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Abstract.  

In this paper, a modified active tuned inerter damper concept which is more suitable 

for practical applications is proposed. The proposed device is composed of a pair of 

collocated reactive actuator and force sensor. A second-order low-pass filter and a 

proportional term are combined to form the controller. The equivalent mechanical 

model of the controller’s components is derived in order to better interpret the 

coupled system. The second-order low-pass filter is mechanically equivalent to a 

pure mechanical network which comprises an inerter, a spring and a damper 

connected in parallel. The proportional term mechanically represents a spring which 

is connected in series with the inherent actuator spring. Simple regressions are 

derived based on the ℋ∞ optimisation criterion wherein the optimal feedback gains 

are calculated to minimise the maximal response of the driving-point receptance of 

the system. The numerical study is also experimentally validated. The obtained 

results are found to correspond well with the theoretical developments.     
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1. Introduction 

Lightweight materials and monolithic design concepts have been more and more employed in the 

new designs of structures for the sake of reduction of environmental pollution and ultra-

performance [1,2]. However, this will often make these structures lightly-damped and thus more 

prone to vibrations, which could cause many problems such as reduction in structural integrity, 

compromise of instrument functionality and even threat to human lives. In this regard, proper 

damping techniques need to be considered in parallel with the future design of lightweight 

structures. Vibration absorbers, especially tuned mass dampers (TMDs) are often used for such 

purpose [3–7]. A TMD typically consists of a proof mass and a spring-dashpot pair added to the 

primary structure as an auxiliary system [8]. Once it is properly tuned, the vibration energy of the 

primary structure can be quickly transferred to the TMD where it is eventually dissipated. The 

damping effectiveness is known to ultimately depend on the weight of its proof mass, where better 

control performance comes with a heavier proof mass. However, the added mass may be penalising 

in lightweight applications.  

One interesting solution to address this trade-off is to use inerters. An inerter is defined as a one-

port mechanical element which impedes the relative acceleration across its terminals [9,10]. 

Inerters became more and more attractive in the field of mechanical vibration suppression because 

their inertance (representing the impedance coefficient in kilograms) can be significantly greater 

than their actual mass [9]. This interesting feature inspired many new design concepts aiming to 

outperform traditional TMDs. These include tuned inerter-damper (TID) which is similar to TMD 

but using inerters to replace the proof mass of TMDs, and tuned mass-damper-inerter (TMDI) 

which directly integrates inerters into TMDs [11–13]. For these systems, the actual mass is lower 

than the effective proof mass added to a primary structure, thus boosting the vibration mitigation 

performance while preserving the lightweight feature of the vibration absorber. 

Inerters have also been found to be useful for active vibration absorbers [14,15]. For example, 

Zilletti [16] proposed to include an inerter in parallel with the suspension system of the active 

vibration absorber with the aim to reduce the natural frequency of the active device without overly 

increasing the actual weight. Consequently, this improves the stability margin and the control 

bandwidth of the traditional active vibration absorbers. Alujevic et al. [17] investigated the 

potential of a novel inerter-based active vibration isolation system. The authors have shown that 

adding the inerter into the isolator can effectively stabilise the conditionally stable control loop thus 

allowing to further increase the loop gain.  

Although these inerter based designs are promising, it is quite challenging to realise them in 

practice because some imperfections during the mechanical construction will be inevitably present, 

preventing them to act as idealised inerters. For instance, the performance of ball-screw and rack-

pinion inerters may degrade because of the friction and backlash or elastic effect of gears and 
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screws [18], and hydraulic inerters may exhibit nonlinear damping in addition to the inertance-like 

behaviour [19].     

In order to bypass the problems associated with physical inerters, the potential of active inerter-

based vibration absorbers was investigated. It was reported that active inerter-based vibration 

absorbers can be implemented by a pair of collocated reactive actuator and force sensor. By feeding 

back the output of the force sensor through a resonant controller [20] or a sum of single and double 

integrators [21–23] to drive the actuator, the inerter can be synthetised, resulting in systems 

equivalent to mechanical networks composed of a spring, dashpot and inerter connected in parallel 

or in series, respectively. However, the experimental validation is not yet available, and it still 

remains challenging to achieve an acceptable control performance when targeting for high-order 

modes of the primary structure. This is because the dynamic stiffness ratio between the actuator 

and the primary structure ultimately determines the achievable control performance of these 

strategies and this ratio decreases at high frequencies.   

The focus of this study is thus twofold: 1) to develop a modified force feedback controller which 

allows to further boost the control performance and 2) to experimentally investigate the potential 

of the proposed controller. The proposed controller is built upon our previous developments [23]. 

A proportional term is added to the original controller which opens the possibility to tune the 

effective stiffness of the actuator. On top of this, a simple second-order low-pass filter is used to 

replace the pure integrators in the original controller which helps suppress the very pronounced 

saturation problems for example caused by the low-frequency drift of the instrument in practical 

applications. The ℋ∞ optimisation criterion is utilised to calculate the optimal parameters of the 

proposed controller and a fitting technique is employed to establish the dependence of the control 

parameters on the fixed system parameters. The mechanical equivalence of the components in the 

proposed controller is also explicitly discussed in order to provide more physical insights. 

