.2014.02.001
Dekker JP, Boekema EJ., 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta. 1706: 12–39. doi: 10.1016/j.bbabio.2004.09.009
Demiral MA., 2017. Effect of salt stress on concentration of nitrogen and phosphorus in root and leaf of strawberry plant. Eur J Soil Sci. doi: 10.18393/ejss.319198.
Dinneny JR., 2019. Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol. doi: 10.1146/annurev-cellbio-100617-062949.
Eisechie HA, Rodriguez V., 1999. Does salinity inhibit alfalfa leaf growth by reducing tissue concentration of essential mineral nutrients? J Agron Crop Sci. doi: 10.1046/j.1439-037X.1999.00300.x.
Fakhrfeshani M, Shahriari-Ahmadi F, Niazi A, Moshtaghi N, Zare-Mehrjerdi M., 2015. The effect of salinity stress on Na +, K+ concentration, Na+ /K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis. J Plant Mol Breed. 3 (2): 1–10.
Fall F, Diouf D, Fall D., 2017. Growth and physiological responses of Sporobolus robustus kunth seedlings to salt stress. Arid Land Res Manag. 31 (1): 46–56. doi: 10.1080/15324982.2016.1246491
Fallah F, Nokhasi F, Ghaheri M., 2017. Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol. 63 (7): 102–106. doi: 10.14715/cmb/2017.63.7.17
Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ., 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A. 99 (25): 15898–15903. doi: 10.1073/pnas.252637799
Grattan SR, Grieve CM., 1992. Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosyst Environ. doi: 10.1016/0167-8809(92)90151-Z.
Hand MJ, Taffouo VD, Nouck AE, Nyemene KPJ, Tonfack LB, Meguekam TL, Youmbi E., 2017. Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Notul Bot Horti Agrobot Cluj Napoca. doi: 10.15835/nbha45210928.
Hasana R, Miyake H., 2017. Salinity stress alters nutrient uptake and causes the damage of root and leaf anatomy in maize. KnE Life Sci. doi: 10.18502/kls.v3i4.708.
Hoagland DR, Arnon DI., 1950. The water-culture method for growing plants without soil. Calif Agric Exp Stn Bull. 347: 36–39.
Horie T, Karahara I, Katsuhara M., 2012. Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice. 5 (1): 1–18. doi: 10.1186/1939-8433-5-11
Isayenkov SV, Maathuis FJM., 2019. Plant salinity stress: many unanswered questions remain. Front Plant Sci. doi: 10.3389/fpls.2019.00080.
Kalaji HM, Govindjee, Bosa K, Kościelniak J, Zuk-Gołaszewska K., 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot. doi: 10.1016/j.envexpbot.2010.10.009.
Kalaji MH, Pietkiewicz S., 1993. Salinity effects on plant growth and other physiological processes. Acta Physiol Plant. 143: 89–124.
Keisham M, Mukherjee S, Bhatla SC., 2018. Mechanisms of sodium transport in plants–progresses and challenges. Int J Mol Sci. doi: 10.3390/ijms19030647.
Khan MIR, Asgher M, Khan NA., 2014. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L). Plant Physiol Biochem. 80: 67–74. doi: 10.1016/j.plaphy.2014.03.026
Khan MZ, Islam MA, Azom MG, Amin MS., 2018. Short term influence of salinity on uptake of phosphorus by Ipomoea aquatica. Int J Plant Soil Sci. doi: 10.9734/ijpss/2018/44822.
Li W, Zhang C, Lu Q, Wen X, Lu C., 2011. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol. 168: 1743–1752. doi: 10.1016/j.jplph.2011.03.018
Liu Y, Du H, Wang K, Huang B, Wang Z., 2011. Differential photosynthetic responses to salinity stress between two perennial grass species contrasting in salinity tolerance. HortScience. 46 (2): 311–316. doi: 10.21273/HORTSCI.46.2.311
Loupassaki MH, Chartzoulakis KS, Digalaki NB, Androulakis II., 2002. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. J Plant Nutr. doi: 10.1081/PLN-120014707.
Ma NL, Che Lah WA, Kadir A., 2018. Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections. PloS One. 13 (2): e0192732. doi: 10.1371/journal.pone.0192732
Meena MD, Narjary B, Sheoran P, Jat HS, Joshi PK, Chinchmalatpure AR, Yadav G, Yadav RK, Meena MK., 2018. Changes of phosphorus fractions in saline soil amended with municipal solid waste compost and mineral fertilizers in a mustard-pearl millet cropping system. Catena. doi: 10.1016/j.catena.2017.09.002.
Me¸trak M, Chachulski Ł, Navruzshoev D, Pawlikowski P, Rojan E, Sulwiński M, Suska-Malawska M., 2017. Nature’s patchwork: How water sources and soil salinity determine the distribution and structure of halophytic plant communities in arid environments of the Eastern Pamir. PLoS One. doi: 10.1371/journal.pone.0174496.
