anther indehiscence; endothecium; magnesium; male sterility; pollen; potassium; tapetum; zinc
Abstract :
[en] Metallic micronutrients are essential throughout the plant life cycle. Maintaining metal homeostasis in plant tissues requires a highly complex and finely tuned network controlling metal uptake, transport, distribution and storage. Zinc and cadmium hyperaccumulation, such as observed in the model plant Arabidopsis halleri, represents an extreme evolution of this network. Here, non-ectopic overexpression of the A. halleri ZIP6 (AhZIP6) gene, encoding a zinc and cadmium influx transporter, in Arabidopsis thaliana enabled examining the importance of zinc for flower development and reproduction. We show that AhZIP6 expression in flowers leads to male sterility resulting from anther indehiscence in a dose-dependent manner. The sterility phenotype is associated to delayed tapetum degradation and endothecium collapse, as well as increased magnesium and potassium accumulation and higher expression of the MHX gene in stamens. It is rescued by the co-expression of the zinc efflux transporter AhHMA4, linking the sterility phenotype to zinc homeostasis. Altogether, our results confirm that AhZIP6 is able to transport zinc in planta and highlight the importance of fine-tuning zinc homeostasis in reproductive organs. The study illustrates how the characterization of metal hyperaccumulation mechanisms can reveal key nodes and processes in the metal homeostasis network.
Ahmadi, H., Corso, M., Weber, M., Verbruggen, N., & Clemens, S. (2018). CAX1 suppresses Cd-induced generation of reactive oxygen species in Arabidopsis halleri. Plant, Cell and Environment, 41, 2435–2448.
Albrecht, C., Russinova, E., Hecht, V., Baaijens, E., & de Vries, S. (2005). The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. The Plant Cell, 17, 3337–3349.
Alexander, M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain Technology, 44, 117–122.
Alvarez-Buylla, E., Benítez, M., Corvera-Poiré, A., Chaos Cador, Á., de Folter, S., Gamboa de Buen, A., … Sánchez-Corralesa, Y. (2010). Flower development. In The Arabidopsis book. Washington, DC: BioOne. https://doi.org/10.1199/tab.0127
Bassil, E., Tajima, H., Liang, Y. C., Ohto, M. A., Ushijima, K., Nakano, R., … Blumwald, E. (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell, 23, 3482–3497.
Boavida, L. C., & McCormick, S. (2007). Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant Journal, 52, 570–582.
Bock, K. W., Honys, D., Ward, J. M., Padmanaban, S., Nawrocki, E. P., Hirschi, K. D., … Sze, H. (2006). Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiology, 140, 1151–1168.
Brown, D. M., Zeef, L. A., Ellis, J., Goodacre, R., & Turner, S. R. (2005). Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. The Plant Cell, 17, 2281–2295.
Chen, J., Li, L. G., Liu, Z. H., Yuan, Y. J., Guo, L. L., Mao, D. D., … Li, D. P. (2009). Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Research, 19, 887–898.
Colcombet, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C. E., & Schroeder, J. I. (2005). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. The Plant Cell, 17, 3350–3361.
Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., … Mari, S. (2009). Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103, 1–11.
D'Ippolito, S., Arias, L. A., Casalongue, C. A., Pagnussat, G. C., & Fiol, D. F. (2017). The DC1-domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis. Plant Journal, 90, 261–275.
Dawson, J., Zen, E., Vizir, I., Van Waeyenberge, S., Wilson, Z., & Mulligan, B. (1999). Characterization and genetic mapping of a mutation (ms35) which prevents anther dehiscence in Arabidopsis thaliana by affecting secondary wall thickening in the endothecium. New Phytologist, 144, 213–222.
Deinlein, U., Weber, M., Schmidt, H., Rensch, S., Trampczynska, A., Hansen, T. H., … Clemens, S. (2012). Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. The Plant Cell, 24, 708–723.
Dhaka, N., Krishnan, K., Kandpal, M., Vashisht, I., Pal, M., Sharma, M. K., & Sharma, R. (2020). Transcriptional trajectories of anther development provide candidates for engineering male fertility in sorghum. Scientific Reports, 10, 897.
