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On the Stability of Mixed Finite-Element
Formulations for High-Temperature Superconductors

Julien Dular, Mané Harutyunyan, Lorenzo Bortot, Sebastian Schöps, Benoît Vanderheyden,
and Christophe Geuzaine

Abstract—In this work, we present and analyze the numerical
stability of two coupled finite element formulations. The first one
is the h-a-formulation and is well suited for modeling systems
with superconductors and ferromagnetic materials. The second
one, the so-called t-a-formulation with thin-shell approximation,
applies for systems with thin superconducting domains. Both
formulations involve two coupled unknown fields and are mixed
on the coupling interfaces. Function spaces in mixed formulations
must satisfy compatibility conditions to ensure stability of the
problem and reliability of the numerical solution. We propose
stable choices of function spaces using hierarchical basis functions
and demonstrate the effectiveness of the approach on simple 2D
examples.

Index Terms—Finite element analysis, high-temperature super-
conductors, mixed formulations, stability analysis.

I. INTRODUCTION

MODELING accurately and efficiently the magnetic
response of high-temperature superconductors (HTS)

is important for the development of numerous magnet and
electrical power applications, e.g., superconducting rotating
machines. One of the main tools used to model the properties
of superconductors is the finite element method (FEM), based
on formulations of Maxwell’s equations combined with the
E-J power law. This law is strongly non-linear and requires
a carefully chosen formulation.

In the past few years, several FEM models based on
coupled formulations have been proposed. An h-a-formulation
was introduced in a 2D model of rotating machines with
superconducting windings [1]. The superconducting materials
were modeled with an h-formulation, whereas the continuity
conditions between the fixed and the rotating parts were treated
with the a-formulation. A second h-a-formulation formulation
was introduced for modeling HTS magnets with a coupling to
an external circuit, in order to reduce the number of degrees of
freedom in the non-superconducting regions [2] with respect
to a full h-formulation [3], [4]. A third h-a-formulation
was considered for systems containing superconductors and
ferromagnets, in order to model each material with its most
efficient formulation [5]. A setting involving the simultaneous
computation of magnetic and electric fields in the whole
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conducting domain has been proposed in [6] for thin supercon-
ducting films. Another type of combined formulation, the t-a-
formulation, was introduced in [7] to model superconducting
tapes, presenting a high width over thickness ratio. The current
density inside the tapes was described by a surface current
potential, whereas the magnetic vector potential was the state
variable outside the tape. Both fields were coupled by means of
integrals on the surface of the (infinitely thin) HTS tape. In [2],
the same formulation is derived from the h-a-formulation
with a thin-sheet approximation. The t-a-formulation has also
recently been extended to finite volume systems, e.g., by
modeling a stack of tapes in full or in parts as an equivalent
homogeneous bulk material [8], [9].

In each of these coupled formulations, different finite el-
ement fields are introduced region-wise, while they coexist
and are coupled through a common boundary or a common
region. The coupling makes these formulations mixed, for
which care must be taken in the choice of function spaces and
the discretization. For instance, naive choices of approximation
function spaces can easily lead to stability issues manifesting
themselves as spurious oscillations in the numerical solution
(chapter 8 of Ref. [10]). Such oscillations have been indeed
observed numerically in the t-a-formulation [8] when using
first-order polynomials for both the t- and a-approximation
spaces. General mathematical conditions for solvability and
stability have been stated and studied in a number of mixed
finite element problems [10], [11], [12], both for the con-
tinuous and the discrete problems. One of these conditions,
known as the inf-sup condition, is usually difficult to prove
analytically but may be tested numerically [11].

The problems we consider are nonlinear but the stability is-
sues and the resulting oscillations are not a direct consequence
of the nonlinearity of the constitutive laws. We observed that
they actually already appear in linear problems with the same
coupled formulations and non-compatible function spaces.
However, the nonlinearity of the constitutive laws is one of
the motivations for using coupled formulations, which is the
reason why we discuss their stability in the framework of
superconducting systems.

In this work, we consider the h-a-formulation for systems
containing superconductors and ferromagnets and the t-a-
formulation, which can be seen as the limit of the h-a-
formulation for thin superconducting tapes. Following the
general theory of mixed finite elements, we analyze the related
conditions for obtaining numerically stable mixed formula-
tions. In section II, we introduce and derive the two coupled
formulations. In particular, we derive a version of the t-a-
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formulation that directly includes global variables on current
intensity or voltage in the weak form. To the best of our
knowledge, it has not been introduced in that form yet. In
section III, we present several choices of discretized function
spaces and illustrate the occurrence of the spurious oscillations
that arise when spaces are not compatible. We recall the
classical theory of mixed formulations and perturbed saddle-
point problems [10] in section IV and present a numerical inf-
sup test based on [11] to check the compatibility of discretized
function spaces. In the last two sections, the theory is applied
to the h-a-formulation (section V) and the t-a-formulation
(section VI), restricting to 2D problems with in-plane magnetic
fields.

II. FINITE-ELEMENT FORMULATIONS

The magnetic response of a system containing type-II super-
conductors with strong pinning can be described by Maxwell’s
equations in the magnetodynamic (quasistatic) approximation
[13], and magnetic and electrical constitutive laws,

div b = 0, (magn. Gauss)
curlh = j, (Ampère)
curl e = −∂tb, (Faraday)

and

{
b = µh,

e = ρj,
(1)

with b, h, j, e, µ, and ρ, being the magnetic flux density
(T), the magnetic field (A/m), the electric current density
(A/m2), the electric field (V/m), the permeability (H/m), and
the resistivity (Ωm), respectively. The permeability can be a
function of h. In non-conducting materials, ρ→∞ and j = 0.
In superconductors, b = µ0h and we assume a power law for
the resistivity [14],

ρ =
ec

jc

(
‖j‖
jc

)n−1

, (2)

where ec = 10−4 V/m is a threshold electric field defining the
critical current density jc (A/m2). The dimensionless number
n = U0/kBT , with U0 a pinning energy and T the temperature,
is a critical exponent associated with magnetic flux creep.

In the following, the system is modeled in a domain Ω.
Boundary conditions are applied on its external boundary ∂Ω,
which is decomposed into two complementary domains: Γe,
where the normal component of b or the tangential component
of e is imposed, and Γh, where the tangential component of
h is imposed. We also use the following notation for volume
and surface integrals:

(f1 , f2)Ω =

∫
Ω

f1 · f2 dΩ, 〈f1 , f2〉Γ =

∫
Γ

f1 · f2 dΓ, (3)

with f1 and f2 being two scalar or vector fields and · the
scalar multiplication or the dot product, respectively.

We now present two mixed finite element formulations of
the magnetodynamic problem.

A. Coupled formulation 1 - h-a-formulation

When a system contains both a superconductor and a non-
linear ferromagnetic material, classical formulations such as
the h-formulation or the a-formulation may face convergence
issues. The power law in superconductors is easier to handle

with a Newton-Raphson method in the h-formulation, which
involves the electrical resistivity. Conversely, the a-formulation
is more efficient than the h-formulation to deal with the typical
saturation law describing the permeability of ferromagnets [5].
Combining the h-formulation and a-formulation into a coupled
h-a-formulation by choosing the best formulation in each
region has proven to be an efficient solution for systems with
both materials [5].

