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Abstract

In this paper, we show that unbalanced optimal transport provides a convenient framework
to handle reaction and diffusion processes in a unified metric framework. We use a constructive
method, alternating minimizing movements for the Wasserstein distance and for the Fisher-Rao
distance, and prove existence of weak solutions for general scalar reaction-diffusion-advection
equations. We extend the approach to systems of multiple interacting species, and also consider
an application to a very degenerate diffusion problem involving a Gamma-limit. Moreover,
some numerical simulations are included.

1 Introduction
Since the seminal works of Jordan-Kinderlehrer-Otto [19], it is well known that certain diffusion
equations can be interpreted as gradient flows in the space of probability measures, endowed with
the quadratic Wasserstein distance W. The well-known JKO scheme (a.k.a. minimizing movement),
which is a natural implicit Euler scheme for such gradient flows, naturally leads to constructive
proofs of existence for weak solutions to equations or systems with mass conservation such as,
for instance, Fokker-Planck equations [19], Porous Media Equations [32], aggregation equation [9],
double degenerate diffusion equations [31], general degenerate parabolic equation [1] etc. We refer
to the classical textbooks of Ambrosio, Gigli and Savaré [4] and to the books of Villani [43, 44]
for a detailed account of the theory and extended bibliography. Recently, this theory has been
extended to study the evolution of interacting species with mass-conservation, see for examples
[15, 45, 23, 20, 8].

Nevertheless in biology, for example for diffusive prey-predator models, the conservation of mass
may not hold, and the classical optimal transport theory does not apply. An unbalanced optimal
transport theory was recently introduced simultaneously in [11, 12, 21, 25, 26], and the resulting
Wasserstein-Fisher-Rao (WFR) metrics (also referred to as the Hellinger-Kantorovich distance HK)
allows to compute distances between measures with variable masses while retaining a convenient
Riemannian structure. See section 2 for the definition and a short discussions on this WFR metric.
We also refer to [37, 16] for earlier attempts to account for mass variations within the framework
of optimal transport.

The WFR metrics can be seen as an inf-convolution between Wasserstein/transport and Fisher-
Rao/reaction processes, and is therefore extremely convenient to control both in a unified metric
setting. This allows to deal with non-conservative models of population dynamics, see e.g. [21, 22].
In [18], the first and third authors proposed a variant of the JKO scheme for WFR-gradient flows
corresponding to some particular class of reaction-diffusion PDEs: roughly speaking, the reaction
and diffusion were handled separately in two separate FR, W metrics, and then patched together
using a particular uncoupling of the inf-convolution, namely WFR2 ≈ W2 + FR2 in some sense (see
[18, section 3] for a thorough discussion). However, the analysis was restricted to very particular
structures for the PDE, corresponding to pure WFR gradient-flows.

In this work we aim at extending this splitting scheme in order to handle more general reaction-
diffusion problems, not necessarily corresponding to gradient flows. Roughly speaking, the structure
of our splitting scheme is the following: the transport/diffusion part of the PDE is treated by a
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single Wasserstein JKO step
ρk

W−−−−−−−→
transport

ρk+1/2,

and the next Fisher-Rao JKO step

ρk+1/2 FR−−−−−−→
reaction

ρk+1

handles the reaction part of the evolution. As already mentioned, the WFR metric will allow to
suitable control both steps in a unified metric framework. We will first state a general convergence
result for scalar reaction-diffusion equations, and then illustrate on a few particular examples how
the general idea can be adapted to treat e.g. prey-predator systems or very degenerate Hele-Shaw
diffusion problems. In this work we do not focus on optimal results and do not seek full generality,
but rather wish to illustrate the efficiency of the general approach.

Another advantage of the splitting scheme is that is well adapted to existing Monge/Kan-
torovich/Wasserstein numerical solvers, and the Fisher-Rao step turns out to be a simple pointwise
convex problem which can be implemented in a very simple way. See also [10, 13] for a more direct
numerical approach by entropic regularization. Throughout the paper we will illustrate the the-
oretical results with a few numerical tests. All the numerical simulations were implemented with
the augmented Lagrangian ALG2-JKO scheme from [6] for the Wasserstein step, and we used a
classical Newton algorithm for the Fisher-Rao step.

The paper is organized as follows. In section 2 we recall the basic definitions and useful prop-
erties of the Wasserstein-Fisher-Rao distance WFR. Section 3 contains the precise description of the
splitting scheme and a detailed convergence analysis for a broad class of reaction-diffusion equa-
tions. In section 4 we present an extension to some prey-predator multicomponent systems with
nonlocal interactions. In section 5 we extend the general result from section 3 to a very degenerate
tumor growth model studied in [34], corresponding to a pure WFR gradient flow: we show that the
splitting scheme captures fine properties of the model, particularly the Γ-convergence of discrete
gradient flows as the degenerate diffusion parameter of Porous Medium type m → ∞. The last
section 6 contains an extension to a tumor-growth model coupled with an evolution equation for
the nutrients.

2 Preliminaries
Let us first fix some notations. Throughout the whole paper, Ω denotes a possibly unbounded
convex subset of Rd, QT represents the product space [0, T ] × Ω, for T > 0, and we writeM+ =
M+(Ω) for the set of nonnegative finite Radon measures on Ω. We say that a curve of measures
t 7→ ρt ∈ Cw([0, 1];M+) is narrowly continuous if it is continuous with respect to the narrow
convergence of measures, namely for the duality with Cb(Ω) test-functions.

Definition 2.1. The Fisher-Rao distance between ρ0, ρ1 ∈M+ is

FR(ρ0, ρ1) := min
(ρt,rt)∈AFR[ρ0,ρ1]

ˆ 1

0

ˆ
Ω

|rt|2 dρt(x)dt,

where the admissible set AFR[ρ0, ρ1] consists in curves [0, 1] 3 t 7→ (ρt, rt) ∈ M+ ×M such that
t 7→ ρt ∈ Cw([0, 1];M+) is narrowly continuous with endpoints ρt(0) = ρ0, ρt(1) = ρ1, and

∂tρt = ρtrt

in the sense of distributions D′((0, 1)× Ω).

The Monge-Kantorovich-Wasserstein admits several equivalent definitions and formulations,
and we refer e.g. to [43, 44, 4, 41] for a complete description. For our purpose we shall only need
the dynamical Benamou-Brenier formula:
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Theorem 2.2 (Benamou-Brenier formula, [5, 4]). There holds

W2(ρ0, ρ1) = min
(ρ,v)∈AW[ρ0,ρ1]

ˆ 1

0

ˆ
Ω

|vt|2dρtdt, (2.1)

where the admissible set AW[ρ0, ρ1] consists in curves (0, 1) 3 t 7→ (ρt,vt) ∈M+ ×M(Ω;Rd) such
that t 7→ ρt is narrowly continuous with endpoints ρt(0) = ρ0, ρt(1) = ρ1 and solving the continuity
equation

∂tρt + div(ρtvt) = 0

in the sense of distributions D′((0, 1)× Ω).

According to the original definition in [11] we have

Definition 2.3. The Wasserstein-Fisher-Rao distance between ρ0, ρ1 ∈M+(Ω) is

WFR2(ρ0, ρ1) := inf
(ρ,v,r)∈AWFR[ρ0,ρ1]

ˆ 1

0

ˆ
Ω

(|vt(x)|2 + |rt|2) dρt(x)dt, (2.2)

where the admissible set AWFR[ρ0, ρ1] is the set of curves t ∈ [0, 1] 7→ (ρt, vt, rt) ∈M+×M(Ω;Rd)×
M such that t 7→ ρt ∈ Cw([0, 1],M+) is narrowly continuous with endpoints ρ|t=0 = ρ0, ρ|t=1 = ρ1

and solves the continuity equation with source

∂tρt + div(ρtvt) = ρtrt.

Comparing definition 2.3 with definition 2.1 and Theorem 2.2, this dynamical formulation
à la Benamou-Brenier shows that the WFR distance can be viewed as an inf-convolution of the
Wasserstein and Fisher-Rao distances W, FR. From [11, 12, 21, 25] the infimum in (2.2) is always a
minimum, and the corresponding minimizing curves t 7→ ρt are of course constant-speed geodesics
WFR(ρt, ρs) = |t− s|WFR(ρ0, ρ1). Then (M+, WFR) is a complete metric space, and WFR metrizes the
narrow convergences of measures (see again [11, 12, 21, 25]). Interestingly, there are other possible
formulations of the distance in terms of static unbalanced optimal transportation, primal-dual
characterizations with relaxed marginals, lifting to probability measures on a cone over Ω, duality
with subsolutions of Hamilton-Jacobi equations, and we refer to [11, 12, 21, 26, 25] for more details.

As a first useful interplay between the distances WFR, W, FR we have

Proposition 2.4 ([18]). Let ρ0, ρ1 ∈M+
2 such that |ρ0| = |ρ1|. Then

WFR2(ρ0, ρ1) 6 W2(ρ0, ρ1).

Similarly for all µ0, µ1 ∈M+ (with possibly different masses) there holds

WFR2(µ0, µ1) 6 FR2(µ0, µ1).

Finally, for all ν0, ν1 ∈M+
2 such that |ν0| = |ν1| and all ν ∈M+, there holds

WFR2(ν0, ν) 6 2(W2(ν0, ν1) + FR2(ν1, ν)).

Moreover, we have the following link between the reaction and the velocity in (2.2), which was
the original definition in [21]:

Proposition 2.5 ([18]). The definition (2.3) of the WFR distance can be restricted to the subclass
of admissible paths (vt, rt) = (∇ut, ut) for potentials ut ∈ H1(dρt) and continuity equations

∂tρt + div(ρt∇ut) = ρtut.

This shows that (M+, WFR) can be endowed with the formal Riemannian structure constructed
as follow: any two tangent vectors ξ1 = ∂tρ

1, ξ2 = ∂tρ
2 can be uniquely identified with potentials

ui by solving the elliptic equations

ξi = −div(ρ∇ui) + ρui.

3



Then the Riemaniann tensor is naturally constructed on the H1(dρ) scalar product, i-e

gρ(ξ
1, ξ2) := 〈u1, u2〉H1(dρ) =

ˆ
Ω

(∇u1 · ∇u2 + u1u2)dρ.

