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Salt stress affects mineral nutrition in shoots and roots and chlorophyll a
fluorescence of tomato plants grown in hydroponic culture
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Hazem M. Kalajib and Abdallah Oukarrouma
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ABSTRACT
Salt stress is considered one of the major constraints limiting plant growth. Here, tomato plants were
grown in hydroponic culture with two salt sodium chloride concentrations (S1 = 2.8 dS m−1 and S2 =
4.8 dS m−1). Under salt treatment, a significant decrease in chlorophyll content index and shoot and
root dry weight were observed. We found that copper (Cu) was accumulated significantly in the shoot
and sodium (Na) was significantly accumulated in the root. Furthermore, a significant nutrient
imbalance indicated by a decrease in phosphorus (P), and potassium (K) uptake was measured.
These decreases were accompanied by an increase in Na and Cu contents. A decrease in
chlorophyll fluorescence yield was also observed indicating an inhibition at photosystem I
acceptor sites. It seems that the downregulation of the electron transport between photosystem II
and photosystem II under salt stress could be due to an imbalance in nutrient uptake.
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Introduction

Salinity constraint is a major abiotic stress to plant health
and soil quality as it affects the productivity of most crops.
This serious problem has drastically increased in recent
years mainly in arid and semi-arid areas (Munns 2002;
Mȩtrak et al. 2017; Bünemann et al. 2018). Salt stress influ-
ences a series of some major physiological processes such
as photosynthesis, ion partitioning as well as Na+/K+ ratio,
Reactive Oxygen Species (ROS) and hydraulic conductivity
which affects the bioenergetic processes of electron transport
chain (Kalaji and Pietkiewicz 1993; Neumann 1995; Steudle
2000; Munns 2002; Allakhverdiev and Murata 2008; Conde
et al. 2011; Kalaji et al. 2011; Fakhrfeshani et al. 2015; Oukar-
roum et al. 2015; Almeida et al. 2017). Furthermore, salt
stress seems to affect root anatomy and morphology par-
ameters (Rivero et al. 2014; Robin et al. 2016).

Changes in morphological appearance in response to sal-
inity stress are not enough to determine the effect and sub-
sequently design the management strategies. It is therefore
important to identify key physiological and biochemical fac-
tors for improving the salinity tolerance of plants (Munns
and Tester 2008; Ahanger and Agarwal 2017; Ahanger
et al. 2020). To date, three main mechanisms contributing
to shoot tissue tolerance to salinity have been targeted:
accumulation of Na+ in the vacuole, synthesis of compatible
solutes and production of enzymes catalyzing detoxification
of ROS. Increasing the abundance of vacuolar Na+/H+ anti-
porters (NHX), vacuolar H+ pyrophosphatases e.g. Pyropho-
sphate-energized vacuolar membrane proton pump 1,
proteins involved in the synthesis of compatible solutes
(such as proline and glycine betaine) and enzymes respon-
sible for the detoxification of ROS had differing degrees of
success in improving crop salinity tolerance.

Salt stress causes accumulation of ROS (Achard et al.
2008; Miller et al. 2010), which secondarily induced oxidative
damage hampers the redox homeostasis resulting in declined
photosynthetic efficiency (Miller et al. 2010; Xie et al. 2011;
Khan et al. 2014), alters nitrogen and osmolyte metabolism
(Ahanger and Agarwal 2017; Ahanger et al. 2020), mineral
assimilation, phytohormone profile and expression of
genes (Fallah et al. 2017; Ma et al. 2018). To avert the nega-
tive effects of salinity, plants have certain existing mechan-
isms like antioxidant system, osmotic adjustment and the
efficient salt exclusion at root and vacuole level (Horie
et al. 2012; Deinlein et al. 2014; Ahanger et al. 2020).