Experimental validations are provided which verify the theoretical analysis. The presented 

experimental work also aims to pave the way for the examination of previous analytical works on 

active nonlinear inerter-based dampers [24,25]. 

The paper is structured into four sections. In the Section 2, the mathematical models are presented, 

based on which the optimal feedback gains for implementing the controller are derived. In Section 

3, experimental results are presented for the validation of the numerical study. The conclusions are 

drawn in Section 4. 

2. Mathematical modelling and parameter optimisation 

2.1 Mathematical modelling 

The system under investigation is shown in Fig. 1 (a). It represents an undamped single-degree-of-

freedom (SDOF) system which is equipped with a massless actuator whose stiffness is denoted by 
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ak . The SDOF system is defined through the mass 1m  and the suspension stiffness 1k . It is excited 

by a disturbance force F . A collocated force sensor which measures the transmission force sF  is 

installed between the actuator and the primary structure. The control loop is implemented by 

feeding the output of the force sensor sF  through a controller ( )su F  to drive the actuator.  
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Fig. 1 (a) The schematics of the system under investigation, (b) the equivalent mechanical model 

(practical ATID-S), (c) the ideal ATID-S and (d) the ATID-P.  

The governing equations of the coupled system can be written as: 

 ( ) ( ) ( ) ( )1 1 sm x t k x t F t F t+ = +  (1) 

 ( ) ( )( ) ( )s s aF t u F t k x t= −   (2) 

An active inerter-damper control concept was proposed in the previous study [23], where the 

controller ( ) ( ) ( )
0 0 0

d d d
t t t

s s s d su F g F t t g F t t t= − −    is used. However, pure integrators cannot be 

applied in practice for control in some cases as they might lead to saturation problems due to the 

undesirable amplification of the control signal at low frequencies. Thus, the controller ( )( )su F t  is 

modified as: 

 ( )( ) ( )( ) ( )( ) ( )1 2 0s s s d s su F t g L F t g L F t g F t= − − −  (3) 
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where ( )1L •  and ( )2L •  represent a first and a second order low-pass filter, respectively. sg , dg  

and 0g  are the control gains. 

Transforming Eq. (3) into Laplace domain, one obtains:  

 ( )( )
( ) ( )

( )
( )02

s s

s s d s

F s F s
U F s g g g F s

s a s a
= − − −

+ +
 (4) 

where a  is the corner frequency of the low-pass filters and s  represents the Laplace variable.  

Compared with the controller studied in [23], the single and double integrators are now replaced 

by first and second order low-pass filters, respectively. In this way, the saturation problems can be 

limited. The proportional term in Eq. (4) is introduced in order to be able to tune the effective 

stiffness of the actuator. This can be better understood from a pure mechanical point of view. The 

equivalent mechanical representation of the considered system is shown in Fig. 1 (b). The proof is 

provided in Appendix A. As can be seen, the control effect of the proportional term ( )0 sg F s  is 

equivalent to placing a spring in series with the inherent spring of the actuator. Combining them, 

the effective stiffness of the actuator, denoted by ak , can be derived: 

 
01

a
a

k
k

g
 =

+
 (5) 

When the gain 0g  is positive, the equivalent stiffness ak  is reduced as two positive springs are 

connected in series. On the other hand, ak  is increased assuming 01 0g−   , which actually 

favors the vibration mitigation performance as demonstrated in [23]. The underlying idea is similar 

to the concept of shunting negative capacitors to piezoelectric elements, thanks to which the 

generalised electromechanical coupling factor can be boosted leading to a better vibration 

mitigation performance [26–29].  

As can be also seen in Fig. 1 (b), the use of the first-order and second-order low-pass filters 

introduces a spring dk  and a pair of spring and dashpot mk and md in addition to the desired dashpot 

ad  and inerter am . Although the saturation problems can be suppressed by the proposed controller, 

the complexity on the control parameter optimisation is increased.  

The equivalent damping coefficient md  and ad , the inertance am  and the stiffness dk , mk and 0k

can be linked with the control parameters according to: 

 

2

0

0

2
, , , , ,a a a a a a

a m a d m

s d d s d

k ak k ak a k k
d d m k k k

g g g g g g
= = = = = =   (6) 

Note that the corner frequency related parameters dk , mk  and md  go to zero when the corner 

frequency a  is set to zero.  

In order to come to a more general formulation, the following parameters: 
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( ) ( ) ( )

1 1 2 1 1 1 1 1

2

1 0 1 0 1 0 1

, , , , ,

, , ,
1 1 1

s d

a d s
c dn sn

t x x x F k x F k k m

k g ga
g g

g k g g

  

 
  

= = = = =

= = = =
+ + +

 (7) 

are introduced to normalise the system governing equations (1) and (2): 

 1 1 2 dx x x x+ − =  (8) 

 ( ) ( ) ( )2 2

2 2 2 1 1 12 2 0c sn c dn sn c c cx g x g g x x x x     + + + + + + + + =  (9) 

where the derivatives are calculated with respect to the time scale   as defined in Eq. (7). 