This is purely formal, and we refer again to [18] for discussions. Given a functional

F(ρ) :=

ˆ
Ω

F (ρ) +

ˆ
Ω

ρV +
1

2

ˆ
Ω

(K ∗ ρ)ρ,

this Riemannian structure also allows to compute WFR gradients as

gradWFR F(ρ) = − div

(
ρ∇δF

δρ

)
+ ρ

δF
δρ

= gradW F(ρ) + gradFR F(ρ),

where δF
δρ = F ′(ρ)+V +K ∗ρ denotes the Euclidean first variation of F with respect to ρ. In other

words, the Riemannian tangent vector gradWFR F(ρ) is represented in the previous H1(dρ) duality
by the scalar potential u = δF

δρ .

3 An existence result for general parabolic equations
In this section, we propose to solve scalar parabolic equations of the form ∂tρ = div(ρ∇(F ′1(ρ) + V1))− ρ(F ′2(ρ) + V2)

ρ|t=0 = ρ0

ρ∇(F ′1(ρ) + V1)|∂Ω · ν = 0
(3.1)

in a bounded domain Ω ⊂ Rd with Neumann boundary condition and suitable initial conditions.
Our goal is to extend to the case F1 6= F2, V1 6= V2 the method initially introduced in [18] for
variational WFR-gradient flows, i-e (3.1) with F1 = F2 and V1 = V2.

We assume for simplicity that F1 : R→ R is given by

F1(z) =


z log z − z (linear diffusion)
or

1
m1−1z

m1 (Porous Media diffusion)
, (3.2)

and F2 : R→ R is given by

F2(z) =
1

m2 − 1
zm2 , for some m2 > 1. (3.3)

Note that we cannot take F2(z) = z log z − z because the Boltzmann entropy is not well behaved
(neither regular nor convex) with respect to the Fisher-Rao metric in the reaction step, see [18, 26,
25] for discussions. In addition, we assume that

V1 ∈W 1,∞(Ω) and V2 ∈ L∞(Ω).

We denote E1, E2 : M+ → R the energy functionals

Ei(ρ) := Fi(ρ) + Vi(ρ),

where
Fi(ρ) :=

{ ´
Ω
Fi(ρ) if ρ� L|Ω

+∞ otherwise, and Vi(ρ) :=

ˆ
Ω

Viρ.

Although more general statements with suitable structural assumptions could certainly be proved,
we do not seek full generality here and choose to restrict from the beginning to the above simple
(but nontrivial) setting for the sake of exposition.
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Definition 3.1. A weak solution of (3.1) is a curve [0,+∞) 3 t 7→ ρ(t, ·) ∈ L1
+∩L∞(Ω) such that

for all T <∞ the pressure P1(ρ) := ρF ′1(ρ)− F1(ρ) satisfies ∇P1(ρ) ∈ L2([0, T ]× Ω), and
ˆ +∞

0

(ˆ
Ω

(ρ∂tφ−∇V1 · ∇φρ−∇P1(ρ) · ∇φ− ρ(F ′2(ρ) + V2)φ) dx

)
dt = −

ˆ
Ω

φ(0, x)ρ0(x) dx

for every φ ∈ C∞c ([0,+∞)× Rd).

Note that the pressure P1 is defined so that the diffusion term div(ρ∇F ′1(ρ)) = ∆P1(ρ), at least
for smooth solutions.

The starting point of our analysis is that (3.1) can be written, at least formally as,

∂tρ = div(ρ∇(F ′1(ρ) + V1))− ρ(F ′2(ρ) + V2) ↔ ∂tρ = − gradW E1(ρ)− gradFR E2(ρ).

Our splitting scheme is a variant of that originally introduced in [18], and can be viewed as an
operator splitting method: each part of the PDE above is discretized (in time) in its own W, FR
metric, and corresponds respectively to a W/transport/diffusion step and to a FR/reaction step.
More precisely, let h > 0 be a small time step. Starting from the initial datum ρ0

h := ρ0, we
construct two recursive sequences (ρkh)k and (ρ

k+1/2
h )k such that

ρ
k+1/2
h ∈ argmin

ρ∈M+,|ρ|=|ρkh|

{
1

2hW
2(ρ, ρkh) + E1(ρ)

}
,

ρk+1
h ∈ argmin

ρ∈M+

{
1

2hFR
2
2(ρ, ρ

k+1/2
h ) + E2(ρ)

}
.

(3.4)

With our structural assumptions on Fi, Vi and arguing as in [18], the direct method shows that
this scheme is well-posed, i-e that each minimizing problem in (3.4) admits a unique minimizer.
We construct next two piecewise-constant interpolating curves{

ρh(t) = ρk+1
h ,

ρ̃h(t) = ρ
k+1/2
h ,

for all t ∈ (kh, (k + 1)h]. (3.5)

Our main results in this section is the constructive existence of weak solutions to (3.1):

Theorem 3.2. Assume that ρ0 ∈ L1
+ ∩ L∞(Ω). Then, up to a discrete subsequence (still denoted

h→ 0 and not relabeled here), ρh and ρ̃h converge strongly in L1((0, T )× Ω) to a weak solution ρ
of (3.1).

Note that any uniqueness for (3.1) would imply convergence of the whole (continuous) sequence
ρh, ρ̃h → ρ as h→ 0, but for the sake of simplicity we shall not address this issue here.

The main technical obstacle in the proof of Theorem 3.2 is to retrieve compactness in time. For
the classical minimizing scheme of any energy E on any metric space (X, d), suitable time com-
pactness is usually retrieved in the form of the total-square distance estimate 1

2h

∑
k≥0

d2(xk, xk+1) 6

E(x0) − inf E . This usually works because only one functional is involved, and E(x0) − inf E is
obtained as a telescopic sum of one-step energy dissipations E(xk+1) − E(xk). Here each of our
elementary step in (3.1) involves one of the W, FR metrics, and we will use the WFR distance to
control both simultaneously: this strongly leverages the inf-convolution structure, the WFR distance
being precisely built on a compromise between W/transport and FR/reaction. On the other hand
we also have two different functionals E1, E2, and we will have to carefully estimate the dissipa-
tion of E1 during the FR reaction step (driven by E2) as well as the dissipation of E2 during the W

transport/diffusion step (driven by E1).
We start by collecting one-step estimates, exploiting the optimality conditions for each elemen-

tary minimization procedure, and postpone the proof of Theorem 3.2 to the end of the section.
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3.1 Optimality conditions and pointwise L∞ estimates
The optimality conditions for the first Wasserstein step ρk → ρk+1/2 in (3.4) are by now classical,
and can be written for example

−∇ϕk+1/2
h

h
ρ
k+1/2
h = ∇P1(ρ

k+1/2
h ) + ρ

k+1/2
h ∇V1 a.e. (3.6)

Here ϕk+1/2
h is an optimal (backward) Kantorovich potential from ρ

k+1/2
h to ρkh.

Lemma 3.3. For all k > 0,
‖ρk+1/2
h ‖L1 = ‖ρkh‖L1 (3.7)

and for all constant C such that V1 6 C,

ρkh(x) 6 (F ′1)−1(C − V1(x)) a.e. ⇒ ρ
k+1/2
h (x) 6 (F ′1)−1(C − V1(x)) a.e. (3.8)

Proof. The Wasserstein step is mass conservative by construction, so the first part is obvious. The
second part is a direct consequence of a generalization [36, lemma 2] of Otto’s maximum principle
[32].

Remark 3.4. Note that if ρkh 6 M , we may take C = F ′1(M) + ‖V1‖L∞ in (3.8). Formally,
this corresponds to taking ρ(x) := (F ′1)−1(C − V1(x)) as a stationary Barenblatt supersolution
for ∂tρ = div(ρ∇(F ′1(ρ) + V1)) at the continuous level. In addition, if V1 ≡ 0 we recover Otto’s
maximum principle [32] in the form ‖ρk+1/2‖L∞ 6 ‖ρk‖L∞ .

For the second Fisher-Rao reaction step, the optimality condition has been obtained in [18,
section 4.2] in the form(√

ρk+1
h −

√
ρ
k+1/2
h

)√
ρk+1
h = −h

2
ρk+1
h

(
F ′2(ρk+1

h ) + V2

)
a.e. (3.9)

As a consequence we have

Lemma 3.5. There is C ≡ C(V2) > 0 such that for h 6 h0(V2) small enough we have

ρk+1
h (x) 6 (1 + Ch)ρ

k+1/2
h (x) a.e., (3.10)

and for all M > 0 there is c ≡ c(M,V2) such that if ‖ρk+1/2
h ‖∞ 6M then

(1− ch)ρ
k+1/2
h (x) 6 ρk+1

h (x) a.e. (3.11)

Note in particular that this immediately implies

supp ρk+1
h = supp ρ

k+1/2
h , (3.12)

which was to be expected since the reaction part ∂tρ = −ρ(F ′2(ρ) + V2) of the PDE (3.1) preserves
strict positivity.

Proof. We start with the upper bound: inside supp ρk+1
h , (3.9) and F ′2 > 0 give√

ρk+1
h (x)−

√
ρ
k+1/2
h (x) = −h

√
ρk+1
h (x)(F ′2(ρk+1

h (x)) + V2(x))

6 −hV2(x)

√
ρk+1
h (x) 6 h‖V2‖∞

√
ρk+1
h (x)

whence √
ρk+1
h (x) 6

1

1− h‖V2‖∞

√
ρ
k+1/2
h (x).
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Taking squares and using

1

(1− h‖V2‖∞)2
= 1 + 2‖V2‖L∞h+O(h2) 6 1 + 3‖V2‖L∞h

for small h gives the desired inequality.
For the lower bound (3.11), we first observe that since F ′′2 > 0 and from (3.10) we have

F ′2(ρk+1
h ) 6 F ′2((1 + Ch)ρ

k+1/2
h ) 6 F ′2(2M) if h is small enough. Then (3.9) gives inside supp ρk+1

√
ρk+1
h (x)−

√
ρ
k+1/2
h (x)) = −h

√
ρk+1
h (x)(F ′2(ρk+1

h (x)) + V2(x))

> −h(F ′2(2M) + ‖V2‖∞)

√
ρk+1
h (x),

hence
ρk+1
h (x) >

1

(1 + h(F ′2(2M) + ‖V2‖∞))2
ρ
k+1/2
h (x) > (1− ch)ρ

k+1/2
h (x)

for small h.