The domain Ω is decomposed into two parts: Ωh, containing
the superconducting domain, and Ωa, containing the nonlinear
ferromagnetic domain, which is assumed to have a negligible
electrical conductivity. The parts of Ω where constitutive laws
are linear can be put in Ωh or Ωa. Inside Ωh, the conducting
domain is denoted by Ωh,c, and the non-conducting domain
is denoted by ΩC

h,c, with Ωh = Ωh,c ∪ ΩC
h,c. The common

boundary of Ωh and Ωa is denoted by Γm. Coupling operates
via this common interface. We also introduce the outer normal
vectors nΩh and nΩa . For illustration, consider the simple 2D
stacked bar geometry in Fig. 1, where the h-formulation is
applied to a superconducting bar, the a-formulation is applied
to a ferromagnetic bar and to the air region, while the coupling
surface Γm is taken as the boundary of the superconducting
region. In this example, the external boundary belongs to Γe,
and Γm is the boundary of the superconducting region, which
constitutes the entire Ωh domain.

Ferro

Air

Super
bext

(a) Problem geometry.

Ωh

nΩh

Ωa

Ωa

Γm

Γe

(b) Domain definition and mesh.

Fig. 1: Stack of a superconducting bar (below, n = 20, jc = 3×108

A/m2) and a ferromagnetic bar (above, µr = 1000), subjected to an
external field (bext = 0.4 T). The thick curve is Γm.

We derive the two formulations in Ωa and Ωh, then couple
them to obtain the h-a-formulation.

The classical a-formulation is a weak form of Ampère’s law
where the magnetic flux density b is expressed via a vector
potential a as b = curla. Here, it is introduced in Ωa only.
We choose a ∈ A(Ωa) with

A(Ωa) =
{
a ∈ H(curl; Ωa) |
a× nΩa = ā× nΩa on Γe ∩ ∂Ωa

}
, (4)

with ā × nΩa a fixed trace on Γe ∩ ∂Ωa. For conciseness,
we place all conducting materials in Ωh, and Ampère’s law
reads curlh = 0 in Ωa. We multiply this equation by a test
function a′ in the space A0(Ωa) with homogeneous essential
boundary conditions a×nΩa = 0 on Γe ∩∂Ωa, and integrate
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the product over Ωa. We obtain

(curlh ,a′)Ωa
= 0

⇔ (h , curla′)Ωa
− 〈h× nΩa ,a

′〉(Γh∩∂Ωa)∪Γm
= 0, (5)

using a Green identity. Prescribing the value of h × nΩa

on Γh ∩ ∂Ωa constitutes a natural boundary condition for
the a-formulation. For conciseness, we consider homogeneous
natural boundary conditions on Γh ∩ ∂Ωa. Therefore, after
introducing the vector potential a, the formulation amounts to
finding a ∈ A(Ωa) such that ∀a′ ∈ A0(Ωa),

(ν curla , curla′)Ωa
− 〈h× nΩa ,a

′〉Γm
= 0, (6)

with the reluctivity ν = µ−1. On Γm, the tangential magnetic
field is still unknown. It will be coupled with the formulation
in Ωh that we derive next.

In Ωh, we use the h-formulation with curl-free functions in
ΩC
h,c, also called the h-φ-formulation. This is a weak form of

Faraday’s law. We consider N distinct conducting subdomains
Ωh,ci of Ωh,c, with i ∈ C = {1, 2, . . . , N}, on which we
impose either the current or the voltage. The current is imposed
on a subset CI of C, and the voltage is imposed on the
complementary set CV . In the h-formulation, the magnetic
field h is sought in H(Ωh) defined as

H(Ωh) =
{
h ∈ H(curl; Ωh) | curlh = 0 in ΩC

h,c,

h× n = h̄× nΩh on Γh ∩ ∂Ωh, Ii(h) = Ii for i ∈ CI
}
.

(7)

Only curl-free functions are considered for h in the non-
conducting domain ΩC

h,c, so that the current density j = curlh
is exactly zero in ΩC

h,c, by construction. Functions associated
with net electrical currents in the conducting regions (that are
not gradients of a scalar potential) are however still considered,
they form a cohomology basis of dimension N [15]. Each
of these functions can be associated with a (group of) con-
ducting subdomain(s) Ωh,ci of Ωh,c, i ∈ C = {1, 2, . . . , N}.
The notation Ii(h) denotes the net current Ii flowing in (a
group) of conductor(s) i for a given function h [16], i.e., the
circulation of h along a closed loop Ci around that (group of)
conductor(s):

Ii(h) =

∮
Ci
h · d`. (8)

The corresponding applied voltage is denoted below by Vi
(voltage per unit length in 2D). Either Ii or Vi must be
imposed for each i. Note that imposing a zero curl in ΩC

h,c
drastically reduces the number of degrees of freedom in
the function space (7), after discretization. Indeed, in 2D
problems with in-plane magnetic field or 3D problems, with
Whitney basis functions [17], only one unknown per node is
necessary, compared to one unknown per edge for the "full
h-formulation".

The weak form is obtained by projecting Faraday’s law on
test functions, ∀h′ ∈ H0(Ωh),(

∂t(µh) ,h′
)

Ωh
+
(
curl e ,h′

)
Ωh

= 0

⇔
(
∂t(µh) ,h′

)
Ωh

+
(
e , curlh′

)
Ωh

−
〈
e× nΩh ,h

′〉
(Γe∩∂Ωh)∪Γm

= 0. (9)

The space H0(Ωh) for test functions is with homogeneous
essential boundary conditions, h×nΩh = 0 on Γh∩∂Ωh and
Ii(h) = 0 for i ∈ CI .

In ΩC
h,c, curlh′ = 0. In Ωh,c, e = ρ curlh. We model lo-

calized power sources and their associated current and voltage
on each conducting subdomain as proposed in [16], [18]. For
conciseness again, we consider homogeneous natural boundary
conditions on Γe ∩ ∂Ωh. Formulation (9) then becomes(

∂t(µh) ,h′
)

Ωh
+
(
ρ curlh , curlh′

)
Ωh,c

−
〈
e× nΩh ,h

′〉
Γm

= −
∑
i∈C

ViIi(h′), (10)

with the Vi’s being natural "boundary" conditions for i ∈ CV .
For i ∈ CI , the current Ii is imposed, then Ii(h′) = 0 and
the global term does not enter the problem. It can however be
exploited to build a circuit equation, to compute the voltage
Vi associated with the imposed current Ii as a post-processing
quantity. Conversely, for i ∈ CV , the voltage Vi is imposed,
then Ii is a degree of freedom and the global term enters the
system of equations [18].

On Γm, the tangential electric field e is still unknown. It
will be coupled with the formulation in Ωa.

The final step in the h-a-formulation derivation consists in
coupling the two separate formulations (6) and (10) in Ωa and
Ωh. The tangential trace of the magnetic field on Γm in (6)
can be directly expressed in terms of the magnetic field h of
(10). Similarly, the tangential trace of the electric field on Γm
in (10) can be expressed in terms of the vector potential a
of (6), with e = −∂ta− grad v. In fact, only the −∂ta term
contributes to the integral (see Appendix).

The resulting coupled h-a-formulation reads:
From an initial solution at time t = 0, find h ∈ H(Ωh)

and a ∈ A(Ωa) such that, for t > 0, ∀h′ ∈ H0(Ωh), and
∀a′ ∈ A0(Ωa),(

∂t(µh) ,h′
)

Ωh
+
(
ρ curlh , curlh′

)
Ωh,c

+
〈
∂ta× nΩh ,h

′〉
Γm

= −
∑
i∈C

ViIi(h′),

〈h× nΩa ,a
′〉Γm
− (ν curla , curla′)Ωa

= 0.

(11)

The discrete function spaces must be chosen with care. In
particular, the choice of basis functions spanning the trace
space on Γm will affect the stability of the method. Different
possibilities will be analyzed in section III.