Considering now the pure integrators are used i.e. c  is set to zero in Eq. (9), the corresponding 

schematic of the equivalent mechanical model can be derived as shown in Fig. 1 (c) which actually 

represents a TID with its components connected in series. In practical applications, low-pass filters 

have to be used to replace the pure integrators. The corner frequency of the low-pass filters is often 

configured relatively low compared with the resonance to be damped. This makes the extra 

components related to the corner frequency of the low-pass filters vaguely present in the network. 

Thus, the whole network still behaves as its ideal case i.e. an ATID. Based upon this, the 

abbreviation ATID-S is chosen to address the schematic shown in Fig. 1(b). ‘S’ in this case is 

referred to as a serial connection of the inerter and the dashpot. 

As stated earlier, a second-order low-pass filter already introduces an additional pair of spring and 

dashpot. It was found that the inclusion of a first-order low-pass filter exhibits no better results than 

a second-order low-pass filter alone in terms of the control performance as shown later in Fig.5 and 

the stability concern as discussed in Appendix B. Therefore, the term associated with sng  is 

eliminated from the controller in Eq. (9) which then becomes: 

 ( ) ( )2 2

2 2 2 1 1 12 2 0c c dn c cx x g x x x x    + + + + + + =  (10) 

In such a scenario, the corresponding equivalent mechanical network, as shown in Fig. 1 (d), 

essentially becomes a parallel connection of an inerter, dashpot and spring (induced by the second-

order low-pass filter) which is then connected in series with another spring (corresponding to the 

proportional term). This modified controller is referred to as ATID-P which stands for an active 

tuned inerter damper in which the inerter, the spring and the dashpot are connected in parallel.  

2.2 Parameters optimisation  

The ℋ∞ norm is employed to optimise the control parameters of the proposed controller. The 

magnitude of the normalised driving-point receptance 1 dx x  is taken as the performance index. 

The normalised driving-point receptance of the primary structure can be derived according to Eqs. 

(8) and (9): 

 
( ) ( ) ( )

2 2

4 3 2 2 2

1
2

2 1 2 1 1

c c

nd c c c c

dn

dn d

x S S g

S S g S S gx

 

     

+ + +

+ + +
=

+ + + + + + +
 (11) 
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and its magnitude is given as: 

 
( ) ( )

( ) ( ) ( )( )( ) ( )

2
4 2 2 2

2
2 2 2 2 2 2 2

1

2

2 2

2 1 1

c c

d
c c

dn dn

dn c

x

D

g g

x
Cg

 

  



 



   

+ − + +
=

− − − + + + − +

 (12) 

where ( ) ( ) ( )
22 2 2 2 22 2 cdn d cnC g g = + − + + + , 1/S s = is the normalised Laplace variable 

, S j =  is the normalised frequency and ( )
2

2 2 2

cD  += . 

The optimisation parameters could in principle be any of the three in Eq. (12), but the stiffness ratio 

  is often constrained by the requirements on the change of the structure’s dynamics due to the 

installation of the active damping device and is thus considered as fixed. Therefore, the remaining 

optimisation parameters are the normalised feedback gains dng  and the cut-off frequency c . 

Because explicit expressions for their optimal values are very complicated to obtain, a numerical 

ℋ∞ optimisation (a gradient-based method implemented in MATLAB function fminsearch) is 

performed instead where optimal values of dng  and c  are sought to minimise the resonance peaks 

for a fixed stiffness ratio  . This procedure is repeated for a large variation of   ( 0 1.5  ) and 

then a fitting technique is employed to establish the dependence of dng  and c  on  . It turns out 

that the following regressions provide an excellent approximation to the numerical results:  

 opt 1 0.62dng = +  (13) 

 opt 0.60.02 0.73 0.1c  = + −  (14) 

The goodness of the fitting is given in Table 1 in terms of R-squared and root-mean-square (RMS) 

relative error. 

Table 1 Goodness of fitting 

Parameters R-Squared  RMS relative error 

opt

dng  1 43.5 10−  

opt

c  0.9999 31.8 10−  

 

In the following, numerical simulations are performed to illustrate the control effectiveness and 

also to examine the tuning law derived in Eqs. (13) and (14). For this numerical study, the stiffness 

ratio   is fixed to 0.3 and the proportional feedback gain 0g  is set to zero. Fig. 2 (a) compares the 

performance index 1 dx x  for four different combinations of the control parameters: i) 0dng =  

(control is off); ii) opt

dn dng g=  and opt2c c = ; iii) opt

dn dng g=  and opt

c c =  and iv) opt

dn dng g=  and 
opt0.5c c = , whereas Fig. 2 (b) shows the effect when the other parameter dng  deviates from its 

optimal value by a factor of 2 and 0.5, considering opt

c c = . It can be seen that two peaks with 

equal amplitude are obtained in accordance with the ℋ∞ criterion only when the optimal setting is 
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applied. It is also interesting to note that the DC gain of the performance index i.e. the equivalent 

static stiffness of the system is dependent on the control parameters. This can be explained with 

the aid of the equivalent mechanical network shown in Fig. 1 (b). At low frequencies, the ATID-P 

(assuming 0 0g = ) essentially behaves as a spring whose stiffness is 2

m a dk a k g=  in Eq. (6). 