Most studies that show salinity-altered nutrient concen-
trations such as phosphorus (P) in plant tissues were con-
ducted in soils. The interaction between salinity and
nutrition of plants is highly dependent upon the plant
species, plant developmental age, the composition and level
of salinity and the concentration of macro and microele-
ments in the substrate (Loupassaki et al. 2002; Shahriaripour
et al. 2011). Plants synthesize proline, soluble sugars, glycine
betaine, and other osmolytes to promote osmotic balance at
the cellular level (Garg et al. 2002). Biosynthesis of osmo-
protectants has been reported as an adaptive strategy to med-
iate salt stress. In addition to acting as osmo-solutes, they
also act as N storage compounds and/or hydrophobic protec-
tants for enzymes and cellular structures (Sami et al. 2016). It
should also be noted that crops differ in their tolerance and
ability to accumulate a high concentration of salts in their tis-
sues. Thus, depending upon experiment conditions and
selected plants, different results can be obtained. Salinity
has been reported to affect phosphorus (P) mobility and
bioavailability in the plant-soil system, and therefore root
uptake (Grattan and Grieve 1992; Eisechie and Rodriguez
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1999; Xie et al. 2017; Meena et al. 2018). In saline soils, min-
eral nutrients such as P availability are reduced because ionic
strength effects, sorption processes in soil solution and low-
solubility of Ca-P minerals in the soil. Since the solubility of
P in saline soil solutions with high levels of Ca2+ is controlled
by sorption processes on the solid phase of Ca-P minerals
(Navarro et al. 2000).

Tomato plant is considered an important greenhouse
crop in many semi-arid regions such as in the Mediterranean
region where salinity has been considered a major constraint
in crop production. We hypothesize that saline conditions
affect nutrient uptake in hydroponic culture by tomato
plants and alter the photosynthetic electron transport
chain. In this work, physiological responses of tomato plants
to two NaCl salt concentrations, S1 = 2.8 dS m−1 and S2 =
4.8 dS m−1, were investigated. We emphasized the change
in chlorophyll a (Chl a) fluorescence, chlorophyll content
index (CCI), root morphology parameters and accumulation
of some mineral nutrients (Na, P, Cu, and K).

Materials and methods

Plant material and growth conditions

Tomato seeds (Lycopersicon esculentum var CAMPBELL 33
TECHNI) were germinated in the peat in darkness at a temp-
erature-controlled (23°C). Similar size seedlings were placed
in a culture chamber with a relative humidity between 70 and
80% and an ambient temperature of 23 ± 2°C during the day
/ 18 ± 2°C at night. The total photoperiod was 16 h/day.
Plants were irrigated by distilled water. Twenty-three days
after germination (DAG), seedlings were transferred to a
plastic container (six seedlings per container) containing
4L of half-concentrated nutrient solution, without any treat-
ment (to confer at plant adaptation period). The nutritive
solution used Hoagland and Arnon (1950). Nutrient solution
(Table 1 in supplementary materials) consists of the follow-
ing composition (ppm): N (270), K (234), Ca (200), Mg (49),
Zn (0.48), Cu (0.02), B (0.45), Mn (0.5), Mo (0.01), and Fe
(2.8). Phosphorus (P) was added to the nutrient solution as
KH2PO4 at a concentration of 31 ppm P. Six days later, seed-
lings were exposed to two salinity (S) treatments (S1 = 2.8 dS
m−1 and S2 = 4.8 dS m−1).

The pH of the solution was daily monitored and adjusted
to 5.5 with either H2SO4 or KOH supply. The nutrient sol-
ution in each container was changed weekly. The containers
were completely randomized and re-positioned weekly to
minimize environmental effects. The growth continued for
45 days after germination or for 15 days-treatment and
chlorophyll a fluorescence and some related fluorescence
parameters, chlorophyll content index, root morphology,
dry weight, and mineral content were analysed. Electrical
Conductivity Meter (EC meter) was used to measure the sal-
inity of the nutrient solution.

Leaf chlorophyll a fluorescence

Tomato plants kept in dark for 15 min before the measure-
ments were started (for each treatment, 15 measurements
were made by Handy PEA+, Hansatech instruments). The
measurement consisted of a single strong 1 s light pulse
(3000 μmol s−1 m−2 which is an excitation intensity to ensure
closure of all Photosystem II (PSII) reaction centers)

provided by an array of six light-emitting diodes (peak
650 nm). The Chl a fluorescence transients (ChlF) were digi-
tized between 10 µs to 1 s by the instrument. From the fluor-
escence transient measured during the first second of
illumination, following fluorescence parameters were
calculated:

The maximum quantum yield of primary photochemistry

jPo = [1− (Fo/Fm) = FV/Fm)]

Fo (F20μs) and Fm correspond to the initial and maximum Chl
a fluorescence. FV corresponds to the maximum variable Chl
fluorescence;

Performance index (PI)

PI = [go/(1− go)].[jPo/(1− jPo)].[yo/(1− yo)]

φPo corresponds to the efficiency by which an absorbed pho-
ton will be trapped by PSII reaction centers (RC).