B. Coupled formulation 2 - t-a-formulation for thin tapes

The second formulation we consider is the so-called t-
a-formulation for modeling thin superconducting tapes [7].
The tape is modeled as a line in 2D (a surface in 3D).
The current density inside the tape is described via a current
vector potential whereas the external magnetic flux density is
expressed as the curl of a magnetic vector potential, naturally
allowing discontinuous tangential components of the magnetic
field across the tape. This t-a-formulation can be viewed
as a geometric limit case of the h-a-formulation for thin
geometries. It possesses the same continuity properties and
advantages.
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In [2], this formulation is derived from the h-a-formulation
with a thin-sheet approximation. Circuit coupling is then
performed by means of winding functions [19].

Here, we present a version of the t-a-formulation following
a different approach for circuit coupling. With the same
philosophy as in [18], in each tape we either strongly impose
the current intensity, directly in the function space, or weakly
impose the voltage, with a circuit equation contained in the
formulation. The formulation is valid in 2D or 3D. The
stability analysis will be conducted in 2D in section IV.

n

`

I nΓw

∂Γ−
w ∂Γ+

w

Ωa

Γw

(a) 2D problem.

∂Γ−
w

∂Γ+
w

Γw

Ωa

nΓw

I

V

(b) 3D problem (for illustration).

Fig. 2: Conventions for the t-a-formulation derivation. (a) 2D case,
a tape with current density perpendicular to the modeled plane. (b)
3D case with a tape loop, e.g., a racetrack coil. In 3D, the effect of
an external voltage/current source is modeled on an arbitrary cross-
section.

This t-a-formulation applies to situations with thin conduct-
ing domains. Let us consider a conducting domain Γw ⊂ Ωa
of thickness w, see Fig. 2. We start from the classical a-
formulation in the whole domain Ωa, with homogeneous
natural boundary conditions for conciseness: find a ∈ A(Ωa)
such that ∀a′ ∈ A0(Ωa),

(ν curla , curla′)Ωa
− (j ,a′)Γw

= 0, (12)

with a given current density j (A/m2) in Γw. Instead of
modeling the tape Γw as a volume, we collapse it into a
surface and replace j by a surface current density k = wj
(A/m), perpendicular to the normal vector n. This constitutes
the main approximation of the formulation: the thickness is not
represented in the geometry but introduced inside the equation.
Possible variations of j across the thickness are therefore
chosen not to be modeled.

Definition (4) implies that the vector potential a ∈ A(Ωa)
is continuous across Γw, but allows h×n = ν curla×n to be
discontinuous. Actually, we can show that (h1−h2)×n = k
is weakly satisfied (with an upward normal, h1 is the field on
the top of the tape and h2 is the field below).

If the current density were known, the problem would be
closed. Here, we want to represent eddy currents and an
equation for the distribution of k is required. Since the current
density is divergence free (magnetodynamic regime), we can
express the current density j via a current vector potential t
defined up to a gradient such that j = curl t. To gauge t, we
choose it along the normal to the tape, i.e., t = tn [7].

For simplicity, in 3D, we restrict ourselves to closed current
loops. The tape boundary ∂Γw is decomposed into two disjoint

parts, ∂Γ−w and ∂Γ+
w , as represented in Fig. 2. We model a

possible power source on an arbitrary cross-section of the tape
that imposes either a current intensity I or a voltage V . On
lateral edges ∂Γ−w and ∂Γ+

w , j ·nΓw = 0 so t is constant. Let
us (strongly) fix it to 0 on ∂Γ−w and let its value, denoted by
T , remain free on the other lateral edge ∂Γ+

w . The value of T
is related to the total injected current intensity I . Indeed, on
any cross-section S of the tape, using Stokes’ theorem,

I =

∫
S

j · dS =

∫
S

curl t · dS =

∮
∂S

t · d`∂S

= w(t|∂Γ+
w
− t|∂Γ−w

) = wT. (13)

To obtain a weak formulation for t, we use Faraday’s law,
∂tb+ curl e = 0, more specifically its component along n. It
amounts to finding t ∈ T (Γw), such that ∀t′ ∈ T0(Γw),

0 = 〈∂tb , t′〉Γw + 〈curl (ρ j) , t′〉Γw
⇔ 0 = 〈∂t(curla) , t′〉Γw + 〈curl (ρ curl t) , t′〉Γw
⇔ 0 = 〈∂ta , curl t′〉Γw + 〈ρ curl t , curl t′〉Γw

− 〈(e+ ∂ta)× nΓw , t
′〉∂Γw

, (14)

where we expressed the normal flux density b·n via the vector
potential of the a-formulation. Note that the outer normal nΓw

of Γw arising from Green’s identities is different from n, see
Fig. 2. The spaces T and T0 will be defined later.

The last term in (14) is exploited to impose global quanti-
ties, such as current intensity or voltage. The electric field in
an a-formulation is expressed as e = −∂ta − grad v, with a
scalar electric potential v. Because t′ = 0 on ∂Γ−n , the line
integral in (14) reads

〈(e+ ∂ta)× nΓw , t
′〉∂Γw

= −〈grad v × nΓw , T
′n〉∂Γ+

w

= −〈grad v · ` , T ′〉∂Γ+
w

= −V T ′, (15)

with ` = nΓw × n, and V being the net potential difference
(V) applied by the generator in 3D. In 2D, V is a voltage per
unit length (V/m) in the out-of-plane direction. In the tape,
either the total current I or the associated voltage V must
be imposed. As with the h-a-formulation, if the current I is
imposed, then t′ = 0 on ∂Γ+

n , and the equation does not enter
the problem. It can however be used as a circuit equation to
compute the voltage V associated with the imposed current I ,
as a post-processing quantity. Conversely, if the voltage V is
imposed, then I is a degree of freedom and Eq. 15 enters the
system of equations.

We now consider N distinct tapes Γw,i with i ∈ C =
{1, 2, . . . , N}. The union of these tapes is Γw. Current is
imposed on a subset CI of C whereas voltage is imposed
on the complementary set CV . For conciseness, we consider
homogeneous natural boundary conditions on Γh. The t-a-
formulation reads as follows:

From an initial solution, find a ∈ A(Ωa) and t ∈ T (Γw),
such that for all time instants and ∀a′ ∈ A0(Ωa), ∀t′ ∈
T0(Γw),

(ν curla , curla′)Ωa
− 〈w curl t ,a′〉Γw = 0,

〈w ∂ta , curl t′〉Γw + 〈w ρ curl t , curl t′〉Γw
= −

∑
i∈C

ViIi(t′),

(16)
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with Ii(t′) = wT ′i = I ′i being the net current flowing in tape
i for the potential t′. The space T (Γw) (resp. T0(Γw)) is the
set of functions t = tn such that curl t is in the dual space
of the relevant trace space on Γw of functions in A(Ωa), with
t = 0 on ∂Γ−w , and t = (Ii/w)n (resp. t = 0) on ∂Γ+

w,i for
i ∈ CI . Since in 2D the vector potential a has only one out-
of-plane component, A(Ωa) can be identified with H1(Ωa)
(see chapter 2 of Ref. [10]). With z being the direction of the
current density, perpendicular to the 2D plane, if Γw ∩Γe = ∅
[20], we can choose t in

T (Γw) =
{
t = tn

∣∣ (z · curl t) ∈ H−1/2(Γw),

t = 0 on ∂Γ−w , t = Ii/w on ∂Γ+
w,i for i ∈ CI

}
. (17)

As with the coupled h-a-formulation, the discrete function
spaces must be chosen with care. In particular, the choice of
basis functions spanning the trace space on Γw will affect the
stability of the method. Different possibilities will be analyzed
in section III.