When dng  is set to zero (control is off), the corresponding stiffness mk  approaches infinity so that 

ak  represents the whole branch. In such a case, the static stiffness of the system becomes the sum 

of ak  and 1k . On the other hand, if dng  is non-zero, mk  is finite. This makes the overall stiffness 

of the ATID-P branch lower than either of the two stiffness ak  or mk  since they are connected in 

series. Thus, the system becomes softer compared to the case when dng  is set to zero.  

Although the stability of the ATID-P is guaranteed because of its full analogy with a mechanical 

network (given idealised force sensors and actuators are employed and 0 1g  − ), it is not clear what 

is the phase margin of this active system when the optimal feedback gains are implemented. In 

what follows, the open-loop gain of the active system ( ) ( )L G j H j =  is derived to study 

phase margin. ( )G j  and ( )H j represent the normalised frequency response of the control 

plant and controller, respectively. They are expressed as: 

 ( )
( )( )

2

2

0

1

1 1
G j

g




 

−
=

− + +
 (15) 

 ( )
( )

( )
0

2 2

1

2

dn

c c

g g
H j

j


  

+
=

− +
 (16) 

  

Fig. 2 The performance index against normalised frequency for different (a) cut-off frequencies and 

(b) feedback gains where the stiffness ratio 0.3 =  is chosen. 

In practice, the ATID-P is implemented in a cascade way. The control plant G  in Eq. (15) actually 

represents the transfer function between the output of the force sensor and the input to the actuator 
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when the control loop with the proportional term is closed, whereas H  in Eq. (16) stands for the 

second-order low-pass filter left in the cascaded controller. This treatment makes sense since the 

optimal settings of dng  and c  in the second-order low-pass filter are derived provided that 0g  is 

fixed i.e. the proportional control loop is already closed. The phase margin of the optimally 

configured ATID-P is calculated in three steps: i) identification of the unit gain frequency c  at 

which the amplitude of the loop gain ( )L j  equals to unity; ii) calculation of the phase angle of 

the loop gain at c  i.e. ( )cL j  and iii) calculation of the phase margin as ( )cPM L j = + .  

Fig. 3 plots the phase margin of the coupled system against the stiffness ratio   when the optimal 

control parameters are applied. It can be seen that the phase margin increases with an increase in 

 . In order to achieve a phase margin greater than 35°, the stiffness of the actuator has to be at 

least greater than half of the primary system’s stiffness. With the proposed ATID-P, the stiffness 

ratio   can be effectively adjusted by changing the proportional feedback gain 0g  according to 

Eq. (7). For example, a large value of   can be obtained when 0g  falls in the range ( 1,0−  where 

  increases as 0g  approaches -1. According to Eq. (15), the effective stiffness ratio   can be 

estimated in practice by: 

 

2

21 1
p

p

z


 



 
= − = − 
 

 (17) 

where 
p  and z  correspond to the frequencies of the pole and the zero of the control plant 

respectively, and 
p is the normalised frequency of the pole. 

 

Fig. 3 Phase margin of the SDOF-ATID-P coupled system when the optical settings are applied. 

In the following, the controller effectiveness of the proportional term is illustrated. Fig. 4 (a) 

compares the control plant of the considered system when the gain 0g  is set to 0, -0.5 and -0.786, 

respectively. The effective stiffness ratio   for these values of 0g  can be calculated based on Eq. 

(7) and equals 0.3, 0.6 and 1.41. As shown, there exists a pair of complex zeros and a pair of 
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complex poles in the control plant for each scenario. The location of the zeros is invariant with 

respect to the gain 0g  since it is solely determined by the resonance frequency of the primary 

structure when the actuator is removed. On the other hand, the location of the poles shifts 

rightwards when 0g  moves towards to -1. In addition, the magnitude of the control plant is 

amplified by a factor of ( )01 1 g+ . In [30], a proportional controller is also considered in order to 

boost the control performance of integral force feedback controllers. It is implemented as a 

feedforward term which consequently shifts the zero frequency leftwards while the location of the 

poles is kept fixed. With the proposed feedback approach, it is opposite i.e. the zero is fixed but the 

pole increases when increasing the gain 0g .  

Fig. 4 (b) plots the open-loop gain of the system for the three values of 0g . The loop gain decreases 

with a decrease of 0g  (an increase of  ) in the low frequency range. This means that the 

transmission force at low frequency is less affected when the control is activated. As a consequence, 

the softening effect induced by the integral force feedback [31,32] becomes less pronounced. In 

addition, the unit gain frequency at which the phase is smallest increases with a decrease of 0g . 