The expression γo/(1−γo) is estimated by JIP-test as equal
to the ratio of reaction centers and the absorbance (RC/ABS).
Therefore: The expression ψo (=1−VJ) is the fraction of elec-
trons transported beyond QA

- per exciton trapped by the
reaction centers (RC) of PSII. It is the probability that the
energy of a trapped exciton is used for electron transport
beyond QA. QA is the primary quinone electron acceptor of
photosystem II.

The efficiency with which an electron can move from the
reduced intersystem electron acceptors to the Photosystem I
(PSI) end electron acceptors δRo (parameter related to elec-
tron transfer rate at PSI acceptor side):

dRo = (1− VI)/(1− VJ)

Vt is defined as relative variable Chl a fluorescence at time t
corresponding to (Ft −Fo)/(FM −Fo) and this expression
can be taken as a measure of the fraction of the primary

Figure 1. A typical Chlorophyll a polyphasic fluorescence rise OJIP, exhibited
by salt-stressed tomato plants. The transients are plotted on a logarithmic
time scale. the marks indicate the time points used by the JIP-test for the cal-
culation of structural and functional parameters. The signals are the fluor-
escence intensity Fo (at 20 μs); the fluorescence intensities FJ (at 2 ms) and
FI (at 30 ms); the maximal fluorescence intensity, FP = FM. Each transient rep-
resents the mean of 15 measurments.
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quinone electron acceptor of PSII in its reduced state [QA
-/

QA (total)].

The relative contribution of the I-P phase is expressed as
delta VI = [(Fm−FI)/(Fm−Fo)] and it is related to photosystem
I content (Oukarroum et al. 2009)

Chlorophyll content

The chlorophyll content index (CCI) was measured from the
middle part of the leaf by using CL-O1 chlorophyll meter
(Hansatech instruments).

Roots morphology parameters

Roots were carefully spread over a plastic box and scanned
using an Epson Perfection LA2400 scanner. Data of total
root length, root average diameter, volume and root surface
area were acquired by processing the scanned root images
using the WinRHIZO image analyzing system (Regent
Instructions, Quebec, Canada).

Dry weight determinations and chemical analysis

Shoots and roots of control and treated plants were dried in
an oven at 70°C for 2 days to determine dry weights. Also,
elemental concentrations of Na, P, K, and Cu. Chemical

Figure 2. Maximum quantum yield of primary photochemistry (Fv/Fm), Performance index (PI) and the efficiency with which an electron can move from the
reduced intersystem electron acceptors to the PSI end electron acceptors δRo. Each value represents the mean of five independent experiments with about
15 repetitions.
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elements were analyzed on a dry-weight basis using Induc-
tively Coupled Plasma Optical Emission Spectrometry (Agi-
lent 5110 ICP-OES, USA).

Statistical analysis

Data were subjected to analysis of variance (ANOVA) in
SPSS 13.0 (SPSS Inc., USA) to examine the impacts of salinity
on ChlF parameters, dry matter, chlorophyll content, root
morphological traits, and macro and microelement
concentrations.

Results

Understanding the physiological and biochemical mechan-
isms of salt stress is an important way to counter the nega-
tive effects of salinity and detect sensitive and tolerant traits
in plants. Salt stress can, directly or indirectly, affect the
photosynthetic activity of plant which is considered as
one of the most important metabolic processes in plants.
Reduction in photosynthetic activity alters also ChlF kin-
etics (Strasser et al. 2004 and references therein). Tomato
leaves exhibit the typical ChlF transient OJIP during the
first second of illumination in control and in salt

Figure 3. Change in chlorophyll content index and correlation between delat VI and chlorophyll content index. Each value represents the mean of three inde-
pendent experiments with about 15 repetitions.