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33: 453–467. doi: 10.1111/j.1365-3040.2009.02041.x
Munns R., 2002. Comparative physiology of salt and water stress. Plant Cell Environ. doi: 10.1046/j.0016-8025.2001.00808.x.
Munns R, Tester M., 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59: 651–681. doi: 10.1146/annurev.arplant.59.032607.092911
Navarro JM, Botella MA, Cerdá A, Martinez V., 2001. Phosphorus uptake and translocation in salt-stressed melon plants. J Plant Physiol. doi: 10.1078/0176-1617-00147.
Navarro JM, Botella MÁ, Cerdá A, Martínez V., 2000. Effect of salinity x calcium interaction on cation balance in melon plants grown under two regimes of orthophosphate. J Plant Nutr. doi: 10.1080/01904160009382076.
Neumann PM., 1995. Inhibition of root growth by salinity stress: toxicity or an adaptive biophysical response? Struct Funct Roots. doi: 10.1007/978-94-017-3101-0_39.
Ochiai K, Matoh T., 2002. Characterization of the Na+ delivery from roots to shoots in rice under saline stress: excessive salt enhances apoplastic transport in rice plants. Soil Sci Plant Nutr. doi: 10.1080/00380768.2002.10409214.
Oukarroum A, Bussotti F, Goltsev V, Kalaji HM., 2015. Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot. doi: 10.1016/j.envexpbot.2014.08.005.
Oukarroum A, Madidi S, El Schansker G, Strasser RJ., 2007. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot. doi: 10.1016/j.envexpbot.2007.01.002.
Oukarroum A, Schansker G, Strasser RJ., 2009. Drought stress effects on photosystem i content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant. doi: 10.1111/j.1399-3054.2009.01273.x.
Pompeiano A, Landi M, Meloni G, Vita F, Guglielminetti L, Guidi L., 2017. Allocation pattern, ion partitioning, and chlorophyll a fluorescence in Arundo donax L. in responses to salinity stress. Plant Biosyst. 151 (4): 613–622. doi: 10.1080/11263504.2016.1187680
Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V., 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. doi: 10.1111/pce.12199.
Robin AHK, Matthew C, Uddin MJ, Bayazid KN., 2016. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J Exp Bot. doi: 10.1093/jxb/erw064.
Sami F, Yusuf M, Faizan M, Faraz A, Hayat S., 2016. Role of sugars under abiotic stress. Plant Physiol Biochem. 109: 54–61. doi: 10.1016/j.plaphy.2016.09.005
Schansker G, Srivastava A, Govindjee, Strasser RJ., 2003. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol. doi: 10.1071/FP03032.
Schreiber U, Neubauer C, Klughammer C., 1989. Devices and methods for room-temperature fluorescence analysis. Philos Trans R Soc B. doi: 10.1098/rstb.1989.0007.
Shahriaripour R, Pour AT, Mozaffari V., 2011. Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Commun Soil Sci Plant Anal. doi: 10.1080/00103624.2011.535065.
Steudle E., 2000. Water uptake by roots: effects of water deficit. J Exp Bot doi: 10.1093/jexbot/51.350.1531.
Stirbet A, Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B Biol. doi: 10.1016/j.jphotobiol.2010.12.010.
Stirbet A, Govindjee. 2012. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res. doi: 10.1007/s11120-012-9754-5.
Strasser RJ, Srivastava A, Govindjee. 1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol. doi: 10.1111/j.1751-1097.1995.tb09240.x.
Strasser RJ, Tsimilli-Michael M, Srivastava A., 2004. Analysis of the chlorophyll a fluorescence transient. doi: 10.1007/978-1-4020-3218-9_12.
Terletskaya N, Duisenbayeva U, Rysbekova A, Kurmanbayeva M, Blavachinskaya I., 2019. Architectural traits in response to salinity of wheat primary roots. Acta Physiol Plant. doi: 10.1007/s11738-019-2948-0.
Thu TTP, Yasui H, Yamakawa T., 2017. Effects of salt stress on plant growth characteristics and mineral content in diverse rice genotypes. Soil Sci Plant Nutr. doi: 10.1080/00380768.2017.1323672.
Webster RJ, Driever SM, Kromdijk J., 2016. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax. Sci Rep. 6: 20694. doi: 10.1038/srep20694
Xie W, Wu L, Wang J, Zhang Y, Ouyang Z., 2017. Effect of salinity on the transformation of wheat straw and microbial communities in a saline soil. Commun Soil Sci Plant Anal. doi: 10.1080/00103624.2017.1373787.
Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Gu Q, Xu DK, Yang Q, Shen WB., 2011. Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J. 66: 280–229. doi: 10.1111/j.1365-313X.2011.04488.x
Xu C, Sibicky T, Huang B., 2010. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep. 29: 595–615. doi: 10.1007/s00299-010-0847-3