This leads to a greater phase margin which is consistent with the phase margin plot in Fig. 3.  

Fig. 4 (c) depicts the performance index for the same variation of 0g . The peak values indeed 

decrease and the static stiffness of the system is less influenced as 0g  approaches -1. It is also 

interesting to note that the equal peak feature is maintained when a large value of   is 

implemented. This demonstrates the validity of the optimal formulae in Eqs. (13) and (14) for a 

large range of applications. 
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Fig. 4 The frequency response function of (a) the control plant, (b) the open-loop gain and (c) 

magnitude of the performance index for different values of 0g . 

For the considered values of 0g , the control effectiveness of ATID-P can be compared with that 

of the modified ATID as in Eq. (4) where both first and second order low-pass filters are employed 

i.e. ATID-S. The cut-off frequency of the low-pass filters used in the ATID-S is one tenth the 

natural frequency of the primary structure. Two sets of control parameters are considered. For the 

first case, the gains associated with the first-order and second-order low-pass filters are taken the 

same as that derived in [23] which means that the influence due to the use of low-pass filters is 

neglected. In order to account for this influence, these two gains are modified in the second case to 

retrieve the equal peak property according to the numerical ℋ∞ optimisation performed in 

Appendix B. The resulting performance index of the ATID-P and ATID-S (with and without gain 

corrections) is compared in Fig. 5. It can be seen that ATID-P always outperforms the ATID-S for 

the considered values of 0g . The main reason behind the performance difference can be attributed 

to the different layouts of their equivalent mechanical components as shown in Fig. 1(b) and (d). 

For ATID-S, the DC gain of the driving-point receptance is derived from Eq. (B.1) by substituting 

0S = , which reads: 

 
( )

ATID-S
2

0

2

1

1

c c s

n

nn

d S

d

dc c sn

gx

g

g

gx

 

 
=

+

+ + +
=

+
. (18) 

Since c  is often chosen relatively low for implementing the low-pass filters, the DC gain can be 

considered as invariant with respect to the control parameters. Consequently, 
ATID-S

1 0
1d S

x x
=

  is 

established for different values of   as shown in Fig. 5 (a)-(c). This makes the minimal maximum 

value of the cost function hardly able to go below unity when the ATID-S is used.   
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On the other hand, the DC gain for the ATID-P scenario can be obtained in a similar way from Eq. 

(12), which is expressed as: 

 
( )

ATID-P

1

0

2

2 1

c

nc dd S

dnx g

gx



 
=

=
+

+ +
 (19) 

In such a case, c  is not negligible anymore which actually makes the DC gain decrease with an 

increase of  . For example, the DC gain drops to 0.75 when   is set to 1.4 as in the case shown 

in Fig. 5 (c). This opens the door for the ℋ∞ algorithm to find a solution for the ATID-P to have 

the minimal maximum of the cost function smaller than unity as shown in Fig. 5 (c). As such, the 

outperformance of ATID-P is more visible when   is relatively large. This also indicates that the 

ATID-P concept would be preferred in practice as it not only suppresses the low frequency 

saturation problems but also yields a better control performance in the ℋ∞ sense. 

Finally, it should be noted that the optimal feedback gains in Eqs. (13) and (14) are derived for an 

ideal SDOF system, but it is also possible to use them for a specific mode of multi-degree-of-

freedom (MDOF) systems as demonstrated in [33]. In such a scenario, careful calibrations of the 

system are needed to identify the contributions from non-resonant modes. The non-resonant modes 

which are lower than the target mode introduce an inertial effect, whereas higher modes bring a 

quasi-static contribution to the target mode. The calibration procedure of the proposed ATID-P for 

MDOF systems is left for a future work.     

 

Fig. 5 Control performance comparison for ATID-P and ATID-S (without and with gain 

corrections). 
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3. Experimental validation 

In order to experimentally validate the theoretical analysis, the test bench was prepared, which is 

shown in Fig. 6. The primary structure is a cantilever aluminium beam with the dimensions 

45cm*3cm*0.3cm (length*width*thickness). The beam was clamped at one end and excited with 

two voice coil actuators (AVM24-10) at the other end. One of them is used to introduce the 

disturbance force and the other one is used to deliver the control force. According to the Lorentz 

law, the force delivered by an ideal voice coil actuator (its mass and damping are neglected) can 

be regulated by [31]: 

 2f nrBi= −  (20) 

where i  is the input current, B  the magnetic flux, 2 rn is the length exposed to the magnetic flux. 

Close to the voice coil actuators, an eddy-current sensor (ECL101) was installed to measure the tip 

displacement of the beam. In this study, only the first bending mode of the beam is considered such 

that the single-mode beam can dynamically represent a linear SDOF system. The block diagram of 

the control scheme is depicted in Fig. 7. Underneath the control actuator, a force sensor (PCB 

221B02) is installed in order to measure the transmission force and provide the feedback signal. 