III. DISCRETIZATION AND OSCILLATIONS

To proceed, we discuss different discretization schemes and
their consequences on the stability of the coupled formulations.

For the numerical resolution, the domain Ω is discretized as
Ωδ with a finite element mesh of characteristic size δ. Function
spaces for h, a and t are approximated by basis functions on
the finite elements and we denote the approximated functions
by hδ , aδ , and tδ . We then integrate over time with an implicit
Euler method and solutions to nonlinear systems are obtained
by Newton-Raphson iterations.

We focus on 2D problems, such as those represented in
Figs. 1(a) and 2(a). Finite element modeling is performed by
GetDP [21] and finite element meshes are generated by Gmsh
[22]1.

All three fields hδ , aδ , and tδ of the coupled formulations
(11) and (16) are approximated by 1-forms [23]. The h-a-
formulation is b-conform in Ωδa and h-conform in Ωδh. The
t-a-formulation is b-conform in Ωδa and the current density
j = curl t in Γδw is a 2-form so that the continuity of its normal
component is satisfied [23]. Note that the lack of h-conformity
for the t-a-formulation in Ωδa naturally allows the tangential
magnetic field n× (ν curlaδ×n) to be discontinuous across
each tape, while the discontinuity strength is enforced weakly
by means of the surface terms.

A. Lowest order Whitney basis functions

The simplest approximation spaces are generated by lowest
order Whitney edge functions for the three fields [17]. We use
the following notation: n ∈ Ω̄δ or e ∈ Ω̄δ refers to nodes n or
edges e in Ωδ and on its boundary ∂Ωδ . To exclude entities
on a boundary Γδ , we note n (or e) ∈ Ω̄δ \ Γδ explicitly.

We build the magnetic field hδ in Ωδh as follows,

hδ =
∑

e∈Ω̄δh,c\∂Ωδh,c

heψe+
∑

n∈Ω̄C,δ
h,c

φn gradψn+
∑
i∈C

Ii ci, (18)

1Model files for the main test cases are available on www.life-hts.uliege.be.

with ψe being the edge function of edge e, ψn the node
function of node n, and ci a discontinuous basis function as-
sociated with the cut related to conducting region i, defined on
a transition layer. Note that gradψn and ci can be expressed
as sums of edge functions [18], [16]. We denote by Hδ,1(Ωδh)
the space generated by these lowest order functions, including
essential boundary conditions. We have Hδ,1(Ωδh) ⊂ H(Ωδh).
Coefficients he, φn and Ii are the degrees of freedom for hδ .
We have Ii(hδ) = Ii with the notation of formulation (11),
i.e., Ii is the net current intensity flowing in (a group of)
conductor(s) i for the field hδ .

The magnetic vector potential aδ in Ωδa in both h-a and t-a
formulations reads

aδ =
∑
n∈Ω̄δa

an ψnz, (19)

where ψnz is a "perpendicular edge function" associated
with node n, such that aδ is chosen along z, the direction
perpendicular to the plane in 2D. The field aδ automatically
satisfies the Coulomb gauge condition divaδ = 0. We de-
note by Aδ,1(Ωδa) the space generated by these lowest order
functions, including essential boundary conditions. We also
have Aδ,1(Ωδa) ⊂ A(Ωδa). Coefficients an are the degrees of
freedom for aδ .

The current vector potential tδ reads

tδ =
∑

n∈Γ̄δw\(∂Γ−,δw ∪∂Γ+,δ
w )

tn ψnn+
∑
i∈C

Ti `i, (20)

with ψnn being a "perpendicular edge function" associated
with node n and `i the perpendicular edge function associated
with the node on ∂Γ+,δ

w,i . (Note that in 3D, `i is the sum
of all perpendicular edge functions associated with nodes on
∂Γ+,δ

w,i ; this is a global basis function.) We denote by T δ,1(Γδw)
the space generated by these functions, including essential
boundary conditions. Again, we have T δ,1(Γδw) ⊂ T (Γδw).
Coefficients tn and Ti are the degrees of freedom for tδ .

In h-a and t-a coupled formulations, using lowest order
Whitney elements for both fields may lead to spurious os-
cillations. Let us consider a typical example with the h-a-
formulation, in which the numerical solution exhibits non-
physical oscillations when the coupling interface Γδm separates
two regions of different permeabilities. The geometry is de-
picted in Fig. 1: two bars (height: 10 mm, width: 20 mm) are
stacked and subjected to an external field. The bottom bar is
a superconductor (n = 20, jc = 3 × 108 A/m2) and defines
Ωδh, whereas the top bar is a linear ferromagnet (µr = 1000,
σferro = 0). The air and ferromagnetic domains constitute Ωδa.
With hδ ∈ Hδ,1(Ωh) and aδ ∈ Aδ,1(Ωa), spurious oscillations
of the magnetic flux can be clearly seen at the interface of the
two materials, see Figs. 3(a) and 4(a).

It is important to emphasize that oscillations are not a con-
sequence of the nonlinearity of the equations. Indeed, if the su-
perconductor is replaced by a linear conductor, stability issues
remain, whatever the conductor resistivity value. Oscillations
only appear in situations in which there is a permeability jump
across the coupling boundary Γm, irrespective of whether Γm
is adjacent to a conducting material or not. The oscillation
amplitude decreases when the permeability of the ferromagnet

www.life-hts.uliege.be
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is lowered. Note that oscillations can therefore easily be
missed in case of nonlinear ferromagnets, that saturate quickly
at the large fields involved in many superconducting systems.

(a) hδ ∈ Hδ,1(Ωδh) and aδ ∈ Aδ,1(Ωδa).

(b) hδ ∈ Hδ,2(Ωδh) and aδ ∈ Aδ,1(Ωδa).

Fig. 3: Details of two solutions for the stacked bar problem, magnetic
flux density near the material interface (arrows represent the average
value in each element). (a) Unstable choice of function spaces,
resulting in non-physical oscillations on Γδm. (b) Example of a
stabilized problem with hierarchical basis functions on Γδm for hδ .

0
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δ
·n

Ω
δ h
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)

0.1mm above the interface
0.1mm below the interface

(a) hδ ∈ Hδ,1(Ωδh) and aδ ∈ Aδ,1(Ωδa).
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b
δ
·n

Ω
δ h
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)

0.1mm above the interface
0.1mm below the interface

(b) hδ ∈ Hδ,2(Ωδh) and aδ ∈ Aδ,1(Ωδa).

Fig. 4: Normal magnetic flux density distribution (horizontal position
in abscissa) just above and just below the material interface for the
stacked bar problem. (a) Unstable choice of function spaces, large
spurious oscillations take place. (b) Stabilized solution, with higher
order basis functions on Γδm for hδ .

Similarly, in the numerical solution of the t-a-formulation,
the current density displays oscillations across the tape, typ-
ically at low imposed currents. A representative example is
shown in Figs. 2(a) and 5(a), illustrating a single straight
tape in air (thickness: 10−3 mm, width: 10 mm, n = 20,
jc = 2.5× 108 A/m2), with an imposed current intensity. The
magnetic flux density distribution does not exhibit problematic
oscillations, but the current density is clearly non-physical. See
Figs. 5(b) and 6. Again, such oscillations also appear with
linear (ohmic) materials. The oscillation amplitude however
decreases when the resistivity increases.

Oscillations can be avoided by choosing adapted function
spaces. We investigate one possibility in the following subsec-
tion.

Γw

Ωa

Γe

(a) Problem geometry and mesh. (b) Magn. flux density (zoom).

Fig. 5: Simple problem for the t-a-formulation: a superconducting
tape in air, with an imposed total current intensity. (a) The problem
geometry and domains. (b) Magnetic flux density in the neighbour-
hood of the tape, solution with first-order basis functions. Oscillations
are not visible when looking at bδ only.

