This project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No 792037 (H2020 MEET project)
All documents in ORBi are protected by a user license.
Geothermal exploration; Spring water; Geochemistry; Rhenohercynian Fold-and-Thrust Belt; Belgium
Abstract :
[en] Spring water geochemistry is applied here to evaluate the geothermal potential in Rhenohercynian fold and thrust belt around the deepest borehole in Belgium (Havelange borehole: 5648 m MD). Fifty springs and (few) wells around Havelange borehole were chosen according to a multicriteria approach including the hydrothermal source of “Chaudfontaine” (T ≈ 36 ◦C) taken as a reference for the area. The waters sampled, except Chaudfontaine present an in-situ T range of 3.66–14.04 ◦C (mean 9.83 ◦C) and a TDS (dry residue) salinity range of 46–498 mg/L. The processing
methods applied to the results are: hierarchical clustering, Piper and Stiff diagrams, TIS, heat map, boxplots, and geothermometry. Seven clusters are found and allow us to define three main water types. The first type, locally called “pouhon”, is rich in Fe and Mn. The second type contains an interesting concentration of the geothermal indicators: Li, Sr, Rb. Chaudfontaine and Moressée (≈5 km East from the borehole) belong to this group. This last locality is identified as a geothermal target for further investigations. The third group represents superficial waters with frequently high NO3 concentration. The application of conventional geothermometers in this context indicates very different reservoir temperatures. The field of applications of these geothermometers need to be review in these geological conditions.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Ma, Z.Y. Unconventional Resources from Exploration to Production. In Unconventional Oil and Gas Resources Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–52. ISBN 978-0-12-802238-2.
Faulds, J.E.; Craig, J.W.; Hinz, N.H.; Coolbaugh, M.F.; Earney, T.E.; Schermerhorn, W.D.; Peacock, J.; Deoreo, S.B.; Siler, D.L. Discovery of a Blind Geothermal System in Southern Gabbs Valley, Western Nevada, through Application of the Play Fairway Analysis at Multiple Scales. GRC Trans. 2018, 42, 14.
Ward, D.M.; Ferris, M.J.; Nold, S.C.; Bateson, M.M. A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities. Microbiol. Mol. Biol. Rev. 1998, 62, 1353–1370. [CrossRef] [PubMed]
Lacap, D.C.; Barraquio, W.; Pointing, S.B. Thermophilic Microbial Mats in a Tropical Geothermal Location Display Pronounced Seasonal Changes but Appear Resilient to Stochastic Disturbance. Environ. Microbiol. 2007, 9, 3065–3076. [CrossRef] 5. Lezcano, M.Á.; Moreno-Paz, M.; Carrizo, D.; Prieto-Ballesteros, O.; Fernández-Martínez, M.Á.; Sánchez-García, L.; Blanco, Y.; Puente-Sánchez, F.; de Diego-Castilla, G.; García-Villadangos, M.; et al. Biomarker Profiling of Microbial Mats in the Geothermal Band of Cerro Caliente, Deception Island (Antarctica): Life at the Edge of Heat and Cold. Astrobiology 2019, 19, 1490–1504. [CrossRef]
Valeriani, F.; Crognale, S.; Protano, C.; Gianfranceschi, G.; Orsini, M.; Vitali, M.; Spica, V.R. Metagenomic Analysis of Bacterial Community in a Travertine Depositing Hot Spring. New Microbiol. 2018, 41, 126–135.
Kraml, M.; Jodocy, M.; Reinecker, J.; Leible, D.; Freundt, F.; Al, S.; Schmidt, G.; Aeschbach, W.; Isenbeck-Schroeter, M. TRACE: Detection of Permeable Deep-Reaching Fault Zone Sections in the Upper Rhine Graben, Germany, During Low-Budget Isotope-Geochemical Surface Exploration. In Proceedings of the European Geothermal Congress 2016, Strasbourg, France, 19–24 September 2016; p. 10.