Elbaz, B., Shoshani-Knaani, N. O. A., David-Assael, O. R. A., Mizrachy-Dagri, T., Mizrahi, K., Saul, H., … Shaul, O. (2006). High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger. Plant, Cell and Environment, 29, 1179–1190.
Gomez, J. F., Talle, B., & Wilson, Z. A. (2015). Anther and pollen development: A conserved developmental pathway. Journal of Integrative Plant Biology, 57, 876–891.
Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta, 1465, 190–198.
Hanikenne, M., Esteves, S. M., Fanara, S., & Rouached, H. (2021). Coordinated homeostasis of essential mineral nutrients: A focus on iron. Journal of Experimental Botany, 72, 2136–2153.
Hanikenne, M., & Nouet, C. (2011). Metal hyperaccumulation and hypertolerance: A model for plant evolutionary genomics. Current Opinion in Plant Biology, 14, 252–259.
Hanikenne, M., Talke, I. N., Haydon, M. J., Lanz, C., Nolte, A., Motte, P., … Krämer, U. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453, 391–395.
Hermand, V., Julio, E., Dorlhac de Borne, F., Punshon, T., Ricachenevsky, F. K., Bellec, A., … Berthomieu, P. (2014). Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination. Metallomics: Integrated Biometal Science, 6, 1427–1440.
Hussain, D., Haydon, M. J., Wang, Y., Wong, E., Sherson, S. M., Young, J., … Cobbett, C. S. (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell, 16, 1327–1339.
Jakobsen, M., Poulsen, L., Schulz, A., Fleurat-Lessard, P., Møller, A., Husted, S., … Palmgren, M. (2005). Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a type V P-type ATPase. Genes and Development, 19, 2757–2769.
Jefferson, R. A. K., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6, 3901–3907.
Jochner, S., Hofler, J., Beck, I., Gottlein, A., Ankerst, D. P., Traidl-Hoffmann, C., & Menzel, A. (2013). Nutrient status: A missing factor in phenological and pollen research? Journal of Experimental Botany, 64, 2081–2092.
Johnson-Brousseau, S. A., & McCormick, S. (2004). A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant Journal, 39, 761–775.
Jung, K. W., Oh, S. I., Kim, Y. Y., Yoo, K. S., Cui, M. H., & Shin, J. S. (2008). Arabidopsis Histidine-containing Phosphotransfer factor 4 (AHP4) negatively regulates secondary wall thickening of the anther endothecium during flowering. Molecules and Cells, 25, 294–300.
Kapoor, S., Kobayashi, A., & Takatsuji, H. (2002). Silencing of the Tapetum-specific zinc finger gene TAZ1 causes premature degeneration of Tapetum and pollen abortion in petunia. The Plant Cell, 14, 2353–2367.
Keijzer, C. J. (1987). The processes of anther dehiscence and pollen dispersal. I. the opening mechanism of longitudinally dehiscing anthers. New Phytologist, 105, 487–498.
Kim, S. G., Lee, S., Kim, Y. S., Yun, D. J., Woo, J. C., & Park, C. M. (2010). Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development. Plant Molecular Biology, 74, 337–351.
Kim, Y. Y., Jung, K. W., Jeung, J. U., & Shin, J. S. (2012). A novel F-box protein represses endothecial secondary wall thickening for anther dehiscence in Arabidopsis thaliana. Journal of Plant Physiology, 169, 212–216.
Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.
Krämer, U., Talke, I. N., & Hanikenne, M. (2007). Transition metal transport. FEBS Letters, 581, 2263–2272.
Li, L., Tutone, A. F., Drummond, R. S., Gardner, R. C., & Luan, S. (2001). A novel family of magnesium transport genes in Arabidopsis. The Plant Cell, 13, 2761–2775.
Li, L. G., Sokolov, L. N., Yang, Y. H., Li, D. P., Ting, J., Pandy, G. K., & Luan, S. (2008). A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Molecular Plant, 1, 675–685.
Liu, Y. G., & Chen, Y. (2007). High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques, 43, 649–654.
Matsui, T., Omasa, K., & Horie, T. (2000). Rapid swelling of pollen grains in the dehiscing anther of two-rowed barley (Hordeum distichum L. emend. LAM.). Annals of Botany, 85, 345–350.