0

0.5

1

jδ z
/
j c

(-
)

aδ ∈ Aδ,1(Ωδa) and tδ ∈ T δ,1(Γδw)

aδ ∈ Aδ,2(Ωδa) and tδ ∈ T δ,1(Γδw)

Fig. 6: Current density for the simple tape problem. Non-physical
oscillations appear when using lowest-order elements for both fields.
Enriching the space for aδ on Γδw stabilizes the problem and spurious
oscillations disappear.

B. Enriched spaces with hierarchical basis functions

One possibility to stabilize the problem is to enrich locally
the function space of one of the two fields for the h-a-
formulation. This is illustrated in Figs. 3 and 4, where using
higher-order basis functions for hδ on Γδm allows to overcome
non-physical oscillations. Likewise, enriching the aδ space
yields a similar effect. For the t-a-formulation, enriching the
aδ space stabilizes the problem, see Fig. 6. This procedure
is a solution inspired by well-known results in mixed formu-
lations in mechanics, such as Stokes’ (nearly) incompressible
flow problems [24]. However, the situation is not the same,
since fields in these problems are coupled inside the domain,
whereas here, we couple the fields via boundaries of domains.

The above observations and the stability results of the next
sections motivate the use of higher-order functions. Since we
will only enrich functions locally, we use hierarchical func-
tions [25], [26]. In 2D, we formally associate these functions
with edges. Let ne,1 and ne,2 be the nodes at the ends of an
edge e, we define the associated hierarchical basis function
ψ2,e := ψne,1ψne,2 . It vanishes on all nodes and is referred to
as a bubble function.



7

To obtain stable formulations, it is sufficient to intro-
duce these functions on the domain interfaces only: Γδm
or Γδw. We add to the expansion (18) for hδ the term∑
e∈Γδm

φ2,e gradψ2,e, with the new degrees of freedom φ2,e.
Note that as curl grad · = 0, the new terms do not contribute
to the current density. We denote the resulting function space
by Hδ,2(Ωδh).

For the magnetic vector potential aδ , we add to (19) the
term

∑
e∈Γδ a2,e ψ2,ez, with Γδ = Γδm in the h-a-formulation

and Γδ = Γδw in the t-a-formulation, z being the out-of-plane
direction, and a2,e representing the new degrees of freedom.
The associated function space is denoted by Aδ,2(Ωδa).

Finally, although it will lead to issues with the Newton-
Raphson technique, we consider for the current vector poten-
tial tδ in 2D the term

∑
e∈Γw

t2,e ψ2,en, in addition to decom-
position (20), with t2,e being the new degrees of freedom, to
construct the space T δ,2(Γδw).

As explained in what follows, these hierarchical basis func-
tions enrich the polynomial order of the span of function traces
on Γδm and Γδw by one. This will be shown to be sufficient to
obtain stability in sections V and VI.

C. Function space for the traces on Γδm and Γδw
The coupling integrals involve the traces of functions on the

interfaces Γδm and Γδw. The range of these traces depends on
the chosen function spaces and, as we will see, determines the
stability of the system.

The trace hδ × n|Γδm of hδ ∈ Hδ,1(Ωδh), involved in the
coupling terms of the h-a-formulation is in the z-direction
and is piecewise constant. With the hierarchical enrichment, it
becomes piecewise linear. Similarly, in the t-a-formulation,
with tδ ∈ T δ,1(Γδw), curl t is along z and is piecewise
constant. For tδ ∈ T δ,2(Γδw), curl t is piecewise linear.

The vector potential aδ ∈ Aδ,1(Ωδa) is along z. It is
continuous and piecewise linear. For a ∈ Aδ,2(Ωδa), it is
continuous and piecewise quadratic.

Now that the discrete framework has been presented, we
summarize the basics of saddle point stability analysis, and
then apply the theory on the two-bar and single-tape examples,
in order to explain how a proper choice of approximation space
leads to a stable coupled formulation.

IV. BASICS OF STABILITY ANALYSIS

Mixed finite element formulations face numerical stability
issues if function spaces for their unknowns are not chosen
consistently. Typically, spurious oscillations in the numerical
solution may arise and affect the accuracy of the method, as
illustrated in the previous section. The theory of mixed finite
element formulations [10] provides compatibility conditions
on spaces to ensure the numerical stability of the problem.

Both the h-a-formulation and t-a-formulation fit into the
classical framework of perturbed saddle-point problems, as
will be shown in sections V and VI. In this section, we present
the stability conditions relevant to this class of problems,
following closely Brezzi’s classical treatment [10]. We also
describe the inf-sup test [27], a numerical test which is used
for checking the compatibility of specific functions spaces in
the discrete setting.

A. Theory

We consider two Hilbert spaces V and Q and their dual
space V ′ and Q′ containing all linear functionals V → R and
Q → R, respectively. On these spaces, we build perturbed
saddle-point problems of the following form: for given f ∈ V ′
and g ∈ Q′, find u ∈ V and p ∈ Q such that{

a(u, v) + b(v, p) = 〈f, v〉, ∀v ∈ V,
b(u, q)− c(p, q) = 〈g, q〉, ∀q ∈ Q,

(21)

with a(·, ·), b(·, ·), and c(·, ·) continuous bilinear forms on
V × V , V × Q, and Q × Q, respectively, and where 〈f, v〉
(resp. 〈g, q〉) denotes the value of the functional f (resp. g) at v
(resp. q). The term −c(p, q) is considered to be a perturbation
of the classical saddle-point problem.

In practice, we solve a discretized version of (21) and
look for uδ and pδ in finite-dimensional spaces V δ ⊆ V
and Qδ ⊆ Q respectively (the finite element spaces), with
operators defined on these discrete spaces.

Spaces V δ and Qδ are equipped with norms ‖ · ‖V δ and
‖ · ‖Qδ . Dual norms are used for elements in the dual spaces
V δ
′ and Qδ

′. The norms of the bilinear operators are finite
and are defined as follows:

‖aδ‖ := sup
uδ,vδ∈V δ

a(uδ, vδ)

‖uδ‖V δ‖vδ‖V δ
, (22)

‖bδ‖ := sup
uδ∈V δ,qδ∈Qδ

b(uδ, qδ)

‖uδ‖V δ‖qδ‖Qδ
, (23)

‖cδ‖ := sup
pδ,qδ∈Qδ

c(pδ, qδ)

‖pδ‖Qδ‖qδ‖Qδ
. (24)

Before stating the main stability theorem, we finally intro-
duce the kernels

Kδ := {vδ ∈ V δ : b(vδ, qδ) = 0,∀qδ ∈ Qδ}, (25)

Hδ := {qδ ∈ Qδ : b(vδ, qδ) = 0,∀vδ ∈ V δ}. (26)

Let (ū, p̄) be the exact solution of the perturbed saddle
point-problem (21). With a(·, ·) and c(·, ·) symmetric, positive
semi-definite continuous bilinear forms, Proposition 5.5.2. in
[10] states that, if a(·, ·) is coercive on Kδ and c(·, ·) is
coercive on Hδ , i.e., if there exists two constants αδ > 0
and γδ > 0 such that

a(vδ, vδ) ≥ αδ‖v‖2V δ , ∀v
δ ∈ Kδ, (27)

c(qδ, qδ) ≥ γδ‖q‖2Qδ , ∀q
δ ∈ Hδ, (28)

and if there exists a constant βδ > 0 such that

inf
qδ∈(Hδ)⊥

sup
vδ∈(Kδ)⊥

b(vδ, qδ)

‖qδ‖Qδ‖vδ‖V δ
= βδ > 0 (29)

is satisfied on the orthogonal complements ·⊥ of Hδ and Kδ ,
then the discretized problem has a unique solution (uδ, pδ)
satisfying

‖uδ − ū‖V δ + ‖pδ − p̄‖Qδ

≤ Cδ
(

inf
vδ∈V δ

‖vδ − ū‖V δ + inf
qδ∈Qδ

‖qδ − p̄‖Qδ
)
, (30)
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with a constant Cδ depending only on the stability constants,
αδ , βδ , γδ , and continuity constants, ‖aδ‖, ‖bδ‖, ‖cδ‖.