Combining Lemma 3.3 and Lemma 3.5, we obtain at the continuous level

Proposition 3.6. For all T > 0 there exist constants MT ,M
′
T such that for all t ∈ [0, T ],

‖ρh(t)‖L1∩L∞ , ‖ρ̃h(t)‖L1∩L∞ 6MT

and
‖ρh(t)− ρ̃h(t)‖L1 6 hM ′T

uniformly in h > 0.

Note from the second estimate that strong L1((0, T ) × Ω) convergence of ρh will immediately
imply convergence of ρ̃h to the same limit.

Proof. By induction combining (3.8) and (3.10), we obtain, for all t ∈ [0, T ],

‖ρh(t)‖L∞ , ‖ρ̃h(t)‖L∞ 6 CT ,

where CT is a constant depending on ‖V1‖L∞ , see [36, lemma 2]. The L1 bound is even easier:
since the Wasserstein step is mass preserving, we can integrate (3.10) in space to get

‖ρk+1
h ‖L1 6 (1 + Ch)‖ρk+1/2

h ‖L1 = (1 + Ch)‖ρk+1
h ‖L1 .

For t 6 T ⇔ k 6 bT/hc the L1 bounds immediately follow by induction, with (1+Ch)bT/hc . eCT .
and we conclude again by induction.

In order to compare now ρh and ρ̃h, we take advantage of the above upper bound to write
ρ
k+1/2
h 6MT as long as kh 6 T . Taking c = c(MT ) in (3.11) and combining with (3.10), we have

−chρk+1/2
h 6 ρ

k+1/2
h − ρk+1

h 6 Chρ
k+1/2
h a.e.

Integrating in Ω we conclude that

‖ρh(t)− ρ̃h(t)‖1 = ‖ρk+1
h − ρk+1/2

h ‖1 6 hmax{c, C}‖ρk+1/2
h ‖1 6 hmax{c, C}MT = hM ′T

and the proof is complete.

7



3.2 Energy dissipation
Our goal is here to estimate the crossed dissipation along each elementary W, FR step.

Testing ρ = ρkh in the first Wasserstein step in (3.4), we get as usual

1

2h
W2(ρ

k+1/2
h , ρkh) 6 F1(ρkh)−F1(ρ

k+1/2
h ) +

ˆ
Ω

V1(ρkh − ρ
k+1/2
h ). (3.13)

Since V1 is Globally Lipschitz we can first use standard methods from [15, 23] to control
´

Ω
V1(ρkh−

ρ
k+1/2
h ) in terms of W2(ρ

k+1/2
h , ρkh), and suitably reabsorb in the left-hand side to obtain

1

4h
W2(ρ

k+1/2
h , ρkh) 6 F1(ρkh)−F1(ρ

k+1/2
h ) + CTh. (3.14)

The dissipation of F1 along the Fisher-Rao step is controlled as

Proposition 3.7. For all T > 0 there exists a constant CT > 0 such that, for all k > 0 and
k ≤ bT/hc,

F1(ρk+1
h ) 6 F1(ρ

k+1/2
h ) + CTh. (3.15)

Proof. We first treat the case of F1(z) = 1
m1−1z

m1 with m1 > 1. Since F1 is increasing, we use
(3.10) to obtain

F1(ρk+1
h )−F1(ρ

k+1/2
h ) 6

((1 + Ch)m1 − 1)

m1 − 1

ˆ
Ω

(ρ
k+1/2
h )m1

6 Ch‖ρk+1/2‖m1−1
L∞ ‖ρk+1/2‖L1 ,

and we conclude from Proposition 3.6.
In the second case F1(z) = z log(z)− z, we have

F1(ρk+1
h ) =

ˆ
{ρk+1
h 6e−1}

ρk+1
h log(ρn+1

h ) +

ˆ
{ρk+1
h >e−1}

ρk+1
h log(ρk+1

h )−
ˆ

Ω

ρk+1
h .

Note from Proposition 3.6 that the z contribution in F1(z) = z log z − z is immediately controlled
by |
´
ρk+1
h −

´
ρ
k+1/2
h | 6 ‖ρk+1

h − ρ
k+1/2
h ‖L1 6 hM ′T , so we only have to estimate the z log z

contribution. Since z 7→ z log z is increasing on {z > e−1} and using (3.10), the second term in the
right hand side becomes

ˆ
{ρk+1
h >e−1}

ρk+1
h log(ρk+1

h ) 6
ˆ
{ρk+1
h >e−1}

(1 + Ch)ρ
k+1/2
h log((1 + Ch)ρ

k+1/2
h )

6
ˆ
{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + Ch

ˆ
{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h )

+(1 + Ch)

ˆ
{ρk+1
h >e−1}

ρ
k+1/2
h log(1 + Ch)

6
ˆ
{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh,

where we used ‖ρk+1/2
h ‖L1 6 MT from Proposition 3.6 as well as log(1 + Ch) 6 Ch in the last

inequality. Using the same method with the bound from below (3.11) on {ρk+1
h 6 e−1} (where

z 7→ z log z is now decreasing), we obtain similarlyˆ
{ρk+1
h 6e−1}

ρk+1
h log(ρk+1

h ) 6
ˆ
{ρk+1
h 6e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh.

Combining both inequalities givesˆ
Ω

ρk+1
h log(ρk+1

h ) 6
ˆ

Ω

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh

and the proof is complete.
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Summing (3.14) and (3.15) over k we obtain

1

2h

N−1∑
k=0

W2(ρ
k+1/2
h , ρkh) 6 F1(ρ0)−F1(ρNh ) + CT , (3.16)

where N = bTh c.

In the above estimate we just controlled the dissipation of F1 along the FR/reaction steps, and
the goal is now to similarly estimate the dissipation of F2 along the Wasserstein step. Testing
ρ = ρ

k+1/2
h in the second Fisher-Rao step in (3.4), we obtain

1

2h
FR2(ρk+1

h , ρ
k+1/2
h ) 6 F2(ρ

k+1/2
h )−F2(ρk+1

h ) +

ˆ
Ω

V2(ρ
k+1/2
h − ρk+1

h ). (3.17)

Since we assumed V2 ∈ L∞(Ω) and because ρh(t) = ρk+1
h remains close to ρ̃h(t) = ρ

k+1/2
h in L1

uniformly in t, h by Proposition 3.6, we immediately control the potential part as
ˆ

Ω

V2(ρ
k+1/2
h − ρk+1

h ) 6 ‖V2‖∞CTh. (3.18)

For the internal energy we argue exactly as in the proof Proposition 3.7 (for the Porous Media
part, since we chose here F2(z) = 1

m2−1z
m2), and obtain

F2(ρ
k+1/2
h )−F2(ρk+1

h ) 6 CTh. (3.19)

Combining (3.17), (3.18) and (3.19), we immediately deduce that

1

2h

N−1∑
k=0

FR2(ρ
k+1/2
h , ρk+1

h ) 6 CT , (3.20)

where N = bTh c as before.

Finally, we recover an approximate compactness in time in the form

Proposition 3.8. There exists a constant CT > 0 such that for all h small enough and k 6 N =
bT/hc,

1

h

N−1∑
k=0

WFR2(ρkh, ρ
k+1
h ) 6 4F1(ρ0) + CT . (3.21)

Proof. Adding (3.16) and (3.20) gives

1

h

N−1∑
k=0

W2(ρkh, ρ
k+1/2
h ) + FR2(ρ

k+1/2
h , ρk+1

h ) 6 2
(
F1(ρ0)−F1(ρNh ) + CT

)
+ 2CT 6 2F1(ρ0) + CT ,

since in any case F1(z) = 1
m1−1z

m1 > 0 and F1(z) = z log z − z > −1 is bounded from below
on the bounded domain Ω, hence F1(ρNh ) > −CΩ uniformly. It then follows from Proposition
2.4 that W2(ρkh, ρ

k+1/2
h ) + FR2(ρ

k+1/2
h , ρk+1

h ) > 1
2WFR

2ρkh, ρ
k+1
h in the left-hand side, and the result

immediately follows.

3.3 Estimates and convergences
From the total-square distance estimate (3.21) we recover as usual the approximate 1

2 -Hölder
estimate

WFR(ρh(t), ρh(s)) + WFR(ρ̃h(t), ρ̃h(s)) 6 CT |t− s+ h|1/2 (3.22)

9



for all fixed T > 0 and t, s ∈ [0, T ]. From (3.20) and Proposition 2.4 we have moreover

WFR(ρh(t), ρ̃h(t)) 6 FR(ρh(t), ρ̃h(t)) 6 C
√
h. (3.23)

Using a refined version of Ascoli-Arzelà theorem, [4, prop. 3.3.1] and arguing exactly as in [18,
prop. 4.1], we see that for all T > 0 and up to extraction of a discrete subsequence, ρh and ρ̃h
converge uniformly to the same WFR-continuous curve ρ ∈ C1/2([0, T ],M+

WFR) as

sup
t∈[0,T ]

(WFR(ρh(t), ρ(t)) + WFR(ρ̃h(t), ρ(t)))→ 0.

In order to pass to the limit in the nonlinear terms, we first strengthen this WFR-convergence
into a more tractable L1 convergence. The first step is to retrieve compactness in space:

Proposition 3.9. For all T > 0, ρh and ρ̃h satisfies

‖P1(ρ̃h)‖L2([0,T ];H1(Ω)) 6 CT . (3.24)

Proof. From (3.6) and the L1 ∩ L∞ bounds from Proposition 3.6 we see that
ˆ

Ω

|∇P1(ρ
k+1/2
h )|2 6

1

2h2

ˆ
Ω

|∇ϕk+1/2
h |2(ρ

k+1/2
h )2 +

1

2

ˆ
Ω

|∇V1|2(ρ
k+1/2
h )2

6
CT
2h2

ˆ
Ω

|∇ϕk+1/2
h |2ρk+1/2

h +
1

2
‖∇V1‖2∞

ˆ
Ω

(ρ
k+1/2
h )2

6 CT

(
W2(ρ

k+1/2
h , ρkh)

h2
+ 1

)

since ϕk+1/2
h is the optimal (backward) Kantorovich potential from ρ

k+1/2
h to ρkh. Multiplying by

h > 0, summing over k, and exploiting (3.16) gives

‖P1(ρ̃h)‖2L2([0,T ];H1(Ω)) 6
N−1∑
k=0

h‖P1(ρ
k+1/2
h )‖2H1 6 CT (F1(ρ0)−F1(ρNh ) + 1) 6 CT ,

where we used as before F1(ρNh ) > −CΩ in the last inequality.