Blackwell, D.D.; Waibel, A.F.; Richards, M. Why Basin and Range Systems Are Hard to Find: The Moral of the Story Is They Get Smaller With Depth! GRC Trans. 2012, 36, 6.
Hanson, M.C.; Oze, C.; Horton, T.W. Identifying Blind Geothermal Systems with Soil CO 2 Surveys. Appl. Geochem. 2014, 50, 106–114. [CrossRef]
Utomo, D.A.; Abiyudo, R.; Saputra, I.J.; Irfan, R.; Archady, D. Temperature Dependent Minerals as a Tool to Prove High Temperature of a Blind Geothermal System. Case Study: Well “X” at Java Island of Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 732, 012001. [CrossRef]
Garg, S.K.; Combs, J.; Pritchett, J.W. Exploring for Hidden Geothermal Systems. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010.
Kratt, C.; Coolbaugh, M.; Peppin, B.; Sladek, C. Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada. GRC Trans. 2009, 33, 6.
Habets, M.A. Revue Universelle des Mines, de la Métallurgie des Travaux Publics, des Sciences et des Arts Appliqués à l’Industrie; 47 Eme Année—Quatr. Sér.; 1903; Tome II; p. 6.
Leclercq, V. Le Sondage de Douvrain. 1980, p. 64. Available online: http://biblio.naturalsciences.be/rbins-publications/professional-papers-of-the-geological-survey-of-belgium/pdfs/pp_1980_03_le-sondage-de-douvrain_leclercq.pdf (accessed on 21 October 2021).
Leclercq, V. Reconversion d’un Forage de Prospection Gaz en un Forage de Reconnaissance Géothermique: Cas du Forage Profond d’HAVELANGE (Belgique), UNINE—CAS DEEGEOSYS. 2014; Non published confidential report (in case of interest, contact the author).
Graulich, J.M.; Leclercq, V.; Hancel, L. Le sondage d’Havelange—Principales données et aspects techniques. In Memoirs of the Geological Survey of Belgium; Geological Survey of Belgium: Brussels, Belgium, 1989; p. 65.
Fielitz, W. Variscan Transpressive Inversion in the Northwestern Central Rhenohercynian Belt of Western Germany. J. Struct. Geol. 1992, 14, 547–563. [CrossRef]
Dittmar, D.; Meyer, W.; Oncken, O.; Schievenbusch, T.; Walter, R.; von Winterfeld, C. Strain Partitioning across a Fold and Thrust Belt: The Rhenish Massif, Mid-European Variscides. J. Struct. Geol. 1994, 16, 1335–1352. [CrossRef]
Oncken, O.; von Winterfeld, C.; Dittmar, U. Accretion of a Rifted Passive Margin: The Late Paleozoic Rhenohercynian Fold and Thrust Belt (Middle European Variscides). Tectonics 1999, 18, 75–91. [CrossRef]
Vanbrabant, Y.; Braun, J.; Jongmans, D. Models of Passive Margin Inversion: Implications for the Rhenohercynian Fold-and-Thrust Belt, Belgium and Germany. Earth Planet. Sci. Lett. 2002, 202, 15–29. [CrossRef]
Belanger, I.; Delaby, S.; Delcambre, B.; Ghysel, P.; Hennebert, M.; Laloux, M.; Marion, J.-M.; Mottequin, B.; Pingot, J.-L. Redéfinition des unités structurales du front varisque utilisées dans le cadre de la nouvelle Carte géologique de Wallonie (Belgique). Geol. Belg. 2012, 15, 169–175.