However, additional damping is induced by the voice coil actuators (the eddy-current effect and 

air viscous damping effect), which violates the low damping assumption of the primary structure. 

Thus, a negative damping control loop was implemented in order to eliminate the total inherent 

damping of the system. This was achieved by positively feeding the tip velocity signal back to drive 

the voice coil actuators. The velocity signal is obtained by passing the displacement signal 

measured by the eddy current sensor through a first-order high-pass filter with a corner frequency 

of 500 Hz. The high-pass filter instead of a pure derivative is used which is mainly to avoid the 

over-injection of the high-frequency sensor noise. The feedback gain of this negative damping loop 

is denoted as negg . Note that the force sensor is placed underneath the magnet of the voice coil 

actuator which is different to the proposed configuration in Fig. 1 (a). This is done mainly to avoid 

adding too much weight to the beam. Nevertheless, the actuator actually delivers a pair of reactive 

force which on one hand acts on the beam and on the other hand on the ground. Therefore, the force 

sensor in the current configuration measures the same transmission force as it would be in the 

configuration as indicated in Fig. 1 (a). 

One can also tell from Fig. 1 (a) that the two actuators and the displacement sensor should be 

located at the same position. However, this was not the case for the experimental set-up. This 

imperfection might affect the system identification results and the derivation of the corresponding 

control parameters provided the transfer function between the ‘control’ actuator and the 

displacement sensor is noticeably different to that between the ‘disturbance’ actuator and the 

displacement sensor. It was found that the difference between these two transfer functions is 

negligible with the current configuration as shown in Fig. 6, which is further evidenced by the 
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experimental results. Therefore, no extra efforts were spent to develop a perfect set-up which is left 

in a future work for the investigations on MDOF applications. 

(1)

(2)

(3)

(4)

dSpace

ADC

Controller

(1)

(2)

(3)

(4)

(5)

(6)
(7)

 

Fig. 6 The experimental test set-up: (1) cantilever beam, (2) eddy-current sensor (ECL101), (3) force 

sensor (PCB 221B02), (4) voice coil actuator (AVM24-10), (5) MicroLabBox, (6) current amplifier 

(ADD-45N) and (7) ICP conditioner (PCB 482C05). 

A dSpace MicroLabBox system was used both for the data acquisition and the control 

implementation. The control scheme was implemented in the Matlab Simulink environment and 

then downloaded to the processor unit of the MicroLabBox system. The control scheme was 

updated at a sampling frequency of 10 kHz, and the measured data were recorded at the same 

sampling frequency. A current amplifier (ADD-45N) was used to drive the voice coil actuators.  

The optimal values of the control parameters were derived through 4 steps:  

• First, a measurement of the control plant is performed, based on which the locations of the 

zeros and the poles as well as the DC gain are extracted.  

• The effective stiffness ratio   was estimated for a fixed value of 0g . This was done by 

substituting the zero-pole locations identified in the first step into Eq. (17).  

• The third step focused on the quantification of the mode interactions between the other 

structural modes and the targeted mode i.e. the first mode. According to [33], the influence 
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of higher modes can be characterised as a quasi-static contribution, which makes the true 

optimal gains different from those of a SDOF system. This effect can be quantified by 

comparing the DC gain of the control plants of the equivalent SDOF system with that of a 

SDOF system. For a SDOF system, the DC gain defined as the response of the control plant 

at 0 Hz i.e. ( )0G  is only determined by the parameters   and 0g  given in Eq. (15). While 

for the equivalent SDOF system, the DC gain is also influenced by the contributions from 

the higher modes, which can be simply considered as a gain effect. Therefore, this 

difference referring to as interaction correction factor (ICF), needs to be multiplied with the 

derived optimal gains as in Eqs. (13) and (14) in order to eliminate the influence of the 

mode interactions.  

• Finally, the identified stiffness ratio  , the ICF and the frequency of the zero 

(corresponding to the resonance of the primary structure when the actuator is removed i.e.

1  in Eq. (7)) are substituted into Eqs. (7), (13) and (14) to obtain the optimal feedback 

gain dg  and cut-off frequency a  for implementing the ATID-P controller defined in Eq. 

(4).  

Exc.: F x

Beam FsCon.: F

-gd/(s+a)2

-g0

gnegs 

 

Fig. 7 The configuration scheme of the experimental set-up. 

The first set of experiments was conducted to validate the optimal control parameters for different 

values of 0g . A white noise signal was applied to excite the beam in the vicinity of its first bending 

mode. The duration of the measurement was set to 200 seconds. 