If these values can be chosen independent of the mesh, Cδ

is bounded with mesh refinement and the problem is said to
be stable.

Condition (29) is the so-called inf-sup condition, or the
Babuška-Brezzi condition [12], [28].

B. Numerical Inf-Sup Test
In most practical cases, the inf-sup value βδ cannot be

evaluated analytically. Instead, it can be estimated with a
numerical inf-sup test [10], [27]. On a given mesh, unknown
fields vδ ∈ V δ and qδ ∈ Qδ are described by vectors vδ and qδ

containing the degrees of freedom. We introduce orthogonal
matrices Nδ

V δ and Nδ
Qδ such that ‖vδ‖2V δ =

(
vδ
)T

Nδ
V δv

δ and

‖qδ‖2Qδ =
(
qδ
)T

Nδ
Qδq

δ and we introduce Bδ , the coupling

matrix satisfying b(vδ, qδ) =
(
qδ
)T

Bδvδ , obtained from the
finite element assembly.

In terms of these matrices, Eq. (29) reads

inf
qδ∈(Hδ)⊥

sup
vδ∈(Kδ)⊥

(
qδ
)T

Bδvδ(
(qδ)

T
Nδ
Qδ
qδ
)(

(vδ)
T
Nδ
V δ
vδ
) = βδ.

(31)

The inf-sup value βδ in Eq. (31) can be shown to be equal
to the square root of the smallest non-zero eigenvalue of the
generalized eigenvalue problem [29](

Bδ
(
Nδ
V δ

)−1 (
Bδ
)T
)
qδ = λδNδ

Qδq
δ. (32)

Note that we disregard zero eigenvalues because they are
associated with eigenvectors defining elements in Hδ that are
not involved in the inf-sup condition. Note also that the norm
‖bδ‖ is the square root of the largest eigenvalue of problem
(32).

The inf-sup test consists in computing βδ values for pro-
gressively refined meshes. If the values appear to be bounded
from below by a positive value independent of mesh size, and
if the other conditions (coerciveness and continuity) are met,
then the sequence of problems is considered to be stable. On
the other hand, if some eigenvalues tend to zero, we expect
stability issues, because the inf-sup condition then fails to
be satisfied. Even if the numerical test does not provide a
formal proof of stability, experience shows that it is a reliable
indicator [27], [11].

In the next sections we apply these results on the h-a- and
t-a-formulations in order to investigate the stability.

From now on, we only keep the ·δ superscript for functions
spaces, continuity, coerciveness and inf-sup values, to stress
the importance of mesh-dependency. As we will only stay in
the discrete setting, we drop it elsewhere, for conciseness.

V. ANALYSIS OF THE h-a-FORMULATION

For simplicity, we start by presenting the h-a-formulation on
materials with constant permeability and conductivity. We will
then extend the conclusions to systems with superconductors
and nonlinear ferromagnetic materials.

The analysis is restricted to 2D problems with in-plane
magnetic field.

A. Linear materials

We begin the analysis with a linear problem, i.e., materials
that have a constant resistivity and reluctivity, but are not
necessarily homogeneous.

Using the implicit Euler method, at a given time step n,
the solution (a,h) := (an,hn) depends on the solution at the
previous time step (·)n−1. If we multiply the first equation of
(11) by the time step ∆t, we obtain the system(

µh ,h′
)

Ωh
+
(
∆t ρ curlh , curlh′

)
Ωh,c

+
〈
a× nΩh ,h

′〉
Γm

= 〈s,h′〉,
〈h× nΩa ,a

′〉Γm
− (ν curla , curla′)Ωa

= 0,

(33)

with the right-hand side functional defined by

〈s,h′〉 =
〈
an−1 × nΩh ,h

′〉
Γm

+
(
(µh)n−1 ,h

′)
Ωh

−∆t
∑
i∈C

ViIi(h′). (34)

System (33) can be rewritten as(
µ h ,h′

)
Ωh

+
(
∆t ρ curlh , curlh′

)
Ωh,c

+
〈
a× nΩh ,h

′〉
Γm

= 〈s,h′〉,
〈a′ × nΩh ,h〉Γm

− (ν curla , curla′)Ωa
= 0,

(35)

using nΩa = −nΩh . For conciseness, we consider homo-
geneous essential boundary conditions. Problem (35) can be
cast into the form of Eq. (21), with identical function spaces
for unknown functions and test functions. The case of non-
homogeneous essential boundary conditions can be easily
treated, and the analysis remains unchanged.

After discretization, we obtain a system of linear equations
in a matrix-vector form. The formulation will be considered
stable if a sequence of problems on progressively refined
meshes satisfies conditions (22) to (24) and (27) to (29), with
constants αδ , βδ , γδ , ‖aδ‖, ‖bδ‖, and ‖cδ‖ independent of
mesh size.

In Hδ0(Ωh) and Aδ0(Ωa), we define the norms

‖h‖2Hδ0 = (µ0 h ,h)Ωh
+ (∆t0 ρ0 curlh , curlh)Ωh,c

, (36)

‖a‖2Aδ0 = (ν0 curla , curla)Ωa
, (37)

with ρ0 being a characteristic resistivity (e.g., the resistivity
of region Ωh,c) and ∆t0 a characteristic time step. With these
norms, whatever the discretization, ∀h ∈ Hδ0(Ωh) and ∀a ∈
Aδ0(Ωa),

a(h,h) =
(
µh ,h

)
Ωh

+ (∆t ρ curlh , curlh)Ωh,c

≥ min(µ/µ0,∆t/∆t0 · ρ/ρ0) ‖h‖2Hδ0 , (38)

c(a,a) = (ν curla , curla)Ωa

≥ min(ν/ν0) ‖a‖2Aδ0 , (39)

which proves the coerciveness properties (27), and (28), with
αδ ≥ min(µ/µ0,∆t/∆t0 ·ρ/ρ0) > 0, and γδ ≥ min(ν/ν0) >
0. Similarly, we can prove ‖aδ‖ ≤ max(µ/µ0,∆t/∆t0 ·
ρ/ρ0) <∞, and ‖cδ‖ ≤ max(ν/ν0) <∞, using the Cauchy-
Schwarz inequality.
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To guarantee stability, the inf-sup condition remains to be
met. There must exist a βδ > 0 independent of mesh size that
fulfils

inf
a∈H⊥

sup
h∈K⊥

〈a× nΩh ,h〉Γm

‖a‖Aδ0‖h‖Hδ0
≥ βδ. (40)

We also have to verify that ‖bδ‖ is bounded from above. To
check both properties, a numerical inf-sup test is conducted
on the stacked bar geometry represented in Fig. 1, with linear
homogeneous materials (ρ = 1.6×10−8 Ωm, µr = 1000, non-
conducting ferromagnet), for different discretization choices.
Results are shown in Fig. 7, with ρ0 = 1.6× 10−8 Ωm.