We are now in position of proving our main result:

Proof of Theorem 3.2. Exploiting (3.21) and (3.24), we can apply the extension of the Aubin-Lions
lemma established by Rossi and Savaré in [39] to obtain that ρ̃h converges to ρ strongly in L1(QT )
(see [23]). By diagonal extraction if needed, we can assume that the convergence holds in L1(QT )
for all fixed T > 0. Then by Proposition 3.6 we have

‖ρh − ρ‖L1(QT ) 6 ‖ρh − ρ̃h‖L1(QT + ‖ρ̃h − ρ‖L1(QT ) 6 CTh+ ‖ρ̃h − ρ‖L1(QT ) → 0

hence ρh → ρ as well.
Moreover, since P1(ρ̃h) is bounded in L2((0, T ), H1(Ω)) we can assume that ∇P1(ρ̃h) ⇀ ∇P1(ρ)

in L2((0, T ), H1(Ω)) for all T > 0. Exploiting the Euler-Lagrange equations (3.6)(3.9) and arguing
exactly as in [18, Theorem 4], it is easy to pass to the limit to conclude that

ˆ
Ω

ρ(t2)ϕ− ρ(t1)ϕ = −
ˆ t2

t1

ˆ
Ω

{
∇P (ρ) · ∇ϕ+ ρ∇V1 · ∇ϕ− ρ(F ′2(ρ) + V2)ϕ

}
for all 0 < t1 < t2 and ϕ ∈ C1

b (Ω). Since ρ ∈ C([0, T ];M+
WFR) takes the initial datum ρ(0) = ρ0 and

WFR metrizes the narrow convergence of measures, this is well-known to be equivalent to our weak
formulation in Definition 3.1, and the proof is complete.
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Remark 3.10. In the above proofs one can check that Theorem 3.2 extends in fact to all C1

nonlinearities F2 such that F ′2 > C for some C ∈ R. Likewise, we stated and proved our main
result in bounded domains for convenience: all the above arguments immediately extend to Ω = Rd
at least for F1(z) = 1

m1−1z
m1 > 0. The only place where we actually used the boundedness of Ω was

in the proof of Proposition 3.8, when we bounded from below F1(ρNh ) > −CΩ in order to retrieve the
total-square distance estimate. When Ω = Rd and F1(z) = z log z−z a lower bound F1(ρNh ) > −CT
still holds, but the proof requires a tedious control of the second moments m2(ρ) =

´
Rd |x|

2ρ hence
we did not address this technical issue for the sake of brevity.

4 Application to systems
In this section we shall try to illustrate that the previous scheme is very tractable and allows to
solve systems of the form


∂tρ1 = div(ρ1∇(F ′1(ρ1) + V1[ρ1, ρ2]))− ρ1(G′1(ρ1) + U1[ρ1, ρ2]),
∂tρ2 = div(ρ2∇(F ′2(ρ2) + V2[ρ1, ρ2]))− ρ2(G′2(ρ2) + U2[ρ1, ρ2]),
ρ1|t=0 = ρ1,0, ρ2|t=0 = ρ2,0.

(4.1)

For simplicity we assume again that Ω is a smooth, bounded subset of Rd. Then the system (4.1)
is endowed with Neumann boundary conditions,

ρ1∇(F ′1(ρ1) + V1[ρ1, ρ2]) · ν = 0 and ρ2∇(F ′2(ρ2) + V2[ρ1, ρ2]) · ν = 0 on R+ × ∂Ω,

where ν is the outward unit normal to ∂Ω. In system of the form (4.1), we allow interactions
between densities in the potential terms Vi[ρ1, ρ2] and Ui[ρ1, ρ2]. In the mass-conservative case
(without reaction terms), this system has already been studied in [15, 23, 8], using a semi-implicit
JKO scheme introduced by Di Francesco and Fagioli, [15]. This section combines the splitting
scheme introduced in the previous section and semi-implicit schemes both for the Wasserstein
JKO step and for the Fisher-Rao JKO step.

For the ease of exposition we keep the same assumptions for Fi and Gi as in the previous section,
i.e the diffusion terms Fi satisfy (3.2) and the reaction terms Gi satisfy (3.3). Moreover, since the
potentials depend now on the densities ρ1 and ρ2, we need stronger hypotheses: we assume that
Vi : L1(Ω;R+)2 → C1(Ω) are continuous and verify, uniformly in ρ1, ρ2 ∈ L1(Ω;R+),

‖Vi[ρ1, ρ2]‖W 1,∞(Ω) 6 K(1 + ‖ρ1‖L1(Ω) + ‖ρ2‖L1(Ω)),
‖∇(Vi[ρ1, ρ2])−∇(Vi[µ1, µ2])‖L∞(Ω) 6 K(‖ρ1 − µ1‖L1(Ω) + ‖ρ2 − µ2‖L1(Ω)).

(4.2)

The interacting potentials we have in mind are of the form Vi[ρ1, ρ2] = Ki,1 ∗ ρ1 + Ki,2 ∗ ρ2,
where Ki,1,Ki,2 ∈ W 1,∞(Ω) and then Vi satisfies (4.2). For the reaction, we assume that the
potentials Ui are continuous from L1(Ω)2

+ to L1 with moreover

Ui[ρ1, ρ2] > −K, ∀ ρ1, ρ2 ∈ L1(Ω;R+) (4.3)

for some K ∈ R, and

‖Ui[ρ1, ρ2]‖L∞(Ω) 6 KM , ∀‖ρ1‖L1(Ω), ‖ρ2‖L1(Ω) 6M (4.4)

for some nondecreasimg function KM > 0 of M . The examples we have in mind are of the form

U1[ρ1, ρ2] = C1
ρ2

1 + ρ1
, U2[ρ1, ρ2] = −C2

ρ1

1 + ρ1

for some constants Ci ≥ 0, or nonlocal reactions

Ui[ρ1, ρ2](x) =

ˆ
Ω

Ki,1(x, y)ρ1(y) dy +

ˆ
Ω

Ki,2(x, y)ρ2(y) dy

for some nonnegative kernelsKi,j ∈ L1∩L∞. Such reaction models appear for example in biological
adaptive dynamics [33].
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Definition 4.1. We say that (ρ1, ρ2) : R+ → L1
+ ∩ L∞+ (Ω) is a weak solution of (4.1) if, for i ∈

{1, 2} and all T < +∞, the pressure Pi(ρi) := ρiF
′
i (ρi)− Fi(ρi) satisfies ∇Pi(ρi) ∈ L2([0, T ]×Ω),

and

ˆ +∞

0

(ˆ
Ω

(ρ∂tφi − ρi∇Vi[ρ1, ρ2] · ∇φi −∇Pi(ρi) · ∇φi − ρi(G′i(ρi) + Ui[ρ1, ρ2])φi) dx

)
dt

= −
ˆ

Ω

φi(0, x)ρi,0(x) dx, (4.5)

for all φi ∈ C∞c ([0,+∞)× Rd).

Then, the following result holds,

Theorem 4.2. Assume that ρ1,0, ρ2,0 ∈ L1 ∩ L∞+ (Ω) and that Vi, Ui satisfy (4.2)(4.3)(4.4). Then
(4.1) admits at least one weak solution.

Note that this result can be easily adapted to systems with an arbitrary number of species
N > 2, coupled by nonlocal terms Vi[ρ1, . . . , ρN ] and Ui[ρ1, . . . , ρN ].

Remark 4.3. A refined analysis shows that our approach would allow to handle systems of the
form {

∂tρ1 − div(ρ1∇(F ′1(ρ1) + V1)) = −ρ1h1(ρ1, ρ2),
∂tρ2 − div(ρ2∇(F ′2(ρ2) + V2)) = +ρ2h2(ρ1),

where h1 is a nonnegative continuous function and h2 is a continuous functions.
Indeed since h1 ≥ 0 the reaction term is the first equation is nonpositive, hence ‖ρ1(t)‖L∞(Ω) 6

CT . Then it follows that −h2(ρ1) satisfies assumptions (4.3) and (4.4). A classical example is
h2(ρ1) = ρα1 and h1(ρ1, ρ2) = ρα−1

1 ρ2, where α > 1, see for example [38] for more discussions.

As already mentioned, the proof of theorem 4.2 is based on a semi-implicit splitting scheme.
More precisely, we construct four sequences ρk+1/2

1,h , ρk+1
1,h , ρ

k+1/2
2,h , ρk+1

2,h defined recursively as
ρ
k+1/2
i,h ∈ argmin

ρ∈M+,|ρ|=|ρki,h|

{
1

2hW
2(ρ, ρki,h) + Fi(ρ) + Vi(ρ|ρk1,h, ρk2,h)

}

ρk+1
i,h ∈ argmin

ρ∈M+

{
1

2hFR
2(ρ, ρ

k+1/2
i,h ) + Gi(ρ) + Ui(ρ|ρk1,h, ρk2,h)

} , (4.6)

where the fully implicit terms

Fi(ρ) :=

{ ´
Ω
Fi(ρ) if ρ� L|Ω

+∞ otherwise and Gi(ρ) :=

{ ´
Ω
Gi(ρ) if ρ� L|Ω

+∞ otherwise ,

and the semi-implicit terms

Vi(ρ|µ1, µ2) :=

ˆ
Ω

Vi[µ1, µ2]ρ and Ui(ρ|µ1, µ2) :=

ˆ
Ω

Ui[µ1, µ2]ρ.

In the previous section, the proof of theorem 3.2 for scalar equations strongly leveraged the
uniform L∞(Ω)-bounds on the discrete solutions. Here an additional difficulty arises due to the
nonlocal terms ∇Vi[ρ1, ρ2] and Ui[ρ1, ρ2], which are a priori not uniformly bounded in L∞(Ω).
Using assumption (4.3) we will first obtain a uniform L1(Ω)-bound on ρ1, ρ2, and then extend
proposition 3.6 to the system (4.1). This in turn will give a uniform W 1,∞ control on Vi[ρ1, ρ2]
and L∞ control on Ui[ρ1, ρ2] through our assumptions (4.2)-(4.3)-(4.4), which will finally allow to
argue as in the previous section and give L∞ control on ρ1, ρ2.