Fig. 8 (a) plots the frequency response of the control plant when 0g  is set to 0, -0.5 and -0.786, 

respectively. The stiffness ratio, ICF and the optimal control parameters are summarised in Table 

2. Note that the coherence of the control plant is relatively low when 0g  is set to -0.786. This is 

because the magnitude of the control plant is amplified by a factor of ( )01 1 g+ , and the input 

disturbance force has to be limited to avoid an overwhelming response around the resonance 
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frequency. As a consequence, the signal-to-noise ratio is low at other frequencies leading to a low 

coherence. Nevertheless, the optimal control parameters can still be accurately estimated. With 

these optimal controllers, the open loop gains are shown in Fig. 8 (b). It is found that the phase 

margin matches very well the theoretical value in Fig. 3. Finally, the control performance is 

examined. Fig. 8 (c) depicts the driving-point receptance (the transfer function between the 

disturbance force and the measured tip displacement). As expected, a better control effectiveness 

is achieved when 0g  approaches -1. The comparison between Fig. 8 and Fig. 4 shows that the 

experimental results are in a good accordance with the theoretical analysis. 

  

 

Fig. 8 The frequency response of (a) the control plant, (b) the open loop gain and (c) magnitude of 

the performance index for different values of 0g  
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Table 2 Control parameters. 

parameters 0 0g =  0 0.492g = −  0 0.786g = −  

  0.307 0.604 1.425 

ICF 0.82 0.814 0.778 

dg  3652.1 2128.1 1181.6 

a  21.34 30.53 47.73 

negg  850 850 850 

Next, the influence of the control parameters’ variation is investigated. Fig. 10 compares the 

driving-point receptance, where 0g  is set to zero, the cut-off frequency a  is set to its optimal value 

(14) and the feedback gain dg  is varied from 0.5 to 2 times its optimal value (13). On the other 

hand, Fig. 9 investigates the effect of the cut-off frequency a  which is varied from 0.5 to 2 times 

its optimal value, while 0g  is set to zero and dg  is set to its optimal value. The obtained 

experimental results are in a good accordance with the theoretical predictions in Fig. 2 (a) and (b). 

The equal-peak feature is obtained when the optimal value of the control parameters is 

implemented.  

 

Fig. 9 Comparison of the driving-point receptance when 0 0g = , 
opta a=  and dg  is varied from 0.5 

to 2 times its optimal value. 
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Fig. 10 Comparison of the driving-point receptance when 0 0g = , opt

d dg g=  and a  is varied from 

0.5 to 2 times its optimal value. 

The last set of experiments examines the control effectiveness of different controllers as in Fig. 5. 

Here, the cut-off frequency of the low-pass filter of the ATID-S is set to 1Hz. Two scenarios are 

considered where the corrections for the control gains are either implemented or not. The driving-

point receptances are compared in Fig. 11, where the results corresponding to the ATID-P are also 

superimposed. It can be seen that the ATID-P always outperforms the ATID-S for the considered 

values of 0g , and a visible degradation of the ATID-S’s control effectiveness is observed when the 

corrections due to the use of low-pass filters are not implemented.  
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Fig. 11 Control performance comparison for ATID-P and ATID-S (without and with corrections). 

4. Conclusion 

This paper discusses the practical applicability of a modified active inerter-damper system, the 

ATID-P, realised using a pair of collocated actuator and force sensor. The controller consists of a 

second-order low-pass filter and a proportional term. The equivalent mechanical model of the 

controller’s components is derived in order to illustrate the influence of the active control system 

on the primary system. The second-order low-pass filter was found to be equivalent to a pure 

mechanical network which comprises an inerter, a spring and a damper connected in parallel, and 

the proportional term plays the same role as a mechanical spring connected in series with the 

inherent actuator spring. Simple expressions are derived based on the ℋ∞ optimisation criterion 

which aims to minimise the maximal response of the driving-point receptance of the system. It is 

shown that the performance of the ATID-P is governed by the stiffness ratio between the chosen 

actuator and the primary structure. By cascading the proportional controller, a relatively large 

stiffness ratio can be implemented given that the associated gain is properly tuned. This does not 

only improve the achievable vibration mitigation performance but also increases the phase margin. 

The numerical study was also experimentally validated. The obtained results were found to be in 

excellent agreement. With these results, one can envision to develop a simple analogue electronic 

control system for a collocated actuator-force sensor pair such that the resulting active inerter-based 

damper would be compact enough for smart structure applications.  
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Appendix A 

In this appendix, it is shown that the systems sketched in Fig. 1 (a) and (b) are dynamically 

equivalent, or, in other words, the networks shown in Fig. A.1 (a) and (b) are equivalent. 

Fig. A.1 (b) depicts a pure mechanical system which consists of several springs and dashpots as 

well as an inerter. Under the excitation force denoted by F , the governing equations of this system 

can be written as: 

 ( ) ( ) ( )1 2 1 2 1 2a m mF m x x d x x k x x= − − − − − −  (A.1) 

 ( ) ( )2 3 2 3a dF d x x k x x= − − − −  (A.2) 

 ( )0 3 4F k x x= − −  (A.3) 

 ( )4 5aF k x x= − −  (A.4) 
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F
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ka

F
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sensor
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Fs

x
x
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F

k0
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ma dm km

dakd

F
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Fig. A.1 (a) the sketch of the active system and (b) its mechanical representative. 