Merlot, S., de la Torre, V. S. G., & Hanikenne, M. (2021). Physiology and molecular biology of trace element Hyperaccumulation. In A. van der Ent, A. J. M. Baker, G. Echevarria, M-O. Simonnot, & J. L. Morel (Eds.), Agromining: Farming for Metals - Extracting Unconventional Resources Using Plants (2d edition) (pp. 93–116). Springer Nature Switzerland AG.
Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K., & Ohme-Takagi, M. (2007). NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell, 19, 270–280.
Mitsuda, N., Seki, M., Shinozaki, K., & Ohme-Takagi, M. (2005). The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell, 17, 2993–3006.
Mueller-Roeber, B., & Arvidsson, S. (2009). Fertility control: The role of magnesium transporters in pollen development. Cell Research, 19, 800–801.
Nisar, N., Verma, S., Pogson, B. J., & Cazzonelli, C. I. (2012). Inflorescence stem grafting made easy in Arabidopsis. Plant Methods, 8, 50.
Nouet, C., Charlier, J.-B., Carnol, M., Bosman, B., Farnir, F., Motte, P., & Hanikenne, M. (2015). Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. Journal of Experimental Botany, 66, 5783–5795.
Olsen, L. I., Hansen, T. H., Larue, C., Østerberg, J. T., Hoffmann, R. D., Liesche, J., … Palmgren, M. (2016). Mother-plant-mediated pumping of zinc into the developing seed. Nature Plants, 2, 16036.
Olsen, L. I., & Palmgren, M. G. (2014). Many rivers to cross: The journey of zinc from soil to seed. Frontiers in Plant Science, 5, 30.
Pacini, E. (2010). Relationships between Tapetum, Loculus, and pollen during development. International Journal of Plant Sciences, 171, 1–11.
Pacini, E., Franchi, G., & Hesse, M. (1985). The Tapetum its form, function, and possible phylogeny in Embryophyta. Plant Systematics and Evolution, 149, 155–185.
Pandey, N., Pathak, G. C., & Sharma, C. P. (2006). Zinc is critically required for pollen function and fertilisation in lentil. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements, 20, 89–96.
Ravet, K., Touraine, B., Boucherez, J., Briat, J. F., Gaymard, F., & Cellier, F. (2009). Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant Journal, 57, 400–412.
Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218, 407–411.
Rehman, S., & Yun, S. J. (2006). Developmental regulation of K accumulation in pollen, anthers, and papillae: Are anther dehiscence, papillae hydration, and pollen swelling leading to pollination and fertilization in barley (Hordeum vulgare L.) regulated by changes in K concentration? Journal of Experimental Botany, 57, 1315–1321.
Ricachenevsky, F. K., Menguer, P. K., Sperotto, R. A., & Fett, J. P. (2015). Got to hide your Zn away: Molecular control of Zn accumulation and biotechnological applications. Plant Science, 236, 1–17.
Roschzttardtz, H., Seguela-Arnaud, M., Briat, J. F., Vert, G., & Curie, C. (2011). The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. The Plant Cell, 23, 2725–2737.
Sanders, P. M., Bui, A. Q., Weterings, K., McIntire, K. N., Hsu, Y.-C., Lee, P. Y., … Goldberg, R. B. (1999). Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sexual Plant Reproduction, 11, 297–322.
Schuler, M., Rellán-Álvarez, R., Fink-Straube, C., Abadia, J., & Bauer, P. (2012). Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. The Plant Cell, 24, 2380–2400.
Scott, R. J., Spielman, M., & Dickinson, H. G. (2004). Stamen structure and function. The Plant Cell, 16, S46–S60.
Shaul, O., Hilgemann, D. W., De-Almeida-Engler, J., van Montagu, M., Inzé, D., & Galili, G. (1999). Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO Journal, 18, 3973–3980.
Sinclair, S. A., & Krämer, U. (2012). The zinc homeostasis network of land plants. Biochimica et Biophysica Acta, 1823, 1553–1567.
