Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., et al. (2019). Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979-2015) and identification of dominant processes. The Cryosphere, 13(1), 281–296. https://doi.org/10.5194/tc-13-281-2019
Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard, G., et al. (2017). Seasonal variations in drag coefficient over a sastrugi-covered snowfield in Coastal East Antarctica. Boundary-Layer Meteorology, 164(1), 107–133. https://doi.org/10.1007/s10546-017-0242-5
Amory, C., & Kittel, C. (2019). Brief communication: Rare ambient saturation during drifting snow occurrences at a coastal location of east antarctica. The Cryosphere, 13(12), 3405–3412. https://doi.org/10.5194/tc-13-3405-2019
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., & Fettweis, X. (2021). Performance of mar (v3.11) in simulating the drifting-snow climate and surface mass balance of adélie land, east antarctica. Geoscientific Model Development, 14(6), 3487–3510. https://doi.org/10.5194/gmd-14-3487-2021
Brun, E., David, P., Sudul, M., & Brunot, G. (1992). A nutnerical tnodel to simulate snow-cover stratigraphy for operational avalanche forecasting. Journal of Glaciology, 38(128), 13–22. https://doi.org/10.3189/s0022143000009552
De Ridder, K., & Gallée, H. (1998). Land surface–induced regional climate change in Southern Israel. Journal of Applied Meteorology, 372(11), 1470–1485. https://doi.org/10.1175/1520-0450(1998)037<1470:lsircc>2.0.co;2
Dutton, E. G., & Michalsky, J. (2015). Basic measurements and other of radiation from the Baseline Surface Radiation Network (BSRN) Station South Pole (SPO) in the years 1994 to 2012, reference list of 226 datasets [data set]. PANGAEA. https://doi.org/10.1594/PANGAEA.15000410.1594/PANGAEA.150004
Fettweis, X., Franco, B., Tedesco, M., Van Angelen, J. H., Lenaerts, J. T., Van Den Broeke, M. R., & Gallée, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model. The Cryosphere, 7(2), 469–489. https://doi.org/10.5194/tc-7-469-2013
Field, P. R., Lawson, R. P., Brown, P. R. A., Lloyd, G., Westbrook, C., Moisseev, D., & Sullivan, S. (2017). Secondary ice production: Current state of the science and recommendations for the future. Meteorological Monographs, 58, 7–17. https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1
Gallée, H., & Duynkerke, P. G. (1997). Air-snow interactions and the surface energy and mass balance over the melting zone of west greenland during the greenland ice margin experiment. Journal of Geophysical Research, 102(D12), 13813–13824. https://doi.org/10.1029/96jd03358
Gallée, H., & Gorodetskaya, I. V. (2010). Validation of a limited area model over dome c, Antarctic Plateau, during winter. Climate Dynamics, 34(1), 61–72. https://doi.org/10.1007/s00382-008-0499-y
Gallée, H., Guyomarc’h, G., & Brun, E. (2001). Impact of snow drift on the Antarctic ice sheet surface mass balance: Possible sensitivity to snow-surface properties. Boundary-Layer Meteorology, 99(1), 1–19. https://doi.org/10.1023/a:1018776422809
Gallée, H., & Schayes, G. (1994). Development of a three-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Monthly Weather Review, 122(4), 671–685. https://doi.org/10.1175/1520-0493(1994)122<0671:doatdm>2.0.co;2
Geerts, B., Pokharel, B., & Kristovich, D. A. R. (2015). Blowing snow as a natural glaciogenic cloud seeding mechanism. Monthly Weather Review, 143(12), 5017–5033. https://doi.org/10.1175/mwr-d-15-0241.1
Gilbert, E., Orr, A., King, J. C., Renfrew, I. A., Lachlan-Cope, T., Field, P. F., & Boutle, I. A. (2020). Summertime cloud phase strongly influences surface melting on the Larsen c ice shelf, Antarctica. Quarterly Journal of the Royal Meteorological Society, 146(729), 1575–1589. https://doi.org/10.1002/qj.3753
Gorodetskaya, I. V., Kneifel, S., Maahn, M., Van Tricht, K., Thiery, W., Schween, J. H., et al. (2015). Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. The Cryosphere, 9(1), 285–304. https://doi.org/10.5194/tc-9-285-2015
