inerter; H-infinity optimisation; force feedback; active damping
Abstract :
[en] In this paper, a modified active tuned inerter damper concept which is more suitable for practical applications is proposed. The proposed device is composed of a pair of collocated reactive actuator and force sensor. A second-order low-pass filter and a proportional term are combined to form the controller. The equivalent mechanical model of the controller's components is derived in order to better interpret the coupled system. The second-order low-pass filter is mechanically equivalent to a pure mechanical network which comprises an inerter, a spring and a damper connected in parallel. The proportional term mechanically represents a spring which is connected in series with the inherent actuator spring. Simple regressions are derived based on the ℋ∞ optimisation criterion wherein the optimal feedback gains are calculated to minimise the maximal response of the driving-point receptance of the system. The numerical study is also experimentally validated. The obtained results are found to correspond well with the theoretical developments.
Bakre, S.V., Jangid, R.S., Optimum parameters of tuned mass damper for damped main system. Struct. Control Health Monit. 14 (2007), 448–470, 10.1002/stc.166.
Ma, W., Yang, Y., Yu, J., General routine of suppressing single vibration mode by multi-DOF tuned mass damper: application of three-DOF. Mech. Syst. Signal Process. 121 (2019), 77–96, 10.1016/j.ymssp.2018.11.010.
Christie, M.D., Sun, S., Deng, L., Ning, D.H., Du, H., Zhang, S.W., Li, W.H., A variable resonance magnetorheological-fluid-based pendulum tuned mass damper for seismic vibration suppression. Mech. Syst. Signal Process. 116 (2019), 530–544, 10.1016/j.ymssp.2018.07.007.
Americano da Costa, M.M., Castello, D.A., Magluta, C., Roitman, N., On the optimal design and robustness of spatially distributed tuned mass dampers. Mech. Syst. Signal Process., 150, 2021, 107289, 10.1016/j.ymssp.2020.107289.
Den Hartog, J.P., Mechanical Vibrations. 1985, Dover Publications http://books.google.be/books?id=-Pu5YlgY4QsC.
Smith, M.C., Synthesis of mechanical networks: the inerter. IEEE Trans. Automat. Contr. 47 (2002), 1648–1662, 10.1109/TAC.2002.803532.
Lazar, I.F., Neild, S.A., Wagg, D.J., Performance analysis of cables with attached tuned-inerter-dampers. Conference Proceedings of the Society for Experimental Mechanics Series, 2015, 433–441, 10.1007/978-3-319-15248-6_44.
Lazar, I.F., Neild, S.A., Wagg, D.J., Vibration suppression of cables using tuned inerter dampers. Eng. Struct. 122 (2016), 62–71, 10.1016/j.engstruct.2016.04.017.
Brzeski, P., Kapitaniak, T., Perlikowski, P., Novel type of tuned mass damper with inerter which enables changes of inertance. J. Sound Vib. 349 (2015), 56–66, 10.1016/j.jsv.2015.03.035.
Paulitsch, C., Gardonio, P., Elliott, S.J., Active vibration control using an inertial actuator with internal damping. J. Acoust. Soc. Am. 119 (2006), 2131–2140, 10.1121/1.2141228.
Alujević, N., Zhao, G., Depraetere, B., Sas, P., Pluymers, B., Desmet, W., Optimal vibration control using inertial actuators and a comparison with tuned mass dampers. J. Sound Vib. 333 (2014), 4073–4083, 10.1016/j.jsv.2014.04.038.
Zilletti, M., Feedback control unit with an inerter proof-mass electrodynamic actuator. J. Sound Vib. 369 (2016), 16–28, 10.1016/j.jsv.2016.01.035.
Alujević, N., Čakmak, D., Wolf, H., Jokić, M., Passive and active vibration isolation systems using inerter. J. Sound Vib. 418 (2018), 163–183, 10.1016/j.jsv.2017.12.031.
Papageorgiou, C., Houghton, N.E., Smith, M.C., Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas. Control., 131, 2009, 011001, 10.1115/1.3023120.
Swift, S.J., Smith, M.C., Glover, A.R., Papageorgiou, C., Gartner, B., Houghton, N.E., Design and modelling of a fluid inerter. Int. J. Control. 86 (2013), 2035–2051, 10.1080/00207179.2013.842263.