First, the norm ‖bδ‖ of the coupling operator is bounded
from above independent of the function spaces, as shown
in the upper part of Fig. 7. However, the evolution of the
inf-sup value shows two different behaviors. When exactly
one of the two fields h and a is enriched with hierarchical
elements, the inf-sup value does not decrease and (30) ensures
the stability of the associated problem. Otherwise, the inf-sup
value typically decreases with βδ ∼ δ and stability issues, i.e.,
oscillations in the numerical solution, are expected.
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Fig. 7: Evolution of the inf-sup constant βδ from Eq. (40) and norm
‖b‖ with mesh refinement (δ → 0) on the stacked bar linear problem.
Four cases are considered: h ∈ Hδ,i0 (Ωh) and a ∈ Aδ,j0 (Ωa), for
(i, j) ∈ {1, 2}×{1, 2}. We can only conclude on stability when i 6=
j, i.e., when exactly one space is enriched with respect to Whitney
elements (black lines).

In practice, when choosing h ∈ Hδ,10 (Ωh) and a ∈
Aδ,10 (Ωa), or h ∈ Hδ,20 (Ωh) and a ∈ Aδ,20 (Ωa), we do observe
such oscillations. However, they only appear at interfaces with
large permeability jumps. In contrast, when no ferromagnetic
material is present in the geometry, the numerical results are
satisfying. These behaviors can be explained by Proposition
4.3.1 of [10], that follows from the Lax-Milgram theorem.
When a(·, ·) and c(·, ·) are coercive, irrespective of whether the
coupling operator satisfies the inf-sup condition, the problem

has a unique solution (a,h) and we have the following
inequality:

αδ

2
‖a‖Aδ0 +

γδ

2
‖h‖Hδ0 ≤

1

2αδ
‖sa‖(Aδ0)′ +

1

2γδ
‖sh‖(Hδ0)′ ,

(41)

with sa and sh the right-hand sides of the final system (after
treating non-homogeneous essential boundary conditions). The
problem is actually always stable in the sense of Eq. (41).
However, the provided bound deteriorates when either αδ or γδ

decreases, which is the case when considering a ferromagnetic
material in Ωa. Indeed, when 1/ν →∞ in Ωa, γδ → 0. With
practical mesh resolutions, the bound in Eq. (41) is not strict
enough and stability issues arise.

As said above, we can extend to spaces with non-
homogeneous essential boundary conditions. In practice, when
dealing with ferromagnetic materials adjacent to Γm, it is
therefore recommended to choose either h ∈ Hδ,1(Ωh) and
a ∈ Aδ,2(Ωa), or h ∈ Hδ,2(Ωh) and a ∈ Aδ,1(Ωa), to
guarantee stability.

B. Interpretation

To illustrate the link between the eigenvalue problem and
the spurious oscillations, we investigate Eq. (32) applied on
the stacked-bar problem with linear materials.

For the stability analysis, we are only interested in the non-
zero eigenvalues, whose associated eigenvectors form a basis
of H⊥. These eigenvalues are represented in Fig. 8 for both
stable and unstable choices of function spaces, at two different
discretization levels. The same conclusions as from Fig. 7
can be drawn, by looking only at the smallest eigenvalue. In
particular, with the choice h ∈ Hδ,1(Ωh) and a ∈ Aδ,1(Ωa),
the problem is unstable because it contains modes of smaller
and smaller eigenvalues when the mesh is refined. The eigen-
vector associated with the smallest eigenvalue is represented in
Fig. 9(a). Clearly, such a mode (among others) is also activated
in the unstable solution of Fig. 3(a) with nonlinear materials.
Its weight in the coupling term 〈a× nΩh ,h〉Γm

is small with
respect to its norm.

Of course, such oscillating modes still exist in the H⊥ basis
with the stable choice h ∈ Hδ,1(Ωh) and a ∈ Aδ,2(Ωa), but
their eigenvalues have been leveled up and new modes not
longer introduce smaller and smaller eigenvalues.

C. Nonlinear materials

We consider anhysteretic ferromagnets in Ωa, characterized
by a saturation law for the permeability, and type-II supercon-
ductors in Ωh, whose resistivity is described by a power law.
The associated system of equations after time discretization is
as in Eq. 33, but with variable coefficients ρ and ν. With
a Newton-Raphson linearization, we obtain a problem that
is iteratively solved. The solution (h,a) := (hkn,a

k
n) at

time step n and iteration k depends on the solutions at the
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Fig. 8: Distribution of the square root of the non-zero eigenvalues
from problem (32) on the stacked-bar geometry with linear materials.
The smallest values are the inf-sup values βδ , the largest are the
norms ‖bδ‖. Eigenvectors associated with the square and circle points
are represented in Fig. 9.
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(a) Associated with the square in Fig. 8, smallest non-zero eigenvalue.
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Fig. 9: Eigenvectors associated with the two dots in Fig. 8, for h ∈
Hδ,1(Ωh) and a ∈ Aδ,1(Ωa) (unstable) and the same mesh as in
Fig. 3. The thick curve is Γm.

previous time step (·)n−1 and previous iteration (·)k−1. Using,

nΩa = −nΩh , we obtain the linear system(
µ0 h ,h

′)
Ωh

+
(

∆t (∂e/∂j)
k−1 curlh , curlh′

)
Ωh,c

+
〈
a× nΩh ,h

′〉
Γm

= 〈s̃h,h′〉,
〈a′ × nΩh ,h〉Γm

−
(
(∂h/∂b)k−1 curla , curla′

)
Ωa

= 〈s̃a,a′〉,

(42)

with right-hand side functionals s̃h and s̃a defined by

〈s̃h,h′〉 =
〈
an−1 × nΩh ,h

′〉
Γm

+
(
(µh)n−1 ,h

′)
Ωh

−
(

∆t ((ρI− ∂e/∂j) curlh)
k−1

, curlh′
)

Ωh,c

−∆t
∑
i∈C

ViIi(h′),
(43)

〈s̃a,a′〉 = −
(

((νI− ∂h/∂b) curla)
k−1

, curla′
)

Ωa
(44)

with the identity matrix I. The structure is similar to that of
system (35). Coerciveness and continuity of diagonal opera-
tors, a(·, ·) and c(·, ·), in the sense of norms (36) and (37)
are only satisfied if the eigenvalues of matrices (∂e/∂j)

k−1

and (∂h/∂b)
k−1 are bounded away from zero and infinity,

independently of the mesh. This is the case for the differential
reluctivity with classical saturation laws. However, using the
power law, the differential resistivity tends to zero for small
current densities so that we cannot verify the coerciveness
condition with norm (36). Note that continuity is not satisfied
either.

As for the inf-sup value βδ and norm ‖bδ‖, results are
exactly similar to those in Fig. 7. In contrast to the linear
case, we do not establish a formal proof of stability due to this
particular operator a(·, ·). However, we found that in practice,
the conclusions obtained for the linear case remain and lead
to the same recommendations. When choosing h ∈ Hδ,1(Ωh)
and a ∈ Aδ,2(Ωa), or h ∈ Hδ,2(Ωh) and a ∈ Aδ,1(Ωa), we
observe stable results, whereas the other combinations lead to
spurious oscillations. Note that in the large fields involved with
high-temperature superconductors, the ferromagnets usually
saturate quickly, and the oscillation amplitude decreases.

To avoid the technical difficulty due to the power law, we
could use a regularized version, with two limiting resistivity
values. See also [30], [31] for a rigorous treatment of the power
law in simpler formulations.