Gossart, A., Souverijns, N., Gorodetskaya, I. V., Lhermitte, S., Lenaerts, J. T. M., Schween, J. H., et al. (2017). Blowing snow detection from ground-based ceilometers: Application to East Antarctica. The Cryosphere, 11(2755–2), 772–2772. https://doi.org/10.5194/tc-11-2755-2017
Hahn, L. C., Storelvmo, T., Hofer, S., Parfitt, R., & Ummenhofer, C. C. (2020). Importance of orography for Greenland cloud and melt response to atmospheric blocking. Journal of Climate, 33(10), 4187–4206. https://doi.org/10.1175/jcli-d-19-0527.1
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., & Fettweis, X. (2020). Greater Greenland ice sheet contribution to global sea level rise in CMIP6. Nature Communications, 11(1), 6289. https://doi.org/10.1038/s41467-020-20011-8
Hofer, S., Tedstone, A. J., Fettweis, X., & Bamber, J. L. (2017). Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Science Advances, 3(6). https://doi.org/10.1126/sciadv.1700584
Hofer, S., Tedstone, A. J., Fettweis, X., & Bamber, J. L. (2019). Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nature Climate Change, 9(7), 523–528. https://doi.org/10.1038/s41558-019-0507-8
Jakobs, C. L., Reijmer, C. H., Smeets, C. J. P. P., Trusel, L. D., van de Berg, W. J., van den Broeke, M. R., & van Wessem, J. M. (2020). A benchmark dataset of In Situ Antarctic surface melt rates and energy balance. Journal of Glaciology, 66(256), 291–302. https://doi.org/10.1017/jog.2020.6
Kay, J. E., & Gettelman, A. (2009). Cloud influence on and response to seasonal Arctic Sea ice loss. Journal of Geophysical Research, 114(D18), D18204. https://doi.org/10.1029/2009jd011773
Kay, J. E., L’Ecuyer, T., Chepfer, H., Loeb, N., Morrison, A., & Cesana, G. (2016). Recent advances in Arctic cloud and climate research. Current Climate Change Reports, 2(4), 159–169. https://doi.org/10.1007/s40641-016-0051-9
King, J. C., Turner, J., Colwell, S., Lu, H., Orr, A., Phillips, T., & Marshall, G. J. (2021). Inhomogeneity of the surface air temperature record from Halley, Antarctica. Journal of Climate, 34(12), 4771–4783. https://doi.org/10.1175/jcli-d-20-0748.1
Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., et al. (2021). Diverging future surface mass balance between the Antarctic Ice shelves and grounded ice sheet. The Cryosphere, 15(3), 1215–1236. https://doi.org/10.5194/tc-15-1215-2021
Lachlan-Cope, T. (2010). Antarctic clouds. Polar Research, 829(2), 150–158. https://doi.org/10.1111/j.1751-8369.2010.00148.x
Lawson, R. P., Baker, B. A., Zmarzly, P., O’Connor, D., Mo, Q., Gayet, J.-F., & Shcherbakov, V. (2006). Microphysical and optical properties of atmospheric ice crystals at south pole station. Journal of Applied Meteorology and Climatology, 45(11), 1505–1524. https://doi.org/10.1175/jam2421.1
Lawson, R. P., & Gettelman, A. (2014). Impact of Antarctic mixed-phase clouds on climate. Proceedings of the National Academy of Sciences, 111(51), 18156–18161. https://doi.org/10.1073/pnas.1418197111
Le Toumelin, L., Amory, C., Favier, V., Kittel, C., Hofer, S., Fettweis, X., & Kayetha, V. (2021). Sensitivity of the surface energy budget to drifting snow as simulated by mar in coastal Adelie Land, Antarctica. The Cryosphere, 15(8), 3595–3614. https://doi.org/10.5194/tc-15-3595-2021
Lenaerts, J. T. M., & van den Broeke, M. R. (2012). Modeling drifting snow in antarctica with a regional climate model: 2. results. Journal of Geophysical Research: Atmospheres, 117(D5), 1505–1524. https://doi.org/10.1029/2010jd015419
Lenaerts, J. T. M., van den Broeke, M. R., Déry, S. J., van Meijgaard, E., van de Berg, W. J., Palm, S. P., & Sanz Rodrigo, J. (2012). Modeling drifting snow in Antarctica with a regional climate model: 1. methods and model evaluation. Journal of Geophysical Research, 117(D5), D05108. https://doi.org/10.1029/2011jd016145