Fielitz, W.; Mansy, J.-L. Pre-and Synorogenic Burial Metamorphism in the Ardenne and Neighbouring Areas (Rhenohercynian Zone, Central European Variscides). Tectonophysics 1999, 309, 227–256. [CrossRef]
Hance, L.; Dejonghe, L.; Ghysel, P.; Laloux, M.; Mansy, J.L. Influence of Heterogeneous Lithostructural Layering on Orogenic Deformation in the Variscan Front Zone (Eastern Belgium). Tectonophysics 1999, 309, 161–177. [CrossRef]
Leynaud, D.; Jongmans, D.; Teerlynck, H.; Camelbeeck, T. Seismic Hazard Assessment in Belgium. Geol. Belg. 2000, 3, 67–86. [CrossRef]
Vandenberghe, N.; Fock, W. Temperature Data in the Subsurface of Belgium. Tectonophysics 1989, 164, 237–250. [CrossRef]
Rogiers, B.; Huysmans, M.; Vandenberghe, N.; Verkeyn, M. Demonstrating Large-Scale Cooling in a Variscan Terrane by Coupled Groundwater and Heat Flow Modelling. Geothermics 2014, 51, 71–90. [CrossRef]
Schintgen, T.; Förster, A.; Förster, H.-J.; Norden, B. Surface Heat Flow and Lithosphere Thermal Structure of the Rhenohercynian Zone in the Greater Luxembourg Region. Geothermics 2015, 56, 93–109. [CrossRef]
Keyser, M.; Ritter, J.R.R.; Jordan, M. 3D Shear-Wave Velocity Structure of the Eifel Plume, Germany. Earth Planet. Sci. Lett. 2002, 203, 59–82. [CrossRef]
Walker, K.T.; Bokelmann, G.H.R.; Klemperer, S.L.; Bock, G. Shear-Wave Splitting around the Eifel Hotspot: Evidence for a Mantle Upwelling. Geophys. J. Int. 2005, 163, 962–980. [CrossRef]
Schintgen, T. Exploration for Deep Geothermal Reservoirs in Luxembourg and the Surroundings—Perspectives of Geothermal Energy Use. Geotherm. Energy 2015, 3, 9. [CrossRef]
Barros, R.; Defourny, A.; Collignon, A.; Jobe, P.; Dassargues, A.; Piessens, K.; Welkenhuysen, K. A Review of the Geology and Origin of CO2 in Mineral Water Springs in East Belgium. Geol. Belg. 2020, 24, 17–31. [CrossRef]
Thierrin, J.; Steffen, P.; Cornaz, S.; Vuataz, F.-D.; Balderer, W.; Looser, M. Echantillonnage des Eaux Souterraines: Guide Pratique; Office Fédéral L’environnement For. Paysage (OFEFP): Neuchâtel, Switzerland, 2003; pp. 1–83.
Bowell, R. C. A. J. Appelo, & D. Postma, 1993. Geochemistry, Groundwater and Pollution. xvi 536 pp. Rotterdam, Brookfield: A. A. Balkema. ISBN 90 5410 105 9; 90 5410 106 7 (pb). Geol. Mag. 1995, 132, 124–125. [CrossRef]
SPW. Ressources Naturelles et Environnement Etat des Nappes d’Eau Souterraine de la Wallonie; Région Wallonne—SPW-Agriculture, Ressources Naturelles et Environnement; SPW: Namur, Belgium, 2021; p. 66.
Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Trans. Am. Geophys. Union 1944, 25, 914. [CrossRef]
Briel, L.I. Documentation of a Multiple-Technique Computer Program for Plotting Major-Ion Composition of Natural Waters; Open-File Report; U.S Geological Survey: Richmond, VA, USA, 1993; p. 94.
Apollaro, C.; Vespasiano, G.; De Rosa, R.; Marini, L. Use of Mean Residence Time and Flowrate of Thermal Waters to Evaluate the Volume of Reservoir Water Contributing to the Natural Discharge and the Related Geothermal Reservoir Volume. Application to Northern Thailand Hot Springs. Geothermics 2015, 58, 62–74. [CrossRef]
European Environment Agency. R Core Team. 2020. Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 17 August 2021).
Jenks, G.F. Optimal Data Classification for Choropleth Maps; Occasional Paper No. 2; Department of Geography, University of Kansas: Lawrence, Kansas, 1977.
Dejonghe, L.; Bouckaert, J. Presence d’un exoclaste de nature ignee dans les schistes noduleux Frasniens à Nettine (Province de Namur). Annales de la Société Géologique de Belgique 1977, T.100, 103–113.
