[en] Chalk porosity plays a decisive role in the transport of solutes and heat in saturated chalk. From a
geological point of view, there are at least two types of porosity: the porosity of pores corresponding to the micro-spaces between the fossil coccoliths that form the chalk matrix and the porosity owing to the micro and macro-fractures (i.e. secondary porosity). For groundwater flow, the fracture porosity is a determining factor at the macroscopic scale. The multiscale heterogeneity of the porous/fractured chalk induces different effects on solute and heat transport. For solute transport considered at the macroscopic scale, tracer tests have shown that the ‘effective transport porosity’ is substantially lower than the ‘effective drainable porosity’. Moreover, breakthrough curves of tracer tests show an important influence of diffusion in a large portion of the ‘immobile water’ (‘matrix diffusion’) together with rapid preferential advection through the fractures. For heat transport, the matrix diffusion in the ‘immobile water’ of the chalk is hard to distinguish from conduction within the saturated chalk.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Hoffmann, Richard ; Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Goderniaux, Pascal; Université de Mons - UMONS > Geology and Applied Geology
Jamin, Pierre ; Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Orban, Philippe ; Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Brouyère, Serge ; Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Dassargues, Alain ; Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Language :
English
Title :
Differentiated influence of the double porosity of the chalk on solute and heat transport
Publication date :
08 December 2021
Main work title :
The Chalk Aquifers of Northern Europe
Editor :
Farrell, R.P.
Massei, N.
Foley, A.E.
Howlett, P.R.
West, L.J.
Publisher :
Geological Society, London, United Kingdom
Edition :
Special Publications
Collection name :
517
Peer reviewed :
Peer reviewed
European Projects :
H2020 - 722028 - ENIGMA - European training Network for In situ imaGing of dynaMic processes in heterogeneous subsurfAce environments
Name of the research project :
Grant n° J.0115.15.
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique EC - European Commission
Anderson, M.P. 2005. Heat as a ground water tracer. Groundwater, 43, 951–968, https://doi.org/10.1111/j.1745-6584.2005.00052.x
Bachmat, Y. and Bear, J. 1986. Macroscopic modelling of transport phenomena in porous media, part 1: the con-tinuum approach. Transport in Porous Media, 1, 213–240, https://doi.org/10.1007/BF00238181
Barker, J.A. 2010. Modelling doublets and double porosity. Quarterly Journal of Engineering Geology and Hydro-geology, 43, 259–268, https://doi.org/10.1144/1470-9236/08-095
Batlle-Aguilar, J., Orban, P., Dassargues, A. and Brouyère, S. 2007. Identification of groundwater quality trends in a chalky aquifer threatened by intensive agriculture. Hydrogeology Journal, 15, 1615–1627, https://doi. org/10.1007/s10040-007-0204-y
Bear, J. and Verruijt, A. 1987. Modeling Groundwater Flow and Pollution. Reidel, Dordrecht.
Bloomfield, J. 1996. Characterisation of hydrogeologically significant fracture distributions in the Chalk: an example from the Upper Chalk of southern England. Journal of Hydrology, 184, 355–379, https://doi.org/10.1016/0022-1694(95)02954-0
Boudjana, Y., Brouyère, S., Jamin, P., Orban, P., Gaspar-ella, D. and Dassargues, A. 2019. Understanding groundwater mineralization changes of a Belgian chalky aquifer in the presence of 1,1,1-trichloroethane degradation reactions. MDPI Water, 11, https://doi.org/10.3390/w11102009
Briers, P., Dollé, F., Orban, P., Piront, L. and Brouyère, S. 2017. Etablissement des valeurs représentatives par type d’aquifère des paramètres hydrogéologiques intervenant dans l’Evaluation des risques pour les eaux souterraines en application du Décret du 5 décem-bre 2008 relatif à la Gestion des Sols. University of Liège – GEOLYS final report. SPW/DGO3, Walloon Region (Belgium) [in French].
Brouyère, S. 2001. Etude et modélisation du transport et du piégeage des solutés en milieu souterrain variablement saturé [Study and modelling of transport and retarda-tion of solutes in variably saturated media]. PhD thesis, University of Liège [in French].
Brouyère, S., Dassargues, A., Therrien, R. and Sudicky, E. 2000. Modelling of dual porosity media: comparisons of different techniques and evaluation of the impact on plume transport simulations. In: Stauffer, F., Kinzel-bach, W., Kovar, K. and Hoehn, E. (eds) Proceedings of the ModelCARE’99 Conference. IAHS, Zürich, 265, 22–27.