Numerical simulations for a diffusive prey-predator system are presented at the end of this
section.
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4.1 Properties of discrete solutions
Arguing as in the case of one equation, the optimality conditions for the Wasserstein step and for
the Fisher-Rao step first give

Lemma 4.4. For all k > 0 and i ∈ {1, 2}, we have

‖ρk+1/2
i,h ‖L1 = ‖ρki,h‖L1 . (4.7)

Moreover, there exists Ci ≡ C(Ui) > 0 (uniform in k) such that

ρk+1
i,h (x) 6 (1 + Cih)ρ

k+1/2
i,h (x) a.e. (4.8)

Proof. The first part is simply the mass conservation in the Wasserstein step, and the second part
follows the lines of the proof of (3.10) in Lemma 3.5 using assumption (4.3).

As a direct consequence we have uniform control on the L1-norms:

Lemma 4.5. For all T > 0 there exist constants CT , C ′T > 0 such that, for all t ∈ [0, T ],

‖ρi,h(t)‖L1 , ‖ρ̃i,h(t)‖L1 6 CT

and
‖Vi[ρ1,h(t), ρ2,h(t)]‖W 1,∞ , ‖Vi[ρ̃1,h(t), ρ̃2,h(t)]‖W 1,∞ 6 C ′T . (4.9)

Proof. Integrating (4.8) and iterating with (4.7), we obtain for all t 6 T and k 6 bT/hc

‖ρk+1
i,h ‖L1 6 (1 + Cih)‖ρki,h‖L1 6 (1 + Cih)k‖ρi,0‖L1 6 eCiT ‖ρi,0‖L1 .

Then (4.9) follows from our assumption (4.2) on the interactions.

Combining (4.8) and (4.9), we deduce

Proposition 4.6. For all T > 0, there exists MT such that for all t ∈ [0, T ],

‖ρi,h(t)‖L∞ , ‖ρ̃i,h(t)‖L∞ 6MT .

Then, there exists ci ≡ c(MT , Ui) ≥ 0, such that, for all k 6 bT/hc and h 6 h0(U1, U2),

(1− cih)ρ
k+1/2
i,h 6 ρk+1

i,h .

In particular, there exist M ′T > 0 such that for all t ∈ [0, T ],

‖ρi,h(t)− ρ̃i,h(t)‖L1 6 hM ′T .

Proof. The first L∞ estimate can be found in [36, Lemma 2], and the rest of our statement can be
proved exactly as in Lemma 3.5 and Proposition 3.6.

4.2 Estimates and convergences
Since we proved that V1[ρ1,h, ρ2,h] and V2[ρ1,h, ρ2,h] are bounded in L∞([0, T ],W 1,∞(Ω)), we can
argue exactly as in the previous section for the Wasserstein step and obtain

1

4h
W2(ρ

k+1/2
i,h , ρki,h) 6 Fi(ρki,h)−Fi(ρk+1/2

i,h ) + CTh, (4.10)

see (3.13)-(3.14) for details. Since ρ̃1,h and ρ̃2,h are uniformly bounded in L1(Ω) (Lemma 4.5), our
assumption (4.4) ensures that U1[ρ

k+1/2
1,h , ρ

k+1/2
2,h ] and U2[ρ

k+1/2
1,h , ρ

k+1/2
2,h ] are uniformly bounded in

L∞(Ω). Proposition 4.6 then allows to argue exactly as in (3.17)-(3.18)-(3.19) for the Fisher-Rao
step, and we get

1

2h
FR2(ρk+1

h , ρ
k+1/2
h ) 6 Gi(ρk+1/2

i,h )− Gi(ρk+1
i,h ) + CTh. (4.11)

The dissipation of Fi along the Fisher-Rao step is obtained in the same way as Proposition 3.7
and we omit the details:
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Proposition 4.7. For all T > 0 and i ∈ {1, 2}, there exist constants CT , C ′T > 0 such that, for
all k > 0 with hk 6 T ,

Fi(ρk+1
i,h ) 6 Fi(ρk+1/2

i,h ) + CTh,

Gi(ρk+1/2
i,h ) 6 Gi(ρk+1

i,h ) + C ′Th.

From (4.10) and (4.11) this immediately gives a telescopic sum

1

2h

(
W2(ρki,h, ρ

k+1/2
i,h ) + FR2(ρ

k+1/2
h , ρkh)

)
6 2[Fi(ρki,h)−Fi(ρk+1

i,h )] + CTh

which in turn yields an approximate 1
2 -Hölder estimate (with respect to the WFR distance) as in

Proposition 3.8. The rest of the proof of Theorem 4.2 is then identical to section 3 and we omit
the details.

4.3 Numerical application: prey-predator systems
Our constructive scheme can be implemented numerically, by simply discretizing (4.6) in space.
We use the augmented Lagrangian method ALG-JKO from [6] to solve the Wasserstein step, and
the Fisher-Rao step is just a convex pointwise minimization problem. Indeed, it is known [18, 27]
that FR2(ρ, µ) = 4‖√ρ − √µ‖2L2 , hence the Fisher-Rao step in (4.6) is a mere convex pointwise
minimization problem of the form: for all x ∈ Ω (and omitting all indexes ρi,h),

ρk+1(x) = argmin
ρ≥0

{
4

∣∣∣∣√ρ−√ρk+1/2(x)

∣∣∣∣2 + 2hF (ρ)

}
.

This is easily solved using any simple Newton procedure.
Figure (1) shows the numerical solution of the following diffusive prey-predator system{

∂tρ1 −∆ρ1 − div(ρ1∇V1[ρ1, ρ2]) = Aρ1 (1− ρ1)−B ρ1ρ2

1+ρ1
,

∂tρ2 −∆ρ2 − div(ρ2∇V2[ρ1, ρ2]) = Bρ1ρ2

1+ρ1
− Cρ2,

.

Here the ρ1 species are preys and ρ2 are predators, see for example [30], the parameters A =
10, C = 5, B = 70, and the interactions are chosen as

V1[ρ1, ρ2] = |x|2 ∗ ρ1 − |x|2 ∗ ρ2, V2[ρ1, ρ2] = |x|2 ∗ ρ1 + |x|2 ∗ ρ2.

In (4.1) this corresponds to

G1(ρ1) = A
ρ2

1

2
, G2(ρ2) = 0, U1[ρ1, ρ2] =

Bρ2

1 + ρ1
−A, U2[ρ1, ρ2] = − Bρ1

1 + ρ1
+ C.

Of course, U1 and U2 satisfy assumptions (4.3) and (4.4), and then Theorem 4.2 gives a solution
of the prey-predator system. As before, we shall disregard the uniqueness issue for the sake of
simplicity. Figure (2) depicts the mass evolution of the prey and predator species: we observe
the usual oscillations in time with phase opposition, a characteristic behaviour for Lotka-Volterra
types of systems.

5 Application to a tumor growth model with very degenerate
enery

In this section we take interest in the equation
∂tρ = div(ρ∇p) + ρ(1− p),
p > 0 and p(1− ρ) = 0
0 6 ρ 6 1,
ρ|t=0 = ρ0.

(5.1)
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Figure 1: Evolution of two species with prey-predator interactions. First row: display of ρ1 + ρ2.
Second row: display of the prey ρ1. Third row: display of the predator ρ1.

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
as

s

0

0.02

0.04

0.06

0.08

0.1

0.12
mass of prey
mass of predator

Figure 2: Mass evolution for two-species prey-predator interactions.

This equation is motivated by tumor growth models [34, 35] and exhibits a Hele-Shaw patch
dynamics: if ρ0 = χΩ0

then the solution remains an indicator ρ(t) = χΩ(t) and the boundary moves
with normal velocity V = −∇p|∂Ω(t), see [2] for a rigorous analysis in the framework of viscosity
solutions.

At least formally, we remark that (5.1) is the Wasserstein-Fisher-Rao gradient flow of the
singular functional

F(ρ) := F∞(ρ)−
ˆ

Ω

ρ,

where
F∞(ρ) :=

{
0 if ρ 6 1 a.e,
+∞ otherwise.

Indeed, the compatibility conditions p > 0 and p(1− ρ) = 0 in (5.1) really mean that the pressure
p belongs to the subdifferential ∂F∞(ρ), and (5.1) thus reads as the gradient flow

∂tρ = div(ρ∇u)− ρu, u = p− 1 ∈ −∂F(ρ).

However, this functional is too singular for the previous splitting scheme to correctly capture the
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very degenerate diffusion. Indeed, the naive and direct approach from section 3 would lead to
ρ
k+1/2
h ∈ argmin

ρ61, |ρ|=|ρkh|

{
1

2hW
2(ρ, ρkh)−

´
Ω
ρ
}
,

ρk+1
h ∈ argmin

ρ61

{
1

2hFR
2(ρ, ρ

k+1/2
h )−

´
Ω
ρ
}
.

Since the Wasserstein step is mass-conservative by definition, the
´
ρ term has no effect in the first

step and the latter reads as “project ρkh on {ρ 6 1} w.r.t to the W distance”. Since the output of the
reaction step ρk+1

h 6 1, the Wasserstein step will never actually project anything, and the diffusion
is completly shut down. As an example, it is easy to see that if the initial datum is an indicator
ρ0 = χΩ0 then the above naive scheme leads to a stationary solution ρk+1

h = ρ
k+1/2
h = ρ0 for all

k > 0, while the real solution should evolve according to the aforementioned Hele-Shaw dynamics
ρ(t) = χΩ(t) [2, 34]. One could otherwise try to write a semi-implicit scheme as follows: 1) keep the
projection on {ρ 6 1} in the first Wasserstein step. As in [29] a pressure term p

k+1/2
h appears as a

Lagrange multiplier in the Wasserstein projection. 2) in the FR/reaction step, relax the constraint
ρ 6 1 and minimize instead ρk+1 ∈ argmin

{
1

2hFR
2(ρ) +

´
ρpk+1/2 −

´
ρ
}
, and keep iterating. This

seems to correctly capture the diffusion at least numerically speaking, but raises technical issues in
the rigorous proof of convergence and most importantly destroys the variational structure at the
discrete level (due to the fact that the reaction step becomes semi-explicit).

