Copyright 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
All documents in ORBi are protected by a user license.
[en] In this work, we present and analyze the numerical stability of two coupled finite element formulations. The first one is the \haf and is well suited for modeling systems with superconductors and ferromagnetic materials. The second one, the so-called \taf with thin-shell approximation, applies for systems with thin superconducting domains. Both formulations involve two coupled unknown fields and are mixed on the coupling interfaces. Function spaces in mixed formulations must satisfy compatibility conditions to ensure stability of the problem and reliability of the numerical solution. We propose stable choices of function spaces using hierarchical basis functions and demonstrate the effectiveness of the approach on simple 2D examples.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Dular, Julien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes
Harutyunyan, Mané; Technical University of Darmstadt, Germany > Computational Electromagnetics
Bortot, Lorenzo; Technical University of Darmstadt, Germany > Computational Electromagnetics
Schöps, Sebastian; Technical University of Darmstadt, Germany > Computational Electromagnetics
Vanderheyden, Benoît ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes
Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
On the Stability of Mixed Finite-Element Formulations for High-Temperature Superconductors
Publication date :
26 July 2021
Journal title :
IEEE Transactions on Applied Superconductivity
ISSN :
1051-8223
Publisher :
Institute of Electrical and Electronics Engineers, United States - New York
Volume :
31
Issue :
6
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
R. Brambilla, F. Grilli, L. Martini, M. Bocchi, and G. Angeli, "A finiteelement method framework for modeling rotating machines with superconducting windings," IEEE Trans. Appl. Supercond., vol. 28, no. 5, Aug. 2018, Art. no. 5207511.
L. Bortot et al., "A coupled A-H formulation for magneto-thermal transients in high-temperature superconducting magnets," IEEE Trans. Appl. Supercond., vol. 30, no. 5, Aug. 2020, Art. no. 4900911.
Z. Hong, A. M. Campbell, and T. A. Coombs, "Numerical solution of critical state in superconductivity by finite element software," Supercond. Sci. Technol., vol. 19, pp. 1246-1252, Oct. 2006.
B. Shen, F. Grilli, and T.Coombs, "Overviewof H-formulation:Aversatile tool for modeling electromagnetics in high-temperature superconductor applications," IEEE Access, vol. 8, pp. 100403-100414, 2020.
J.Dular, C.Geuzaine, and B.Vanderheyden, "Finite-element formulations for systems with high-temperature superconductors," IEEE Trans. Appl. Supercond., vol. 30, no. 3, Apr. 2020, Art. no. 8200113.
J. W. Barrett and L. Prigozhin, "Electric field formulation for thin film magnetization problems," Supercond. Sci. Technol., vol. 25, no. 10, 2012, Art. no. 104002.
H. Zhang, M. Zhang, andW.Yuan, "An efficient 3Dfinite elementmethod model based on the T-A formulation for superconducting coated conductors," Supercond. Sci. Technol., vol. 30, no. 2, 2016, Art. no. 0 24005.
E. Berrospe-Juarez, V. M. Zermeño, F. Trillaud, and F. Grilli, "Real-time simulation of large-scale HTS systems: Multi-scale and homogeneous models using the T-A formulation," Supercond. Sci. Technol., vol. 32, no. 6, 2019, Art. no. 0 65003.
Y. Wang, H. Bai, J. Li, M. Zhang, and W. Yuan, "Electromagnetic modelling using TA formulation for high-temperature superconductor (RE)BA 2 Cu3OX high field magnets," High Voltage, vol. 5, no. 2, pp. 218-226, 2020.
D. Boffi et al., Mixed Finite Element Methods and Applications. vol. 44, Berlin, Germany: Springer, 2013.
K.-J. Bathe, "The Inf-Sup condition and its evaluation for mixed finite element methods," Comput. Struct., vol. 79, no. 2, pp. 243-252, 2001.
I. Babuŝka, "The finite element method with lagrangian multipliers," Numerische Mathematik, vol. 20, no. 3, pp. 179-192, 1973.