Figure 4. Change in root length, root average diameter, volume and root sur-
face in salt-stressed plants. Each value represents the mean of three indepen-
dent experiments.

Figure 5. Change in leaves (A), stem (B) and root weights (C ) in salt-stressed
plants. Each value represents the mean of three independent experiments.
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treatments (Figure 1). ChlF is used for understanding the
reduction of the electron flow through PSII and PSI
under two salt concentrations. The polyphasic fluorescence
intensity increases from a minimum fluorescence intensity
(Fo) to maximum fluorescence intensity (Fm) with two
interval phases: the photochemical phase O-J and the ther-
mal phase J-I-P (Strasser et al. 1995). We noticed here that
the J-to-I-rise can be associated with the reduction of the
PQ-pool (Schansker et al. 2003) and the I-to-P-rise with
electron flow through PSI (Schreiber et al. 1989; Schansker
et al. 2003).

To further investigate how the electron transport chain is
changed under salt treatment, the changes in PSII photo-
chemistry were investigated in tomato plants kept in dark.
According to JIP-test (Strasser et al. 2004; Oukarroum
et al. 2007, 2015), the behavior of PSII under different stress
conditions is quantified through functional and structural
parameters derived from the fluorescence transients (O–J–
I–P). To translate ChlF transient on quantitative fluor-
escence parameters, the maximum yield of primary photo-
chemistry of PSII (Fv/Fm) was calculated and appeared to
be not affected by salt treatment (Figure 2).

The effect of salt treatment on changes that occurred in
the performance index (PI) in fully expanded tomato leaves
is shown in Figure 2. In this work, a significant decrease in PI
parameter was significantly pronounced after 2 weeks of S2
treatment. The reduced electron transport chain resulted
from PSII to PSI function could indicate the observed
decrease in PI. However, and as an unexpected result, the
efficiency with which an electron can move from the reduced
intersystem electron acceptors to the PSI end-electron accep-
tors (δRo) showed a significant increase compared to control
(P < 0.05) for salt treatment.

Exposure of tomato plants to salt treatment induced a sig-
nificant decrease of Chl content index (Figure 3). After 2
weeks of salt treatments, Chl content index decreased by
36% and 38% compared to control (p < 0.05) respectively
at S1 and S2. Comparing Chl content index with the par-
ameter ΔVI, a linear correlation was observed (Figure 3).
We noted here that the relative reduction in ΔVI has been
reported to be related to a loss of PSI reaction centers. In a
previous study, in drought-stressed barley plants, it has
been shown that I-P-loss seems to be correlated to a loss of
PS I reaction centers content as determined by 820 nm trans-
mission measurements (Oukarroum et al. 2009).

In this work and after two weeks of salt treatment, the
morphology, length, surface, volume and diameter of the
root were studied (Figure 4). These characteristics showed
a significant reduction compared to the control except for
the diameter parameter for treatment S1 where a significant
increase was noticed (Arif et al. 2019; Dinneny 2019; Terlets-
kaya et al. 2019). In previous works, Céccoli et al. (2011) and
Neumann (1995) reported also that salinity alters anatomical
and morphology of roots such as diameter and length
parameters.

In Figure 5, a significant decrease in the dry weight of the
leaves, stem, and root was also observed for the highest salt
treatment. It seems that physiological shoot growth is less
influenced compared to those of root growth, this result is
in concordance with the results obtained by Céccoli et al.
(2011). Our results showed that S2 treatment was the treat-
ment that significantly affected plants.

Plant mineral content affected by salt stress has been
reported in previous studies (Hasana and Miyake 2017;
Thu et al. 2017). Here, to determine how nutrients uptake
was affected by the salt treatment in hydroponic culture,

Figure 6. Change in Na (A), P (B), K (C ) and Cu (D) contents (ppm) in shoot and root of salt-stressed plants, stem and root weight in salt-stressed plants. Data were
normalized to control. Each value represents the mean of three independent experiments.
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chemical elements Na, P, K and Cu were analyzed at the end
of this experiment in the root and aerial part (Figure 6). Our
results show that significant accumulation of Na was
observed for treatment S2 in the root whereas, after 2
weeks of salt treatment, it was in the aerial part at S1
where the accumulation of Na was observed.