Høgsberg, J., Brodersen, M.L., Krenk, S., Resonant passive – active vibration absorber with integrated force feedback control. Smart Mater. Struct., 25, 2016, 10.1088/0964-1726/25/4/047001 0.
Collette, C., Chesné, S., Robust hybrid mass damper. J. Sound Vib. 375 (2016), 19–27, 10.1016/j.jsv.2016.04.030.
Chesné, S., Milhomem, A., Collette, C., Enhanced damping of flexible structures using force feedback. J. Guid. Control Dyn. 39 (2016), 1654–1658, 10.2514/1.G001620.
Zhao, G., Raze, G., Paknejad, A., Deraemaeker, A., Kerschen, G., Collette, C., Active tuned inerter-damper for smart structures and its ℍ∞ optimisation. Mech. Syst. Signal Process. 129 (2019), 470–478, 10.1016/j.ymssp.2019.04.044.
Zhao, G., Raze, G., Paknejad, A., Deraemaeker, A., Kerschen, G., Collette, C., Active nonlinear inerter damper for vibration mitigation of Duffing oscillators. J. Sound Vib., 473, 2020, 115236, 10.1016/j.jsv.2020.115236.
Zhao, G., Raze, G., Paknejad, A., Deraemaeker, A., Kerschen, G., Collette, C., Active nonlinear energy sink using force feedback under transient regime. Nonlinear Dyn. 102 (2020), 1319–1336, 10.1007/s11071-020-06000-y.
Neubauer, M., Wallaschek, J., Vibration damping with shunted piezoceramics: fundamentals and technical applications. Mech. Syst. Signal Process. 36 (2013), 36–52, 10.1016/j.ymssp.2011.05.011.
A. Preumont, Vibration control of active structures, 2018. 10.1007/978-94-007-2033-6.
Zhao, G., Alujević, N., Depraetere, B., Sas, P., Dynamic analysis and ℍ2 optimisation of a piezo-based tuned vibration absorber. J. Intell. Mater. Syst. Struct. 26 (2015), 1995–2010, 10.1177/1045389X14546652.
Zhao, G., Alujevia, N., Depraetere, B., Pinte, G., Sas, P., Adaptive-passive control of structure-borne noise of rotating machinery using a pair of shunted inertial actuators. J. Intell. Mater. Syst. Struct. 27 (2016), 1584–1599, 10.1177/1045389X15600080.
Teo, Y.R., Fleming, A.J., Optimal integral force feedback for active vibration control. J. Sound Vib. 356 (2015), 20–33, 10.1016/j.jsv.2015.06.046.
Preumont, A., Dufour, J.P., Malekian, C., Active damping by a local force feedback with piezoelectric actuators. J. Guid. Control Dyn. 15 (1992), 390–395, 10.2514/3.20848.
Zhao, G., Paknejad, A., Deraemaeker, A., Collette, C., ℍ ∞ optimisation of an integral force feedback controller. J. Vib. Control 25 (2019), 2330–2339, 10.1177/1077546319853165.
Krenk, S., Hogsberg, J., Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction. Proc. R. Soc. A Math. Phys. Eng. Sci., 472, 2016, 10.1098/rspa.2015.0718.
Matichard, F., Lantz, B., Mason, K., Mittleman, R., Abbott, B., Abbott, S., Allwine, E., Barnum, S., Birch, J., Biscans, S., Clark, D., Coyne, D., DeBra, D., DeRosa, R., Foley, S., Fritschel, P., Giaime, J.A., Gray, C., Grabeel, G., Hanson, J., Hillard, M., Kissel, J., Kucharczyk, C., Le Roux, A., Lhuillier, V., Macinnis, M., O'Reilly, B., Ottaway, D., Paris, H., Puma, M., Radkins, H., Ramet, C., Robinson, M., Ruet, L., Sareen, P., Shoemaker, D., Stein, A., Thomas, J., Vargas, M., Warner, J., Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: design and production overview. Precis. Eng. 40 (2015), 273–286, 10.1016/j.precisioneng.2014.09.010.
Zhao, G., Ding, B., Watchi, J., Deraemaeker, A., Collette, C., Experimental study on active seismic isolation using interferometric inertial sensors. Mech. Syst. Signal Process., 145, 2020, 106959, 10.1016/j.ymssp.2020.106959.