We shall use instead an approximation procedure, which preserves the variational structure at
the discrete level: it is well-known that the Porous-Medium functional

Fm(ρ) :=

{ ´
Ω

ρm

m−1 if ρm ∈ L1(Ω)

+∞ otherwise

Γ-converges to F∞ as m → ∞, see [7]. In the spirit of [40], one should therefore expect that the
gradient flow ρm of Fm(ρ)−

´
ρ converges to the gradient flow ρ∞ of the limiting functional F(ρ) =

F∞(ρ) −
´
ρ. Implementing the splitting scheme for the regular energy functional Fm(ρ) −

´
ρ

gives a sequence ρh,m, and we shall prove below that ρh,m converges to a solution of the limiting
gradient flow as m → ∞ and h → 0. However, it is known [17] that the limit depends in general
on the interplay between the time-step h and the regularization parameter (m→∞ here), and for
technical reasons we shall enforce the condition

mh→ 0 as m→∞ and h→ 0.

Note that [34] already contained a similar approximation m→∞ but without exploiting the varia-
tional structure of them- gradient flow, and our approach is thus different. The above gradient-flow
structure was already noticed and fully exploited in the ongoing work [10], where existence and
uniqueness of weak solutions is proved and numerical simulations are performed needless of any
splitting an using directly the WFR structure. Here we rather emphasize the fact that the splitting
does capture delicate Γ-convergence phenomena.

In order to make this rigorous, we fix a time step h > 0 and construct two sequences (ρ
k+1/2
h,m )k

and (ρkh,m)k, with ρ0
h,m = ρ0, defined recursively as
ρ
k+1/2
h ∈ argmin

ρ∈M+, |ρ|=|ρkh|

{
1

2hW
2(ρ, ρkh,m) + Fm(ρ)−

´
Ω
ρ
}
,

ρk+1
h ∈ argmin

ρ∈M+

{
1

2hFR
2(ρ, ρ

k+1/2
h ) + Fm(ρ)−

´
Ω
ρ
}
.

(5.2)

As is common in the classical theory of Porous Media Equations [42], we define the pressure as
the first variation

pm := F ′m(ρ) =
m

m− 1
ρm−1.
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We accordingly write

p
k+1/2
h,m :=

m

m− 1
(ρ
k+1/2
h,m )m−1 and pk+1

h,m :=
m

m− 1
(ρk+1
h,m)m−1

for the discrete pressures. As in section 3 we denote by ρh,m(t), ph,m(t) and ρ̃h,m(t), p̃h,m(t) the
piecewise constant interpolations of ρk+1

h,m , p
k+1
h,m and ρk+1/2

h,m , p
k+1/2
h,m , respectively.

Our main result is

Theorem 5.1. Assume that ρ0 ∈ BV (Ω), ρ0 6 1, and mh→ 0 as h→ 0 and m→∞. Then for
all T > 0, ρh,m, ρ̃h,m both converge to some ρ strongly in L1((0, T )× Ω), the pressures ph,m, p̃h,m
both converge to some p weakly in L2((0, T ), H1(Ω)), and (ρ, p) is the unique weak solution of (5.1).

Since we have a WFR gradient-flow structure, uniqueness should formally follows from the −1
geodesic convexity of the driving functional E∞(ρ)−

´
Ω
ρ with respect to the WFR distance [24, 26]

and the resulting contractivity estimate WFR(ρ1(t), ρ2(t)) ≤ etWFR(ρ1
0, ρ

2
0). This is proved rigorously

in [10], and therefore we retrieve convergence of the whole sequence ρh,m → ρ in Theorem 5.1 (and
not only for subsequences). Given this uniqueness, it is clearly enough to prove convergence along
any discrete (sub)sequence, and this is exactly what we show below.

The strategy of proof for Theorem 5.1 is exactly as in section 3, except that we need now the
estimates to be uniform in both in h→ 0 and m→∞.

5.1 Estimates and convergences
In this section, we improve the previous estimates from section 3. We start with an explicit L∞-
bound:

Lemma 5.2. Assume that ρ0 6 1, then for all t ∈ R+,

‖ρh,m(t, ·)‖∞, ‖ρ̃h,m(t, ·)‖∞ 6 1.

Proof. We argue by induction at the discrete level, starting from ρ0 = ρ0
h,m 6 1 by assumption.

If ‖ρkh,m‖∞ 6 1, Otto’s maximum principle [31] implies that ‖ρk+1/2
h,m ‖∞ 6 ‖ρkh,m‖∞ 6 1 in the

Wasserstein step.
Assume now by contradiction that E := {ρk+1

h,m > 1} has positive Lebesgue measure. The

optimality condition (3.9) for the Fisher-Rao minimization step gives, dividing by
√
ρk+1
h,m > 0 in

E, √
ρk+1
h,m −

√
ρ
k+1/2
h,m =

h

2

√
ρk+1
h,m

(
1− m

m− 1
(ρk+1
h,m)m−1

)
Then 1 − m

m−1 (ρk+1
h,m)m−1 6 1 − m

m−1 < 0 in the right-hand side, hence the desired contradiction

ρk+1
h,m < ρ

k+1/2
h,m 6 1.

Noticing that the functional 1
m−1

´
ρm−

´
ρ corresponds to taking explicitly F2(z) = zm/m−1

and V2(x) ≡ −1 in section 3, it is easy to reproduce the computations from the proof of Lemma 3.5
and carefully track the dependence of the constants w.r.t m > 1 to obtain

Lemma 5.3. There exists c > 0 such that, for all m > m0 large enough and all h ≤ h0 small
enough,

(1− ch)ρ
k+1/2
h,m (x) 6 ρk+1

h,m(x) 6 (1 + h)ρ
k+1/2
h,m (x) a.e. (5.3)

Note that this holds regardless of any compatibility such as hm → 0. The key point is here
that the lower bound c previously depended on an upper bound M on ρk+1/2 in Lemma 3.5, but
since we just obtained in Lemma 5.2 the universal upper bound ρk+1/2 6 1 we end up with a lower
bound which is also uniform in h,m. The proof is identical to that of Lemma 3.5 and we omit the
details for simplicity.

Recalling that the Wasserstein step is mass-preserving, we obtain by immediate induction and
for all 0 ≤ t ≤ T

‖ρh,m(t)‖L1 , ‖ρ̃h,m(t)‖L1 6 eT ‖ρ0‖L1
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as well as
‖ρh,m(t)− ρ̃h,m(t)‖L1 6 CTh. (5.4)

Testing successively ρ = ρkh,m and ρ = ρ
k+1/2
h,m in (5.2), we get

1

2h

(
W2(ρkh,m, ρ

k+1/2
h,m ) + FR2(ρ

k+1/2
h,m , ρk+1

h,m)
)
6 Fm(ρkh,m)−Fm(ρk+1

h,m) +

ˆ
Ω

(ρ
k+1/2
h,m − ρk+1

h,m).

Using Proposition 2.4 to control WFR2 . 2(W2 + FR2) and the lower bound in (5.3) yields

1

4h
WFR2(ρk+1

h,m , ρ
k
h,m) 6

1

2h

(
W2(ρkh,m, ρ

k+1/2
h,m ) + FR2(ρ

k+1/2
h,m , ρk+1

h,m)
)

6 Fm(ρkh,m)−Fm(ρk+1
h,m) +

ˆ
Ω

(ρ
k+1/2
h,m − ρk+1

h,m)

6 Fm(ρkh,m)−Fm(ρk+1
h,m) + ch

ˆ
Ω

ρ
k+1/2
h,m

6 Fm(ρkh,m)−Fm(ρk+1
h,m) + cheT

for all k 6 N := bT/hc.
Summing over k we get

1

4h

N−1∑
k=0

WFR2(ρkh,m, ρ
k+1
h,m) 6 Fm(ρ0)−Fm(ρNh,m) + CT

6
1

m− 1

ˆ
Ω

ρm0 + CT 6
1

m− 1

ˆ
Ω

ρ0 + CT 6 CT ,

where we used successively Fm ≥ 0 to get rid of Fm(ρNh,m), and ρm0 ≤ ρ0 for ρ0 ≤ 1 and m > 1.
Consequently, for all fixed T > 0 and any t, s ∈ [0, T ] we obtain the classical 1

2 -Hölder estimate{
WFR(ρh,m(t), ρh,m(s)) 6 CT |t− s+ h|1/2,
WFR(ρ̃h,m(t), ρ̃h,m(s)) 6 CT |t− s+ h|1/2. (5.5)

Exploiting the explicit algebraic structure of Fm(z) = 1
m−1z

m, compactness in space will be
given here by

Lemma 5.4. If ρ0 ∈ BV (Ω) then

sup
t∈[0,T ]

{
‖ρh,m(t, ·)‖BV (Ω), ‖ρ̃h,m(t, ·)‖BV (Ω)

}
6 eT ‖ρ0‖BV (Ω).

Proof. The argument closely follows the lines of [18, prop. 5.1]. We first note from [14, thm. 1.1]
that the BV -norm is nonincreasing during the Wasserstein step,

‖ρk+1/2
h,m ‖BV (Ω) 6 ‖ρkh,m‖BV (Ω).

Using as before the implicit function theorem, we show below that ρk+1
h,m = R(ρ

k+1/2
h,m ) for some

suitable (1 + h)-Lispchitz function R. By standard Lip ◦BV composition [3] this will prove that

‖ρk+1
h,m‖BV (Ω) 6 (1 + h)‖ρk+1/2

h,m ‖BV (Ω)

and will conclude the proof by immediate induction.
Indeed, we already know from (5.3) that ρk+1/2

h,m and ρk+1
h,m share the same support. In this

support and from (3.9) it is easy to see that ρ = ρk+1
h,m(x) is the unique positive solution of

f(ρ, ρ
k+1/2
h,m (x)) = 0 with

f(ρ, µ) =
√
ρ

(
1− h

2

(
1− m

m− 1
ρm−1

))
−√µ.
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For µ > 0, the implicit function theorem gives the existence of a C1 map R such that f(ρ, µ) = 0⇔
ρ = R(µ), with R(0) = 0. An algebraic computation shows moreover that 0 < dR

dµ = −∂µf∂ρf |ρ=R(µ)
6

(1 + h) uniformly in m > 1, hence R is (1 + h)-Lipschitz as claimed and the proof is complete.