Brouyère, S., Carabin, G. and Dassargues, A. 2004. Climate change impacts on groundwater reserves: mod-elled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeology Journal, 12, 123–134, https://doi.org/10.1007/s10040-003-0293-1
Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Gal-arza, G. and Guimera, J. 1998. On matrix diffusion: for-mulations, solution methods and qualitative effects. Hydrogeology Journal, 6, 178–190, https://doi.org/10.1007/s100400050143
Coats, K.H. and Smith, B.D. 1964. Dead-end pore volume and dispersion in porous media. Society of Petroleum Engineers Journal, 4, 73–84, https://doi.org/10. 2118/647-PA
Dassargues, A. 2018. Hydrogeology – Groundwater Science and Engineering. CRC Press.
Dassargues, A. and Monjoie, A. 1993. Chalk as an aquifer in Belgium. In: Downing, R.A., Price, M. and Jones, G.P. (eds) The Hydrogeology of the Chalk of North-west Europe. Clarendon Press, Oxford, 153–169.
Dassargues, A., Radu, J.P. and Charlier, R. 1988. Finite elements modelling of a large water table aquifer in transient conditions. Advances in Water Research, 11, 58–66, https://doi.org/10.1016/0309-1708(88)90038-3
De La Bernardie, J., Bour, O., Guihéneuf, N., Chatton, E., Longuevergne, L. and Le Borgne, T. 2019. Dipole and convergent single-well thermal tracer tests for charac-terizing the effect of flow configuration on thermal recovery. Geosciences, 9, 440, https://doi.org/10. 3390/geosciences9100440
de Marsily, G. 1986. Quantitative Hydrogeology: Ground-water Hydrology for Engineers. Academic Press.
El Janyani, S., Dupont, J., Massei, N., Slimani, S. and Dör-fliger, N. 2014. Hydrological role of karst in the Chalk aquifer of Upper Normandy, France. Hydrogeology Journal, 22, 663–677, https://hal.archives-ouvertes. fr/hal-01174803
Foster, S.S.D. 1993. The chalk aquifer – its vulnerability to pollution. In: Downing, R.A., Price, M. and Jones, G.P. (eds) The Hydrogeology of the Chalk of North-west Europe. Clarendon Press, Oxford, 93–112.
Foster, S.S.D. and Milton, V.A. 1974. The permeability and storage of an unconfined chalk aquifer. Hydrological Sciences Bulletin, 19, 485–500.
Gerke, H.H. and van Genuchten, M.T. 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research, 29, 305–319, https://doi. org/10.1029/92WR02339
Gooddy, D., Bloomfield, J., Chilton, P., Johnson, A. and Williams, R. 2001. Assessing herbicide concentrations in the saturated and unsaturated zone of a chalk aquifer in Southern England. Groundwater, 39, 262–271, https://doi.org/10.1111/j.1745-6584.2001.tb02307.x
Gray, E.M. and Morgan-Jones, M. 1980. A comparative study of nitrate levels at three adjacent groundwater sources in a chalk catchment area west of London. Groundwater, 18, 159–167, https://doi.org/10.1111/j.1745-6584.1980.tb03385.x
Hadley, P.W. and Newell, C.J. 2014. The new potential for understanding groundwater contaminant transport. Groundwater, 52, 174–186, https://doi.org/10.1111/gwat.12135
Hakoun, V., Ph, O., Dassargues, A. and Brouyère, S. 2017. Factors controlling spatial and temporal patterns of multiple pesticide compounds in groundwater (Hes-baye chalk aquifer, Belgium). Environmental Pollution, 223, 185– 199, https://doi.org/10.1016/j.envpol. 2017.01.012
Hallet, V. 1998. Etude de la contamination de la nappe aquifère de Hesbaye par les nitrates. PhD thesis, University of Liège, Belgium [in French].
Hallet, V. and Dassargues, A. 1998. Effective porosity values used in calibrated transport simulations in a fissured and slightly karstified chalk aquifer. In: Herbert, M. and Kovar, K. (eds) Groundwater Quality 1998. Tübinger Geowissenschaftliche Arbeiten, C36, 124–126.