Spielmann, J., Ahmadi, H., Scheepers, M., Weber, M., Nitsche, S., Carnol, M., … Hanikenne, M. (2020). The two copies of the zinc and cadmium ZIP6 transporter of Arabidopsis halleri have distinct effects on cadmium tolerance. Plant, Cell & Environment, 43, 2143–2157.
Spielmann, J., & Vert, G. (2021). The many facets of protein ubiquitination and degradation in plant root iron deficiency responses. Journal of Experimental Botany, 72, 2071–2082.
Stacey, M. G., Koh, S., Becker, J., & Stacey, G. (2002). AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. The Plant Cell, 14, 2799–2811.
Stacey, M. G., Patel, A., McClain, W. E., Mathieu, M., Remley, M., Rogers, E. E., … Stacey, G. (2008). The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiology, 146, 589–601.
Steiner-Lange, S., Unte, U., Eckstein, L., Yang, C., Wilson, Z., Schmelzer, E., … Saedler, H. (2003). Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant Journal, 34, 519–528.
Talke, I. N., Hanikenne, M., & Krämer, U. (2006). Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology, 142, 148–167.
Turnbull, C. G., Booker, J. P., & Leyser, H. M. (2002). Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant Journal, 32, 255–262.
van der Ent, A., Baker, A. J., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362, 319–334.
Villarreal, F., Martin, V., Colaneri, A., Gonzalez-Schain, N., Perales, M., Martin, M., … Zabaleta, E. (2009). Ectopic expression of mitochondrial gamma carbonic anhydrase 2 causes male sterility by anther indehiscence. Plant Molecular Biology, 70, 471–485.
Walker, E. L., & Waters, B. M. (2011). The role of transition metal homeostasis in plant seed development. Current Opinion in Plant Biology, 14, 318–324.
Waters, B. M., Chu, H. H., Didonato, R. J., Roberts, L. A., Eisley, R. B., Lahner, B., … Walker, E. L. (2006). Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology, 141, 1446–1458.
Wei, D., Liu, M., Chen, H., Zheng, Y., Liu, Y., Wang, X., … Lin, J. (2018). INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis. PLoS Genetics, 14, e1007695.
Williams, L. E., & Mills, R. F. (2005). P1B-ATPases-an ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science, 10, 491–502.
Wilson, Z. A., Song, J., Taylor, B., & Yang, C. (2011). The final split: The regulation of anther dehiscence. Journal of Experimental Botany, 62, 1633–1649.
Xu, L., Xiong, X., Liu, W., Liu, T., Yu, Y., & Cao, J. (2020). BcMF30a and BcMF30c, two novel non-tandem CCCH zinc-finger proteins, function in pollen development and pollen germination in Brassica campestris ssp. chinensis. International Journal of Molecular Sciences, 21, 6428.
Xu, X. F., Wang, B., Lou, Y., Han, W. J., Lu, J. Y., Li, D. D., … Yang, Z. N. (2015). Magnesium transporter 5 plays an important role in mg transport for male gametophyte development in Arabidopsis. Plant Journal, 84, 925–936.
Yan, J., Chia, J. C., Sheng, H., Jung, H. I., Zavodna, T. O., Zhang, L., … Vatamaniuk, O. K. (2017). Arabidopsis pollen fertility requires the transcription factors CITF1 and SPL7 that regulate copper delivery to anthers and Jasmonic acid synthesis. The Plant Cell, 29, 3012–3029.
Yang, C., Vizcay-Barrena, G., Conner, K., & Wilson, Z. A. (2007). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. The Plant Cell, 19, 3530–3548.
Yang, C., Xu, Z., Song, J., Conner, K., Vizcay Barrena, G., & Wilson, Z. A. (2007). Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. The Plant Cell, 19, 534–548.
Yang, S. L., Xie, L. F., Mao, H. Z., Puah, C. S., Yang, W. C., Jiang, L., … Ye, D. (2003). Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. The Plant Cell, 15, 2792–2804.
Zhang, D. S., Liang, W. Q., Yuan, Z., Li, N., Shi, J., Wang, J., … Zhang, D. B. (2008). Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Molecular Plant, 1, 599–610.
Zhu, J., Chen, H., Li, H., Gao, J. F., Jiang, H., Wang, C., … Yang, Z. N. (2008). Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant Journal, 55, 266–277.