A different partitioning of Na+ ions between root and
shoot was reported (Ochiai and Matoh 2002; Keisham
et al. 2018). However, it was observed that P presents a sig-
nificant decrease for the two treatments except during treat-
ment S2 in the aerial part. It is well documented that P is a
major element for the shoot and root growth and low-P
uptake under salt stress could induce a reduction in biomass
development (Navarro et al. 2001; Demiral 2017; Khan et al.
2018). Also, it has been reported that reduction in growth
under salt stress could be attributed to a nutritional imbal-
ance and excessive Na+ uptake (Hand et al. 2017; Isayenkov
and Maathuis 2019).

Discussion

Plant growth is related to photosynthetic performance and
changes in carbon economy under saline conditions (Web-
ster et al. 2016; Asrar et al. 2017). Salinity stress often results
in biomass reduction as a survival strategy of plants which is
related with failure in carbon assimilation (Fall et al. 2017;
Pompeiano et al. 2017). In such situations, plants distribute
higher assimilated carbon to energy and maintenance rather
than development of plant parts (Asrar et al. 2017). Photo-
synthetic rates are reported to be dependent to salinity con-
centration and duration of salt exposure (Fall et al. 2017;
Pompeiano et al. 2017). A decrease in net CO2 assimilation
is related to stomatal closure to regulate transpiration rate
and water use efficiency (Liu et al. 2011). Long term salinity
alters biochemical reactions (like Rubisco carboxylase/oxy-
genase activity and regeneration of Ribulose-1,5-bispho-
sphate (RuBP) and triose phosphates) that regulate gas-
exchange. Moreover, it is reported that the major functional
chloroplast protein complexes, i.e. PSI, PSII, ATP-synthase
and Cytb6f, involved in harvesting light energy (Dekker
and Boekema 2005) are altered under saline conditions
along with Rubisco protein (Xu et al. 2010; Li et al. 2011).

In our work and under salt treatment, a decrease of J-I-P
fluorescence yield was observed, and this change was found
to be related to the downregulation of the electron transport
chain (Stirbet and Govindjee 2011, 2012). These findings
suggest a limitation of both donor and accepter-side of PSI
(decrease in J-I-P yield). However, the maximum yield of
primary photochemistry of PSII (Fv/Fm) appeared to be
not affected by salt treatment and this result confirms the
high stability of the potential PSII photochemical efficiency.
We noted here that some previous studies demonstrate that
salt stress may affect this fluorescence parameter Fv/Fm, this
contradictory result appears to be depending on the studied
plant species and the specific experimental conditions. That
means that salt treatment in tomato leaves induced regu-
lation of the intersystem electron transport between PSII
and PSI and may indicate a cellular adaptation to counter
the negative effect of salinity and ensure equilibrium in
photosynthetic electron transport. These insights indicate
the adaptation complexity of the plant adaptation to salt
stress.

We noted here a decrease in the amount of K in the root
and shoot part in salt-stressed plants. Interestingly, it has bed
reported that salinity induced Na+ injury, which affects K+

uptake by root cells (Conde et al. 2011). Furthermore, Na+

accumulation inactivates both photosynthetic and respirat-
ory electron transport (Allakhverdiev et al. 2000), which
was observed in our work by a decrease in the photosynthetic
performance index (PI) and I-P phase (loss of PSI reaction
centers).

Our results were coherent with the literature published
previously. However, It is in our interest to note that, nutri-
ents P and K decrease with high salt concentration is
accompanied by a significant increase in Na and Cu contents
in root and shoot (Demiral 2017; Hand et al. 2017; Thu et al.
2017). It should also be noted that the quantity of Cu varies
according to the plant parts of accumulation. Indeed, a sig-
nificant reduction was observed in the root and an increase
in the aerial part for the two salt treatments. In conclusion,
the observed reduction in studied physiological parameters
could be due to a negative change in nutrient uptake affect
disequilibrium on ion homeostasis and then a cascade of
changes in physiological and biochemical processes. Inter-
action of salinity and Cu and plant Cu uptake change
might play a significant role in the response and adaptation
of plants to salt stress.
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