Proposition 5.5. Up to extraction of a discrete sequence h→ 0,m→∞, there holds

ρh,m, ρ̃h,m → ρ strongly in L1(QT )

ph,m ⇀ p and p̃h,m ⇀ p̃ weakly in all Lq(QT )

for all T > 0. If in addition mh→ 0 then p = p̃.

Proof. The first part of the statement follows exactly as in section 3, exploiting the 1
2 -Hölder

estimates (5.5) and the space compactness from Proposition 5.4 in order to apply the Rossi-Savaré
theorem [39]. The fact that ρh,m, ρ̃h,m have the same limit comes from (5.4).

For the pressures, we simply note from ρh,m 6 1 and m� 1 that ph,m = m
m−1ρ

m−1
h,m 6 2ρh,m is

bounded in L1∩L∞(QT ) uniformly in h,m in any finite time interval [0, T ]. Thus up to extraction
of a further sequence we have ph,m ⇀ p in all Lq(QT ), and likewise for p̃h,m ⇀ p̃.

Finally, we only have to check that p = p̃ if hm→ 0. Because ρh,m, ρ̃h,m 6 1 and z 7→ zm−1 is
(m− 1)-Lipschitz on [0, 1] we have for all fixed t > 0 that

ˆ
Ω

|pm,h(t, ·)− p̃m,h(t, ·)| =

ˆ
Ω

m

m− 1
|ρm−1
h,m (t, ·)− ρ̃m−1

h,m (t, ·)|

6 m

ˆ
Ω

|ρh,m(t)− ρ̃h(t)| 6 CThm −→ 0,

where we used (5.4) in the last inequality. Hence p = p̃ and the proof is complete.

In order to pass to the limit in the diffusion term div(ρ∇p) we first improve the convergence of
p̃h,m:

Lemma 5.6. There exists a constant CT , independent of h and m, such that

‖p̃h,m‖L2((0,T ),H1(Ω)) 6 CT

for all T > 0. Consequently, up to a subsequence, p̃h,m converges weakly in L2((0, T ), H1(Ω)) to p.

Proof. The proof is based on the flow interchange technique developed by Matthes, McCann and
Savaré in [28]. Let η be the (smooth) solution of{

∂tη = ∆ηm−1 + ε∆η,

η|t=0 = ρ
k+1/2
h,m .

It is well known [4] that η is the Wasserstein gradient flow of

G(ρ) :=

ˆ
Ω

ρm−1

m− 2
+ ε

ˆ
Ω

ρ log(ρ).

Since G is geodesically 0-convex, η satisfies the Evolution Variational Inequality (EVI)

1

2

d+

dt

∣∣∣∣
t=s

W2(η(s), ρ) 6 G(ρ)− G(η(s)),

for all s > 0 and for all ρ ∈ Pac(Ω), where d+

dt f(t) := lim sup
s→0+

f(t+s)−f(t)
s . By optimality of ρk+1/2

h,m

in (5.2), we obtain that

1

2

d+

dt

∣∣∣∣
t=s

W2(η(s), ρkh,m) > −h d+

dt

∣∣∣∣
t=s

Fm(η(s)).
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Since η is smooth due to the regularizing ε∆ term, we can legitimately integrate by parts for all
s > 0

d

ds
Fm(η(s)) =

ˆ
Ω

m

m− 1
η(s)m−1(∆η(s)m−1 + ε∆η(s))

= −
ˆ

Ω

m

m− 1
|∇η(s)m−1|2 − ε

ˆ
Ω

mη(s)m−2|∇η(s)|2

6 −
ˆ

Ω

m

m− 1
|∇η(s)m−1|2 = −m− 1

m

ˆ
Ω

∣∣∣∣∇( m

m− 1
η(s)m−1

)∣∣∣∣2
Remarking that m

m−1η(s)m−1 → m
m−2ρ

k+1/2
h,m = p

k+1/2
h,m as s → 0, an easy lower semi-continuity

argument gives that
ˆ

Ω

m− 1

m
|∇pk+1/2

h,m |2 =

ˆ
Ω

m

m− 1
|∇(ρ

k+1/2
h,m )m−1|2 6 lim inf

s↘0

d+

dt

∣∣∣∣
t=s

Fm(η(s)).

Then we have

h

ˆ
Ω

m− 1

m
|∇pk+1/2

h,m |2 6 Fm−1(ρkh,m)−Fm−1(ρ
k+1/2
h,m )

+ ε

(ˆ
Ω

ρkh,m log(ρkh,m)−
ˆ

Ω

ρ
k+1/2
h,m log(ρ

k+1/2
h,m )

)
.

First arguing as in Proposition 3.7 to control

Fm−1(ρk+1
h,m) 6 Fm−1(ρ

k+1/2
h,m ) + CTh,

and then passing to the limit ε↘ 0, we obtain

h

ˆ
Ω

m− 1

m
|∇pk+1/2

h,m |2 6 Fm−1(ρkh,m)−Fm−1(ρk+1
h,m) + CTh.

Summing over k gives
ˆ T

0

ˆ
Ω

|∇p̃h,m(t, x)|2 dxdt 6 m

m− 1
(Fm−1(ρ0)−Fm−1(ρNh,m) + CT ) 6 2Fm−1(ρ0) + CT

for all T < +∞. Due to ρ0 6 1 and m� 1 we can bound Fm−1(ρ0) = 1
m−2

´
ρm−1

0 6 1
m−2

´
ρ0 6

‖ρ0‖L1(Ω) and the result finally follows.

5.2 Properties of the pressure p and conclusion
We start by showing that the limits ρ, p satisfy the compatibility conditions in (5.1).

Lemma 5.7. There holds

0 6 ρ, p 6 1 and p(1− ρ) = 0 a.e. in QT .

Proof. By Lemma 5.2 it is obvious that 0 6 ρ 6 1 and 0 6 p 6 1 are inherited from 0 6 ρh,m 6 1
and 0 6 ph,m = m

m−1ρ
m−1
h,m 6 m

m−1 .
In order to prove that p(1− ρ) = 0, we first observe that

ph,m(1− ρh,m)→ 0 a.e. in QT .

Indeed, since ρh,m → ρ strongly in L1(QT ) we have ρh,m(t, x)→ ρ(t, x) a.e. If the limit ρ(t, x) < 1
then ρh,m(t, x) 6 (1−ε) for small h and largem. Hence ph,m(t, x) = m

m−1ρ
m−1
h,m 6 m

m−1 (1−ε)m−1 →
0 while 1− ρh,m remains bounded, and therefore the product ph,m(1− ρh,m)→ 0. Now if the limit
ρ(t, x) = 1 then the pressure ph,m = m

m−1ρ
m−1
h,m 6 m

m−1 remains bounded, while 1− ρh,m(t, x)→ 0
hence the product goes to zero in this case too.
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Thanks to the uniform L∞ bounds ρh,m 6 1 and ph,m 6 m
m−1 6 2 we can apply Lebesgue’s

convergence theorem to deduce from this pointwise a.e. convergence that, for all fixed nonnegative
ϕ ∈ C∞c (QT ), there holds

lim

ˆ
QT

ph,m(1− ρh,m)ϕ = 0.

On the other hand since ρh,m → ρ strongly in L1(QT ) hence a.e, and because 0 6 ρh,m 6 1, we
see that (1 − ρh,m)ϕ → (1 − ρ)ϕ in all Lq(QT ). From Proposition 5.5 we also had that ph,m ⇀ p
in all Lq(QT ), hence by strong-weak convergence we have that

ˆ
QT

p(1− ρ)ϕ = lim

ˆ
QT

ph,m(1− ρh,m)ϕ = 0

for all ϕ > 0. Because p(1 − ρ) > 0 we conclude that p(1 − ρ) = 0 a.e. in QT and the proof is
achieved.

We end this section with

Proof of Theorem 5.1. We only sketch the argument and refer to [18] for the details. Fix any
0 < t1 < t2 and ϕ ∈ C2

c (Rd). Exploiting the Euler-Lagrange equations (3.6)(3.9) and summing
from k = k1 = bt1/hc to k = k2 − 1 = bt2/hc − 1, we first obtain
ˆ
Rd
ρh,m(t2)ϕ− ρh,m(t1)ϕ+

ˆ k2h

k1h

ˆ
Rd
ρ̃h,m∇p̃h,m · ∇ϕ = −

ˆ k2h

k1h

ˆ
Rd
ρh,m(1− ph,m)ϕ+R(h,m),

where the remainder R(h,m) → 0 for fixed ϕ. The strong convergence ρh,m, ρ̃h,m → ρ and the
weak convergences ∇p̃h,m ⇀ ∇p̃ = ∇p and ph,m ⇀ p are then enough pass to the limit to get the
corresponding weak formulation for all 0 < t1 < t2. Moreover since the limit ρ ∈ C([0, T ];M+

WFR)
the initial datum ρ(0) = ρ0 is taken at least in the sense of measures. This gives an admissible
weak formulation of (5.1), and the proof is complete.

5.3 Numerical simulation
The constructive scheme (5.2) naturally leads to a fully discrete algorithm, simply discretizing
the minimization problem in space for each W, FR step. We use again the ALG2-JKO scheme [6]
for the Wasserstein steps. As already mentioned the Fisher-Rao step is a mere convex pointwise
minimization problem, here explicitly given by: for all x ∈ Ω,

ρk+1
h,m(x) = argmin

ρ≥0

{
4

∣∣∣∣√ρ−√ρk+1/2
h,m (x)

∣∣∣∣2 + 2h

(
ρm

m− 1
− 1

)}
and poses no difficulty in the practical implementation using a standard Newton method.

Figure 3 depicts the evolution of the numerical solution ρh,m for m = 100 and with a time step
h = 0.005. We remark that the tumor first saturates the constraint (ρ↗ 1) in its initial support,
and then starts diffusing outwards. This is consistent with the qualitative behaviour described in
[34].
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Figure 3: Snapshot of the approximate solution ρh,m(t, .) to (5.1), with m = 100, h = 0.005.
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6 A tumor growth model with nutrient
In this section we use the same approach for the following tumor growth model with nutrients,
appearing e.g. in [34]


∂tρ− div(ρ∇p) = ρ ((1− p)(c+ c1)− c2) ,
∂tc−∆c = −ρc,
0 6 ρ 6 1,
p > 0 and p(1− ρ) = 0,
ρ|t=0 = ρ0, c|t=0 = c0.