Lupi, A., Lanconelli, C., & Vitale, V. (2021). Basic and other measurements of radiation at Concordia station 2006-01 et seq. [data set]. PANGAEA. https://doi.org/10.1594/PANGAEA.935421
Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C., & Winker, D. (2009). A description of hydrometeor layer occurrence statistics derived from the first year of merged cloudsat and calipso data. Journal of Geophysical Research, 114(D8), D00A26. https://doi.org/10.1029/2007jd009755
Mahesh, A., Eager, R., Campbell, J. R., & Spinhirne, J. D. (2003). Observations of blowing snow at the South Pole. Journal of Geophysical Research, 108(D22), 4707. https://doi.org/10.1029/2002jd003327
Mann, G. W., Anderson, P. S., & Mobbs, S. D. (2000). Profile measurements of blowing snow at Halley, Antarctica. Journal of Geophysical Research, 105, 24491–24508. https://doi.org/10.1029/2000JD900247
Marchand, R., Mace, G. G., Ackerman, T., & Stephens, G. (2008). Hydrometeor detection using cloudsat—An earth-orbiting 94-ghz cloud radar. Journal of Atmospheric and Oceanic Technology, 25(4), 519–533. https://doi.org/10.1175/2007jtecha1006.1
Morcrette, J. J. (2002). The surface downward longwave radiation in the ECMWF forecast system. Journal of Climate, 15(14), 1875–1892. https://doi.org/10.1175/1520-0442(2002)015<1875:tsdlri>2.0.co;2
Mottram, R., Hansen, N., Kittel, C., Wessem, M. v., Agosta, C., & Amory, C. (2021). What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. The Cryosphere, 15, 3751–3784. https://doi.org/10.5194/tc-15-3751-2021
Palm, S. P., Kayetha, V., & Yang, Y. (2018). Toward a satellite-derived climatology of blowing snow over antarctica. Journal of Geophysical Research: Atmospheres, 123(1810), 123. https://doi.org/10.1029/2018jd028632
Parish, T. R., & Bromwich, D. H. (2007). Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Monthly Weather Review, 135(5), 1961–1973. https://doi.org/10.1175/MWR3374.1
Schmidt, R. A. (1980). Threshold wind-speeds and elastic impact in snow transport. Journal of Glaciology, 26, 453–467. https://doi.org/10.3189/S0022143000010972
Schmithüsen, H. (2020). Basic and other measurements of radiation at Neumayer Station (2019-07) [data set]. In H. Schmithüsen (Ed.), Basic and other measurements of radiation at station Neumayer (1992-04 et seq): PANGAEAAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. https://doi.org/10.1594/PANGAEA.919128
Sotiropoulou, G., Sullivan, S., Savre, J., Lloyd, G., Lachlan-Cope, T., Ekman, A. M. L., & Nenes, A. (2020). The impact of secondary ice production on Arctic stratocumulus. Atmospheric Chemistry and Physics, 20(3), 1301–1316. https://doi.org/10.5194/acp-20-1301-2020
Storelvmo, T., & Tan, I. (2015). The wegener–bergeron–findeisen process—Its discovery and vital importance for weather and climate. Meteorologische Zeitschrift, 24, 455–461. https://doi.org/10.1127/metz/2015/0626
Tan, I., & Storelvmo, T. (2019). Evidence of Strong Contributions From Mixed-Phase Clouds to Arctic Climate Change. Geophysical Research Letters, 46(5), 2894–2902. https://doi.org/10.1029/2018GL081871
Tan, I., Storelvmo, T., & Zelinka, M. D. (2016). Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352(6282), 224–227. https://doi.org/10.1126/science.aad5300
Yamanouchi, T., & Kawaguchi, S. (1984). Longwave radiation balance under a strong surface inversion in the Katabatic Wind Zone, Antarctica. Journal of Geophysical Research: Atmospheres, 89(D7), 11771–11778. https://doi.org/10.1029/jd089id07p11771
Yang, Y., Anderson, A., Kiv, D., Germann, J., Fuchs, M., Palm, S., & Wang, T. (2021). Study of Antarctic blowing snow storms using MODIS and CALIOP observations with a machine learning model. Earth and Space Science, 8(1), e2020EA001310. https://doi.org/10.1029/2020ea001310
Yang, Y., Palm, S. P., Marshak, A., Wu, D. L., Yu, H., & Fu, Q. (2014). First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica. Geophysical Research Letters, 41(2), 730–735. https://doi.org/10.1002/2013gl058932