VI. ANALYSIS OF THE t-a-FORMULATION

We directly consider a nonlinear material in Γw, e.g., a
superconducting tape. Including a nonlinear ferromagnetic
material in Ωa does not raise any additional issue. We restrict
the analysis to 2D problems with an in-plane magnetic field.
With the same procedure as for the h-a-formulation, for every
iteration k at time step n, we obtain the following discrete
linear system for the unknowns t ∈ T δ0 (Γw) and a ∈ Aδ0(Ωa):

(ν curla , curla′)Ωa
− 〈w curl t ,a′〉Γw = 0,

−〈w curl t′ ,a〉Γw −
〈
∆t w (∂e/∂j)k−1 curl t , curl t′

〉
Γw

= 〈s̃t, t′〉,
(45)
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with a right-hand side functional s̃t defined by

〈s̃t, t′〉 = −〈w an−1 , curl t′〉Γw + ∆t
∑
i∈C

ViIi(t′)

+
〈

∆t w ((ρI− ∂e/∂j) curl t)k−1
, curl t′

〉
Γw
. (46)

In Aδ0(Ωa), we use the same norm as for the h-a-
formulation,

‖a‖2Aδ0 = (ν0 curla , curla)Ωa
, (47)

and we have αδ ≥ min(ν/ν0) > 0, and ‖aδ‖ ≤ max(ν/ν0) <
∞, whatever the mesh.

For the discrete inf-sup condition, to avoid the evaluation
of a H−1/2(Γw)-norm, we use a mesh-dependent norm, as
is common in the discrete setting [20]. We assume a uniform
mesh on Γw, for which there exists a δ and two finite non-zero
constants c1 and c2 such that c1δ ≤ δe ≤ c2δ, ∀e ∈ Γw, with
δe the length of edge e. For a given mesh-length δ, we define

‖t‖2T δ0 = δ 〈w ∆t0 ρ0 curl t , curl t〉Γw , (48)

with ∆t0 and ρ0 being characteristic time step and resistivity
values. The inverse inequality [32]

‖µ‖H−1/2(Γ) ≥ c
√
δ‖µ‖L2(Γ), ∀µ ∈ H−1/2(Γ), (49)

with a finite constant c implies that satisfying the inf-sup test
with norm (48) is a necessary condition for stability in terms
of norm ‖ · ‖H−1/2(Γw). In [33], the condition is also shown
to be sufficient.

Fig. 10 gives the evolution of the inf-sup constant for a
sequence of progressively refined meshes, for four choices
of function spaces. Analogously to the h-a-formulation, it is
only when exactly one approximation space is enriched with
hierarchical elements that the inf-sup constant is uniformly
bounded from below. These choices are good candidates if we
want a stable formulation. On the other hand, when choosing
t ∈ T δ,10 (Γw) and a ∈ Aδ,10 (Ωa), or t ∈ T δ,20 (Γw) and
a ∈ Aδ,20 (Ωa), the test suggests that stability issues may arise.
In practice, this is indeed the case, see Fig. 6.

We observed that with the choice t ∈ T δ,20 (Γw) and
a ∈ Aδ,10 (Ωa), the Newton-Raphson procedure faces conver-
gence troubles. Using a fixed point method does not help
either. No satisfying numerical solution has been obtained
in the nonlinear case. On the other hand, when considering
a linear conductor, no particular issue is encountered and
oscillations disappear, as expected from the inf-sup test. This
result indicates that this choice for t and a is acceptable
for linear conductors. We therefore believe that the issue for
nonlinear materials is related to the iterative technique rather
than to the structure of the saddle-point problem.

In contrast to that, the choice t ∈ T δ,10 (Γw) and a ∈
Aδ,20 (Ωa) provides good results and no issues have been
observed. Our results match the observations in [8], where
the function space for a is however enriched in the whole Ωa
domain, instead of only in the vicinity of Γw.

To conclude, extending to spaces with non-homogeneous
essential boundary conditions, we recommend choosing t ∈
T δ,1(Γw) and a ∈ Aδ,2(Ωa). This choice ensures a bounded
inf-sup value and does not exhibit any stability issues.

10−2 10−1

10−4

10−3

10−2

Mesh size δ/W

In
f-

su
p

va
lu

e
β
δ

T δ,10 and Aδ,20

T δ,20 and Aδ,10

T δ,10 and Aδ,10

T δ,20 and Aδ,20

Fig. 10: Evolution of the inf-sup constant with mesh refinement (δ →
0) on the simple tape problem (n = 20, jc = 2.5 × 1010 A/m2).
Four cases are considered t ∈ T δ,i0 (Ωh) and a ∈ Aδ,j0 (Ωa), for
(i, j) ∈ {1, 2} × {1, 2}. We observe instabilities when i = j. The
usual Newton-Raphson scheme with i = 2, j = 1 does not converge.
Only the case i = 1, j = 2 leads to satisfying results.

VII. CONCLUSION

In this work, we presented two coupled finite element
formulations. The h-a-formulation is efficient for systems
containing both superconductors and ferromagnetic materials,
whose nonlinear constitutive laws are most efficiently han-
dled by combining different formulations. The so-called t-a-
formulation is an efficient method for modeling superconduct-
ing tapes as surfaces. Two fields are used and coupled on the
tapes. We proposed a new derivation of the t-a-formulation
with global constraints, on either current or voltage for each
tape.

Both formulations are mixed on the coupling interfaces
and the associated systems of equations take the form of a
perturbed saddle point problem. They fit into the classical
framework of mixed formulations. It is well known that this
problem structure may be exposed to stability issues, e.g.,
spurious oscillations in the numerical solutions, if function
spaces are not chosen correctly. We illustrated the stability
issues arising for naive choices of function spaces. We then
investigated the formulations stability in the discrete setting,
using the classical mixed formulation theory, for several
choices of finite element spaces, restricting our study to 2D
problems.

The conclusions for both formulations are similar. Using
basis functions of different suitable polynomial orders on the
coupling interfaces helps to avoid stability issues, whereas
with identical orders, the inf-sup value fails to be uniformly
bounded above zero. For the h-a-formulation, either the space
for h, or the space for a should be enriched, e.g., locally
via hierarchical elements on the coupling boundary. For the
t-a-formulation, the only satisfying configuration consists in
using second-order hierarchical elements on the tapes for a
while using first-order elements for t.

Extending to 3D problems would constitute an interesting
research topic in further works. Other solutions for stabilizing
the problem could also be considered, such as using dual
meshes on coupling interfaces for the two fields.
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APPENDIX

A. Coupling term in the h-a-formulation

The surface integral to be coupled with the a-field of the
a-formulation reads 〈

e× nΩh ,h
′〉

Γm
. (50)

In this work, Γm is only placed at the exterior of the conducting
domain, or on its boundary. On Γm, the trace h′ × nΩh is
therefore locally that of the gradient of a scalar function:
h′ = gradφ′ (intersections with possible cut functions
are already treated in the global term ViIi(h′)). Note that
even when Γm is the boundary of the conducting domain, a
scalar potential is introduced on its surface (see Eq. (18)).
Consequently, we have:

〈e× nΩh , gradφ′〉Γm
= 〈curl (φ′e) ,nΩh〉Γm

− 〈φ′curl e ,nΩh〉Γm
. (51)

If Γm is a closed surface, then the first term in the right-hand
side vanishes by Stokes theorem. In the second term, only the
curl of e appears. Because e = −∂ta−grad v in Ωa, we have
curl e = −curl (∂ta).

If Γm is not a closed surface, then Γm∪ (Γe∩∂Ωh)∪ (Γh∩
∂Ωh) is closed. On (Γh ∩ ∂Ωh), φ′ = 0, and on (Γe ∩ ∂Ωh),
we considered homogeneous natural boundary conditions so
e × nΩh = 0 ⇒ curl e · nΩh = 0. The treatment of non-
homogeneous natural boundary conditions is straightforward
as well.
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