(6.1)

Here c1 and c2 are two positive constants, and the nutrient c is now diffusing in Ω in addition to
begin simply consumed by the tumor ρ, according to the second equation. For technical convenience
we work here on a convex bounded domain Ω ⊂ Rd, endowed with natural Neumann boundary
conditions for both ρ and c.

Contrarily to section 5 this is not a WFR gradient flow anymore, and we therefore introduce a
semi-implicit splitting scheme. Starting from the initial datum ρ0

h,m := ρ0, c
0
h,m := c0 we construct

four sequences ρk+1/2
h,m , ρkh,m, c

k+1/2
h,m , ckh,m, defined recursively as

ρ
k+1/2
h,m ∈ argmin

ρ∈M+,|ρ|=|ρkh,m|

{
1

2hW
2(ρ, ρkh,m) + Fm(ρ)

}
,

c
k+1/2
h,m ∈ argmin

c∈M+,|c|=|ckh,m|

{
1

2hW
2(c, ckh,m) + E(ρ)

}
,

(6.2)

and 
ρk+1
h,m ∈ argmin

ρ∈M+

{
1

2hFR
2(ρ, ρ

k+1/2
h,m ) + E1,m(ρ|ck+1/2

h,m )
}
,

ck+1
h,m ∈ argmin

c∈M+

{
1

2hFR
2(c, c

k+1/2
h,m ) + E2(c|ρk+1/2

h,m )
}
,

(6.3)

where
E(ρ) :=

ˆ
Ω

ρ log(ρ),

E1,m(ρ|c) :=

ˆ
Ω

(c+ c1)
ρm

m− 1
+

ˆ
Ω

(c2 − c− c1)ρ,

and
E2(c|ρ) :=

ˆ
Ω

ρc.

As earlier it is easy to see that these sequences are well-defined (i-e there exists a unique
minimizer for each step), and the pressures are defined as before as

p
k+1/2
h,m :=

m

m− 1
(ρ
k+1/2
h,m )m−1 and pk+1

h,m :=
m

m− 1
(ρk+1
h,m)m−1.

We denote again by ah,m(t), ãh,m(t) the piecewise constant interpolation of any discrete quantity
ak+1
h,m , a

k+1/2
h,m respectively. Our main result reads:

Theorem 6.1. Assume ρ0 ∈ BV (Ω) with ρ0 6 1 and c0 ∈ L∞(Ω) ∩ BV (Ω). Then ρh,m
and ρ̃h,m strongly converge to ρ in L1((0, T ) × Ω) and ch,m and c̃h,m strongly converge to c in
L1((0, T )× Ω) when h↘ 0 and m↗ +∞. Moreover, if mh→ 0, then ph,m, p̃h,m converge weakly
in L2((0, T ), H1(Ω)) to a unique p, and (ρ, p, c) is a solution of (6.1).
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Note that uniqueness of solutions would result in convergence of the whole sequence. Uniqueness
was proved in [34, thm. 4.2] for slightly more regular weak solutions, but we did not push in this
direction for the sake of simplicity. The method of proof is almost identical to section 5 so we only
sketch the argument and emphasize the main differences.

We start by recalling the optimality conditions for the scheme (6.2)-(6.3). The Euler-Lagrange
equations for the tumor densities in the Wasserstein and Fisher-Rao steps are ρ

k+1/2
h,m ∇pk+1/2

h,m = ∇ϕ
h ρ

k+1/2
h,m ,√

ρk+1
h,m −

√
ρ
k+1/2
h,m = h

2

√
ρk+1
h,m

(
(1− pk+1

h,m)(c
k+1/2
h,m + c1)− c2

)
,

(6.4)

where ϕ is a (backward) Kantorovich potential for W(ρ
k+1/2
h,m , ρkh,m). For the nutrient, the Euler-

Lagrange equations are  ∇c
k+1/2
h,m = ∇ψ

h c
k+1/2
h,m ,√

ck+1
h,m −

√
c
k+1/2
h,m = −h2

√
ck+1
h,mρ

k+1/2
h,m ,

(6.5)

with ψ a Kantorovich potential for W(c
k+1/2
h,m , ckh,m).

Using the optimality conditions for the Fischer-Rao steps, we obtain directly the following L∞
bounds:

Lemma 6.2. For all k > 0

‖ck+1
h,m‖L∞(Ω) 6 ‖c

k+1/2
h,m ‖L∞(Ω) 6 ‖ckh,m‖L∞(Ω),

and at the continuous level

‖ch,m(t, ·)‖L∞(Ω), ‖c̃h,m(t, ·)‖L∞(Ω) 6 ‖c0‖L∞(Ω) ∀ t ≥ 0.

Moreover,
‖ρh,m(t, ·)‖∞, ‖ρ̃h,m(t, ·)‖∞ 6 1

and there exists cT ≡ cT (‖c0‖L∞), CT ≡ CT (‖c0‖L∞) > 0 such that

(1− cTh)ρ
k+1/2
h,m (x) 6 ρk+1

h,m(x) 6 (1 + CTh)ρ
k+1/2
h,m (x) a.e. in Ω.

(1− h)c
k+1/2
h,m (x) 6 ck+1

h,m(x) 6 c
k+1/2
h,m (x) a.e. in Ω.

(6.6)

Proof. The proof of the estimates on ch,m and c̃h,m is obvious because one step of Wasserstein
gradient flow with the Boltzmann entropy decreases the L∞-norm in (6.2) (see [32, 1]), and, because

the product
√
ck+1
h,mρ

k+1/2
h,m is nonnegative in (6.5), the L∞-norm is also nonincreasing during the

Fischer-Rao step. The proof for ρh,m and ρ̃h,m is the same as in lemma 5.2. Using the fact that
‖ρ̃h,m(t, ·)‖∞ 6 1, we see that the term Φ(pk+1

h,m , c
k+1/2
h,m ) := (1 − pk+1

h,m)(c
k+1/2
h,m + c1) − c2 in (6.4)

is bounded in L∞ uniformly in k. This allows to argue exactly as in Lemma 3.5 to retrieve the
estimate (6.6) and concludes the proof.

With these bounds it is easy to prove as in proposition 3.15 that

Fm(ρk+1
h,m) 6 Fm(ρ

k+1/2
h,m ) + CTh,

E1,m(ρ
k+1/2
h,m |ck+1/2

h,m )− E1,m(ρk+1
h,m |c

k+1/2
h,m ) 6 CTh,

E(ck+1
h,m) 6 E(c

k+1/2
h,m ) + CTh,

E2(c
k+1/2
h,m |ρk+1/2

h,m )− E2(ck+1
h,m |ρ

k+1/2
h,m ) 6 CTh,

.

for some CT independent of m. Then we obtain the usual 1
2 -Hölder estimates in time with respect

to the WFR distance, which in turn implies that ρh,m, ρ̃h,m converge to some ρ ∈ L∞([0, T ], L1(Ω))
and ch,m, c̃h,m converge to some c ∈ L∞([0, T ], L1(Ω)) pointwise in time with respect to WFR, see
(3.20), Proposition 3.8, and (3.22) for details.

As before we need to improve the convergence in order to pass to the limit in the nonlinear
terms. For ρh,m and ρ̃h,m, this follows from
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Lemma 6.3. For all T > 0, if ρ0, c0 ∈ BV (Ω),

sup
t∈[0,T ]

{
‖ρh,m(t, ·)‖BV (Ω) + ‖ch,m(t, ·)‖BV (Ω)

}
6 eCTT (‖ρ0‖BV (Ω) + ‖c0‖BV (Ω))

sup
t∈[0,T ]

{
‖ρ̃h,m(t, ·)‖BV (Ω) + ‖c̃h,m(t, ·)‖BV (Ω)

}
6 eCTT (‖ρ0‖BV (Ω) + ‖c0‖BV (Ω)).

Proof. The argument is a generalization of Lemma 5.4, see [18, remark 5.1]. First, the BV -norm
is nonincreasing during the Wasserstein step, [14, thm. 1.1],

‖ρk+1/2
h,m ‖BV (Ω) 6 ‖ρkh,m‖BV (Ω) and ‖ck+1/2

h,m ‖BV (Ω) 6 ‖ckh,m‖BV (Ω).

Arguing as in Lemma 5.4, we observe that, inside supp ρ
k+1/2
h,m = supp ρk+1

h,m , the minimizer ρ =

ρk+1
h,m(x) is the unique positive solution of f(ρ, ρ

k+1/2
h,m (x), c

k+1/2
h,m (x)) = 0, with

f(ρ, µ, c) =
√
ρ

(
1− h

2

((
1− m

m− 1
ρm−1

)
(c+ c1)− c2

))
−√µ.

For µ > 0 the implicit function theorem gives as before a C1 map R such that f(ρ, µ, c) = 0 ⇔
ρ = R(µ, c). An easy algebraic computation and (6.6) then gives 0 < ∂µR(µ, c) 6 (1 + CTh) and
|∂cR(µ, c)| 6 CTh for some constant CT > 0 independent of h,m, k. This implies that

‖ρk+1
h,m‖BV (Ω) 6 (1 + CTh)‖ρk+1/2

h,m ‖BV (Ω) + CTh‖ck+1/2
h,m ‖BV (Ω)

6 (1 + CTh)‖ρkh,m‖BV (Ω) + CTh‖ckh,m‖BV (Ω).

The same argument shows that

‖ck+1
h,m‖BV (Ω) 6 (1 + CTh)‖ckh,m‖BV (Ω) + CTh‖ρkh,m‖BV (Ω),

and a simple induction allows to conclude.

Proposition 6.4. Up to extraction of a discrete sequence h→ 0,m→ +∞,

ρh,m, ρ̃h,m → ρ strongly in L1(QT )

ph,m ⇀ p and p̃h,m ⇀ p̃ weakly in all Lq(QT )

for all T > 0. If in addition mh→ 0 then p = p̃ ∈ L2((0, T ), H1(Ω)) and (ρ, p) satisfies

0 6 ρ, p 6 1 and p(1− ρ) = 0 a.e. in QT .

Proof. The proof is the same as Proposition 5.5, Lemma 5.6, and Lemma 5.7.

In order to conclude the proof of Theorem 6.1 we only need to check that ρ, p, c satisfy the
weak formulation of (6.1): the strong convergence of ρh,m, ch,m and the weak convergence of ph,m
are enough to take the limit in the nonlinear terms as in section 5.2, and we omit the details.
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