De Walque, L.; Bouckaert, J.; Martin, H. Géochimie de Surface et Minéralisations Du Paléozoïque de Belgique. III. Plomb, Zinc et Fer Au Voisinage de l’ancienne Exploitation Minière de Heure-En-Famenne; Ministère des Affaires Économiques, Administration des Mines, Service Géologique de Belgique: Bruxelles, Belgium, 1975; p. 35.
Foregs—Geochemical Baseline Database: Instructions. Available online: http://weppi.gtk.fi/publ/foregsatlas/ForegsData.php (accessed on 17 August 2021).
Barbier, J.; Berthier, F. Origine des Concentrations en Baryum Dissous Dans les Eaux du Captage de Crôt-Chaud, Saint-Bonnet-Troncais (Allier); BRGM: Orléans, France, 2001; p. 18.
World Health Organization. Manganese in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004; p. 29.
Kavanagh, L.; Keohane, J.; Cleary, J.; Cabellos, G.G.; Lloyd, A. Lithium in the Natural Waters of the South East of Ireland. Int. J. Environ. Res. Public Health 2017, 14, 561. [CrossRef] [PubMed]
Harter, T. Groundwater Quality and Groundwater Pollution; University of California, Agriculture and Natural Resources: Davis, CA, USA, 2003; ISBN 978-1-60107-259-7.
Malina, G. Ecotoxicological and Environmental Problems Associated with the Former Chemical Plant in Tarnowskie Gory, Poland. Toxicology 2004, 205, 157–172. [CrossRef]
Skougstad, M.W.; Horr, C.A. Occurrence of Strontium in Natural Water; Geological Survey Circular 420; Geological Survey Circular: Washington, DC, USA, 1960.
Chiodini, G.; Frondini, F.; Marini, L. Theoretical Geothermometers and PCOzindicators for Aqueous Solutions Coming from Hydrothermal Systems of Medium-Low Temperature Hosted in Carbonate-Evaporite Rocks. Application to the Thermal Springs of the Etruscan Swell, Italy. Appl. Geochem. 1995, 10, 337–346. [CrossRef]
Fournier, R.O. Chemical Geothermometers and Mixing Models for Geothermal Systems. Pergamon Press 1977, 5, 41–50. [CrossRef]
Graulich, J.M. L’hydrogeologie thermale de Chaudfontaine. Bulletin Société Belge Géologie 1983, 92, 195–212.
Fouillac, C.; Michard, G. Sodium/Lithium Ratio in Water Applied to Geothermometry of Geothermal Reservoirs. Geothermics 1981, 10, 55–70. [CrossRef]
Brook, A.; Mariner, R.H.; Mabey, D.R.; Swanson, J.R.; Guffanti, M.; Muffler, L.J.P. Hydrothermal Convection Systems With Reservoir Temperatures > 90◦ C. In Assessment of Geothermal Resources of the United States; Geological Survey Circular 790; Muffler, L.J.P., Ed.; Geological Survey: Arlington, VA, USA, 1978; p. 170.
Fournier, R.O.; Truesdell, A.H. An Empirical Na-K-Ca Geothermometer for Natural Waters. Pergamon Press 1973, 37, 1255–1275. [CrossRef]
Yock, A. Short Course on Surface Exploration for Geothermal Resources: Geothermometry; UNU-GTP: Ahuachapan, El Salvador; LaGeo: Santa Tecla, El Salvador, 17 October 2009; p. 8.
Kharaka, Y.K.; Mariner, R.H. Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins. In Thermal History of Sedimentary Basins; Naeser, N.D., McCulloh, T.H., Eds.; Springer: New York, NY, USA, 1989; pp. 99–117. ISBN 978-1-4612-8124-5.
Michard, G. Behaviour of Major Elements and Some Trace Elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in Deep Hot Waters from Granitic Areas. Chem. Geol. 1990, 89, 117–134. [CrossRef]