J. D. Jackson, Classical Electrodynamics. College Park,MD, USA: Amer. Assoc. Phys. Teachers, 1999.
J. Rhyner, "Magnetic properties and AC-losses of superconductors with power law current-voltage characteristics," Physica C: Supercond., vol. 212, no. 3/4, pp. 292-300, 1993.
M. Pellikka, S. Suuriniemi, L. Kettunen, and C. Geuzaine, "Homology and cohomology computation in finite element modeling," SIAM J. Sci. Comput., vol. 35, no. 5, pp. B 1195-B1214, 2013.
P. Dular, "Modélisation du champ magnétique et des courants induits dans des systèmes tridimensionnels non lineáires," Ph.D. thesis, Univ. Liège, Montefiore Inst., Liège, Belgium, 1994.
A. Bossavit, "Whitney forms: A class of finite elements for threedimensional computations in electromagnetism," IEE Proc. A-Phys. Sci., Meas. Instrum., Manage. Educ.-Rev., vol. 135, no. 8, pp. 493-500, 1988.
P. Dular,C.Geuzaine, andW. Legros, "A naturalmethod for couplingmagnetodynamic h-formulations and circuit equations," IEEE Trans. Magn., vol. 35, no. 3, pp. 1626-1629, May 1999.
S. Schöps, H. De Gersem, and T.Weiland, "Winding functions in transient magnetoquasistatic field-circuit coupled simulations," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Bingley, U.K.: Emerald, 2013.
É. Béchet, N. Moës, and B.Wohlmuth, "Astable lagrange multiplier space for stiff interface conditions within the extended finite element method," Int. J. Numer. Methods Eng., vol. 78, no. 8, pp. 931-954, 2009.
P. Dular, C.Geuzaine, F. Henrotte, andW. Legros, "A general environment for the treatment of discrete problems and its application to the finite element method," IEEE Trans. Magn., vol. 34, no. 5, pp. 3395-3398, Sep. 1998.
C. Geuzaine and J.-F. Remacle, "GMSH: A. 3-D finite element mesh generator with built-in pre-and post-processing facilities," Int. J. Numer. Methods Eng., vol. 79, no. 11, pp. 1309-1331, 2009.
I. V. Lindell, Differential Forms in Electromagnetics. vol. 22, Hobooken, NJ, USA: Wiley, 2004.
F. Brezzi and K.-J. Bathe, "A discourse on the stability conditions for mixed finite element formulations," Comput. Methods Appl. Mechanics Eng., vol. 82, no. 1/3, pp. 27-57, 1990.
O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite ElementMethod: Its Basis and Fundamentals. Burlington, MA, USA: Elsevier, 2005.
C. Geuzaine, "High order hybrid finite element schemes for Maxwell's equations taking thin structures and global quantities into account," Ph.D. thesis, Univ. Liège, Liège, Montefiore Inst., Belgium, 2001.
D. Chapelle and K.-J. Bathe, "The Inf-Sup test," Comput. Struct., vol. 47, no. 4/5, pp. 537-545, 1993.
F. Brezzi, "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers," in Proc. Publications des seminaires de mathématiques et informatique de Rennes, no. S4, pp. 1-26, 1974.
D. Malkus, "Eigenproblems associated with the discrete lbb condition for incompressible finite elements," Int. J. Eng. Sci., vol. 19, no. 10, pp. 1299-1310, 1981.
K. Van Bockstal, "Numerical techniques for partial differential equations in superconductivity and thermoelasticity," Ph.D. thesis, Ghent Univ., Dept. Mathemat. Anal., Ghent, Belgium, 2015.
M. Laforest, "The p-curlcurl: Spaces, traces, coercivity and a helmholtz decomposition in Lp," 2018, arXiv:1808.05976.
N. El-Abbasi and K.-J. Bathe, "Stability and patch test performance of contact discretizations and a new solution algorithm," Comput. Struct., vol. 79, no. 16, pp. 1473-1486, 2001.
J. Pitkäranta, "Boundary subspaces for the finite element method with lagrange multipliers," Numerische Mathematik, vol. 33, no. 3, pp. 273-289, 1979.