Expressing the relative motion in terms of the transmission force F , Eqs. (A.1)- (A.4) can be 

rewritten as: 
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 1 2 2

a m m

F
x x

m s d s k

−
− =

+ +
 (A.5) 

 
2 3

a d

F
x x

d s k

−
− =

+
 (A.6) 

 3 4

0

F
x x

k
− = −  (A.7) 

 
4 5

a

F
x x

k
− = −  (A.8) 

Summing up Eqs. (A.5)- (A.8) and multiplying both sides with ak , yields: 

 ( )1 5 2

0

a a a
a

a m m a d

k F k F k F
k x x F

m s d s k d s k k

−
− = − − −

+ + +
 (A.9) 

According to the control law, the governing equations of the system shown in Fig. A.1(a) can be 

expressed as: 

 
( ) ( )

( )
( )02

s s

s d s a

F s F s
F g g g F s k x

s a s a
= − − − −

+ +
 (A.10) 

where 1 5x x x= −  represents the relative displacement across the active inerter damper and sF F=

. 

Comparing Eq. (A.9) with Eq. (A.10) and one can find the equivalence between systems shown in 

Fig. A.1(a) and (b). The feedback gains and their corresponding mechanical components are thus 

related by Eq. (A.11):  

 
2

0

0

2
, , , , ,a a a a a a

a d a m m

s s d d d

k ak k ak a k k
d k m d k k

g g g g g g
= = = = = =  (A.11) 

Appendix B 

In this part, the ℋ ∞ optimisation of ATID-S is performed. The normalised driving-point receptance 

of the primary structure when ATID-S is implemented can be derived as: 

 
( )

( ) ( ) ( )( ) ( )

2 2

4 3 2 2 2

1
2

2 1 2 1 1

c c c

c c cd c c c

sn sn dn

sn dn sn sn sn dn

x S g S g g

S g S g g S g S g gx

  

        

+ + + + +

+ + + + + + + + + +
=

+ + + +
 (B.1) 

and its magnitude is given as:  

 
( )( ) ( )

( ) ( ) ( )( )( ) ( )

224 2 2 2

2
2 2 2 2 2 2 2 2

1

2

2 1 1

sn c c dn sn c c dn

c dn c sn c c
d B

x g g g

g
x

g

g A

     

         

+ + + − + + +
=

− − − + + + + − +

 (B.2) 
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where ( ) ( ) ( ) ( )( )2 22 2 2 2 22 2 2dn sn c c dn c dn cg g g gA       − + + + + + += + , 1/S s = is the 

normalised Laplace variable, S j =  is the normalised frequency and ( )
2

2 2 2

cB   += . 

A numerical ℋ ∞ optimisation is performed where the optimal settings of sng  and dng  are derived 

given   and c  are fixed. In order to better understand these numerically obtained optimal values, 

they are compared with the analytically derived counterparts in [23] where pure integrators are 

employed i.e. c  is set to zero. Fig. B.1 (a) and (b) plot the ratio between the numerically and 

analytically obtained values for opt

sng  and opt

dng  against   and c , respectively.   

 



 23 

 

Fig. B.1 Gain ratio between the numerically and analytically obtained values for (a) opt

sng and (b) 

opt

dng . 

When c  is relatively small, it can be seen that the analytically obtained optimal settings derived 

for the case where perfect integrators are used [23] can still hold. This implies that these closed-

form expressions could be still applicable for high-frequency applications since it allows to choose 

a relatively high cut-off frequency which helps limit the low frequency amplification but still 

remains negligible compared with the resonance frequency to be damped. However, this is not case 

for low-frequency applications for example the active seismic isolation systems used for 

gravitational wave detections, the resonance frequency of which is often very low [34,35]. In such 

a case, the cut-off frequency of the low-pass filters is often very close to the resonance frequency 

i.e. c  is relatively large whereas a dramatic correction is needed for the control parameters. 

Especially for sng , it even undergoes a change of sign from positive to negative values. This occurs 

because the use of a second-order low-pass filter already introduces an additional pair of spring 

and dashpot in parallel with the desired inerter. The corresponding stiffness and damping are 

unfortunately more than needed for fulfilling the ℋ∞ optimisation criterion. Therefore, a negative 

gain of the first-order low-pass filter which provides a pair of negative stiffness and damping is 

sought aiming to compensate the inherent stiffness and damping associated with the second-order 

low-pass filter. For such scenarios the first-order low-pass filter may not be needed as a second-

order low-pass filter with a proper tuning might be already good enough. In addition, the 

unconditional stability feature might be compromised when a negative feedback gain is used. For 
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example, the system becomes unstable when the derived optimal values are used for 0.582 = , 

0.5c = , as indicated by the cross marker in Fig. B.1(a). The dependence of opt

c  on   for the 

ATID-P is also superimposed on Fig. B.1(a). It is seen that it divides the map into two zones: opt

sng  

is positive or negative for a given pair of c  and  .  
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