Hoffmann, R., Goderniaux, P., Jamin, P., Chatton, E., Labasque, T., Le Borgne, T. and Dassargues, A. 2020. Continuous dissolved gas tracing of fracture-matrix exchanges. Geophysical Research Letters, 47, e2020GL088944, https://doi.org/10.1029/2020GL 088944
Irvine, D.J., Simmons, C.T., Werner, A.D. and Graf, T. 2015. Heat and solute tracers: how do they compare in heterogeneous aquifers? Groundwater, 53(Suppl. 1), 10–20, https://doi.org/10.1111/gwat.12146
Jackson, D. and Lloyd, J.W. 1984. An integrated hydro-chemical approach to deduce the response of an aquifer system during its history of abstraction. Groundwater, 22, 735–745, https://doi.org/10.1111/j.1745-6584. 1984.tb01442.x
Klepikova, M., Wildemeersch, S. et al. 2016. Heat tracer test in an alluvial aquifer: field experiment and inverse modelling. Journal of Hydrology, 540, 812–823, https://doi.org/10.1016/j.jhydrol.2016.06.066
MacDonald, A.M. and Allen, D.J. 2001. Aquifer properties of the Chalk of England. Quarterly Journal of Engineering Geology and Hydrogeology, 34, 371–384, https://doi.org/10.1144/qjegh.34.4.371
Massei, N., Wang, H.Q., Field, M.S., Dupont, J.P., Bakalo-wicz, M. and Rodet, J. 2006. Interpreting tracer breakthrough tailing in a conduit-dominated karstic aquifer. Hydrogeology Journal, 14, 849–858, https://doi.org/10.1007/s10040-005-0010-3
Molson, J.W., Frind, E.O. and Palmer, C.D. 1992. Thermal energy storage in an unconfined aquifer: 2. Model development, validation, and application. Water Resources Research, 28, 2857–2867, https://doi.org/10.1029/92WR01472
Nativ, R., Adar, E. and Becker, A. 1999. Designing a mon-itoring network for contaminated ground water in fractured chalk. Groundwater, 37, 38–47, https://doi.org/10.1111/j.1745-6584.1999.tb00956.x
Nativ, R., Adar, E., Assaf, L. and Nygaard, E. 2003. Char-acterization of the hydraulic properties of fractures in chalk. Groundwater, 41, 532–543, https://doi.org/10.1111/j.1745-6584.2003.tb02387.x
Orban, P., Brouyère, S. et al. 2010. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. Journal of Contaminant Hydrology, 118, 79–93, https://doi.org/10.1016/j.jconhyd.2010. 08.008
Payne, F.C., Quinnan, A. and Potter, S.T. 2008. Remedia-tion Hydraulics. CRC Press/Taylor & Francis, Boca Raton, FL.
Price, M. 1987. Fluid flow in the Chalk of England. Geological Society, London, Special Publications, 34, 141–156, https://doi.org/10.1144/GSL.SP.1987.034. 01.10
Price, M., Downing, R.A. and Edmunds, W. 1993. The chalk as an aquifer. In: Downing, R.A., Price, M. and Jones, G.P. (eds) The Hydrogeology of the Chalk of North-west Europe. Clarendon Press, Oxford, 35–58.
Rasmuson, A. and Neretnieks, I. 1981. Migration of radio-nuclides in fissured rocks: the influence of micropore diffusion and longitudinal dispersion. Journal of Geophysical Research, 86, 3749–3758, https://doi.org/10.1029/JB086iB05p03749
Tamayo-Mas, E., Bianchi, M. and Mansour, M. 2018. Impact of model complexity and multi-scale data inte-gration on the estimation of hydrogeological parameters in a dual-porosity aquifer. Hydrogeology Journal, 26, 1917–1933, https://doi.org/10.1007/s10040-018-1745-y
Wagner, V., Li, T., Bayer, P., Leven, C., Dietrich, P. and Blum, P. 2014. Thermal tracer testing in a sedimentary aquifer: field experiment (Lauswiesen, Ger-many) and numerical simulation. Hydrogeology Journal, 22, 175–187, https://doi.org/10.1007/s10040-013-1059-z
Weiss, M., Rubin, Y., Adar, E. and Nativ, R. 2006. Fracture and bedding plane control on groundwater flow in a chalk aquitard. Hydrogeology Journal, 14, 1081– 1093, https://doi.org/10.1007/s10040-006-0039-y
Wildemeersch, S., Jamin, P. et al. 2014. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers. Journal of Contaminant Hydrology, 169, 90–99, https://doi.org/10. 1016/j.jconhyd.2014.08.001
Williams, A., Bloomfield, J., Griffiths, K. and Butler, A. 2006. Characterising the vertical variations in hydraulic conductivity within the Chalk aquifer. Journal of Hydrology, 330, 53–62, https://doi.org/10.1016/j.jhy drol.2006.04.036
Wood, W.W., Kraemer, T.F. and Hearn, P.P. 1990. Inter-granular diffusion: an important mechanism influencing solute transport in classic aquifers? Science (New York, NY), 247, 1569–1572, https://doi.org/10.1126/sci ence.247.4950.1569
Worthington, S.R.H. 2015. Diagnostic tests for conceptual-izing transport in bedrock aquifers. Journal of Hydrol-ogy, 529, 365–372, https://doi.org/10.1016/j.jhydrol. 2015.08.002
Worthington, S.R., Foley, A.E. and Soley, R.W. 2019. Transient characteristics of effective porosity and specific yield in bedrock aquifers. Journal of Hydrology, 578, 124129, https://doi.org/10.1016/j.jhydrol.2019. 124129
Younger, P.L. and Elliot, T. 1995. Chalk fracture system characteristics: implications for flow and solute trans-port. Quarterly Journal of Engineering Geology, 28, S39–S50, https://doi.org/10.1144/GSL.QJEGH.199 5.028.S1.04