scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Difier. Equ. 10 (2005) 309-360.
D. Alexander, I. Kim and Y. Yao, Quasi-static evolution and congested crowd transport. Nonlinearity 27 (2014) 823.
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000).
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005).
J.-D. Benamou and Y. Brenier, A computational uid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 2000 375-393.
J.-D. Benamou, G. Carlier and M. Laborde, An augmented Lagrangian approach toWasserstein gradient ows and applications. ESAIM: PROCs. 54 (2016) 1-17.
A. Braides. Convergence for Beginners. Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002).
G. Carlier and M. Laborde, A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts. Nonlinear Anal.: Theory Methods Appl. 150 (2017) 1-18.
J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepcev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229-271.
L. Chizat and S. Di Marino, A Tumor Growth Model of Hele-Shaw Type as a Gradient Flow. Preprint arXiv:1712.06124 (2017).
L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, An Interpolating Distance Between Optimal Transport and Fischer-Rao. Preprint arXiv:1506.06430 (2015).
L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Unbalanced Optimal Transport: Geometry and Kantorovich Formulation. Preprint arXiv:1508.05216 (2015).
L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Scaling Algorithms for Unbalanced Transport Problems. Preprint arXiv:1607.05816 (2016).
G. De Philippis, A.R. Mésźros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications. Arch. Ration. Mech. Anal. 219 (2016) 829-860.
M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species. Nonlinearity 26 (2013) 2777-2808.
A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients ows with dirichlet boundary conditions. J. Math. Pures Appl. 94 (2010) 107-130.
F. Fleiner, Gamma-Convergence and Relaxations for Gradient Flows in Metric Spaces: A Minimizing Movement Approach. Preprint arXiv:1603.02822 (2016).
T. Gallouet and L. Monsaingeon, A JKO Splitting Scheme for Kantorovich-Fischer-Rao Gradient Flows. Preprint arXiv:1602.04457 (2016).
W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113-161.
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17.
D. Kinderlehrer, L. Monsaingeon and X. Xu, A Wasserstein Gradient Flow Approach to Poisson-Nernst-Planck Equations. Preprint arXiv:1501.04437 (2015).
S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A New Optimal Transport Distance on the Space of Finite Radon Measures. Preprint arXiv:1505.07746 (2015).
S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A fitness-driven cross-difiusion system from population dynamics as a gradient ow. J. Differ. Equ. 261 (2016) 2784-2808.
M. Laborde, On Some Non linear Evolution Systems Which Are Perturbations of Wasserstein Gradient Flows. Radon Ser. Comput. Appl. Math. (2015).
M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction-difiusion systems. Philos. Trans. R. Soc. A 371 (2013) 20120346.
M. Liero, A. Mielke and G. Savaré, Optimal Entropy-Transport Problems and a New Hellinger-Kantorovich Distance Between Positive Measures. Invent. Math. 211 (2018) 969-1117.
M. Liero, A. Mielke and G. Savaré, Optimal Transport in Competition with Reaction: The Hellinger-Kantorovich Distance and Geodesic Curves. SIAM J. Math. Anal. 48 (2016) 2869-2911.
S. Lisini, D. Matthes and G. Savaré, Cahn-Hilliard and thin film equations with nonlinear mobility as gradient ows in weighted-Wasserstein metrics. J. Differ. Equ. 253 (2012) 814-850.
D. Matthes, R.J. McCann and G. Savaré, A family of nonlinear fourth order equations of gradient ow type. Commun. Partial Diff. Equ. 34 (2009) 1352-1397.
B. Maury, A. Roudne-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling. Netw. Heterog. Media 6 (2011) 485-519.
J.D. Murray, Mathematical Biology II. Spatial Models and Biomedical Applications, 3rd edn. Vol. 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York (2003).
F. Otto, Double Degenerate Difiusion Equations as Steepest Descent (1996).
F. Otto, Dynamics of labyrinthine pattern formation in magnetic uids: A mean-field theory. Arch. Ration. Mech. Anal. 141 (1998) 63-103.
F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101-174.
B. Perthame, Transport Equations in Biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007).
B. Perthame, F. Quirós and J.L. Vzquez, The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212 (2014) 93-127.
B. Perthame, M. Tang and N. Vauchelet, Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient. Math. Models Methods Appl. Sci. 24 (2014) 2601-2626.
L. Petrelli and A. Tudorascu, Variational principle for general difiusion problems. Appl. Math. Optim. 50 (2004) 229-257.
B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal. 211 (2014) 335-358.
M. Pierre, Global existence in reaction-difiusion systems with control of mass: a survey. Milan J. Math. 78 (2010) 417-455.
R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395-431.
E. Sandier and S. Serfaty, Gamma-convergence of gradient ows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57 (2004) 1627-1672.
F. Santambrogio, Optimal Transport for Applied Mathematicians. Vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkasauser Verlag, Basel (2015).
J.L. Vzquez, The Porous Medium Equation: Mathematical Theory. Oxford University Press (2007).
C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003).
C. Villani, Optimal Transport. Old and new Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009).
J. Zinsl, Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations. Technical report (2014).
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.