Ač, A., Malenovský, Z., Olejníčková, J., Gallé, A., Rascher, U., Mohammed, G., Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 168 (2015), 420–436.
Allen, R., Pereira, L., Raes, D., Smith, M., FAO: Irrigation and Drainage Paper No. 56. 1998, Food and Agriculture Organization of the United Nations (FAO), Rome.
Bayat, B., van der Tol, C., Yang, P., Verhoef, W., Extending the SCOPE model to combine optical reflectance and soil moisture observations for remote sensing of ecosystem functioning under water stress conditions. Remote Sens. Environ. 221 (2019), 301–386.
Berger, K., Atzberger, C., Danner, M., D'Urso, G., Mauser, W., Vuolo, F., Hank, T., Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: a review study. Remote Sens., 10, 2018.
Bogena, H.R., Borg, E., Brauer, A., Dietrich, P., Hajnsek, I., Merz, B., Pütz, T., Schmid, H.P., Wollschläger, U., Vereecken, H., Zacharias, S., TERENO: German network of terrestrial environmental observatories. J. Large Scale Res. Facilit. 2 (2016), 1–8.
Brogi, C., Huisman, J.A., Herbst, M., Weihermüller, L., Klosterhalfen, A., Montzka, C., Reichenau, T.G., Vereecken, H., Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics-based quantitative soil information. Vadose Zone J. 19 (2020), 1–24.
Butler, W.L., Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29 (1978), 345–378.
Cai, G., Vanderborght, J., Couvreur, V., Mboh, C.M., Vereecken, H., Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation. Vadose Zone J., 17, 2018, 160125.
Cai, G., Vanderborght, J., Langensiepen, M., Schnepf, A., Hüging, H., Vereecken, H., Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions. Hydrol. Earth Syst. Sci. 22 (2018), 2449–2470.
Camino, C., Gonzalez-Dugo, V., Hernandez, P., Zarco-Tejada, P.J., Radiative transfer Vcmax estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance in rainfed and irrigated plant phenotyping trials. Remote Sens. Environ., 213, 2019.
Campbell, P.K., Huemmrich, K.F., Middleton, E.M., Ward, L.A., Julitta, T., Daughtry, C.S., Burkart, A., Russ, A.L., Kustas, W.P., Diurnal and seasonal variations in chlorophyll fluorescence associated with photosynthesis at leaf and canopy scales. Remote Sens., 11, 2019.
Celesti, M., van der Tol, C., Cogliati, S., Panigada, C., Yang, P., Pinto, F., Rascher, U., Miglietta, F., Colombo, R., Rossini, M., Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion. Remote Sens. Environ. 215 (2018), 97–108.
Damm, A., Elber, J., Erler, A., Gioli, B., Hamdi, K., Hutjes, R., Kosvancova, M., Meroni, M., Miglietta, F., Moersch, A., Moreno, J., Schickling, A., Sonnenschein, R., Udelhoven, T., van der Linden, S., Hostert, P., Rascher, U., Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Global Change Biol. 16 (2010), 171–186.
Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J.A., Zhang, Y., Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., Moya, I., Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ., 241, 2020.
Drusch, M., Moreno, J., Bello, U.D., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton, E.M., Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schüttemeyer, D., Verhoef, W., Concept – ESA's earth explorer 8. IEEE Trans. Geosci. Remote Sens. 55 (2017), 1273–1284.
Farquhar, G., von Caemmerer, S., Berry, J., A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1980), 78–90.
Feddes, R., Bresler, E., Neuman, S., Field test of a modified numerical model for water uptake by root systems. Water Resour. Res. 10 (1974), 1199–1206.
Féret, J.B., Gitelson, A., Noble, S., Jacquemoud, S., Prospect-d: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193 (2017), 204–215.
Genty, B., Briantais, J.M., Baker, N.R., Electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990 (1989), 87–92.
Ghazaryan, G., König, S., Rezaei, E.E., Siebert, S., Dubovyk, O., Analysis of drought impact on croplands from global to regional scale: a remote sensing approach. Remote Sens. 12 (2020), 1–17.
Heino, M., Puma, M.J., Ward, P.J., Gerten, D., Heck, V., Siebert, S., Kummu, M., Two-thirds of global cropland area impacted by climate oscillations. Nat. Commun. 9 (2018), 1–10.
Herbst, M., Hellebrand, H.J., Bauer, J., Huisman, J.A., Šimunek, J., Weihermüller, L., Graf, A., Vanderborght, J., Vereecken, H., Multiyear heterotrophic soil respiration: evaluation of a coupled CO2 transport and carbon turnover model. Ecol. Model. 214 (2008), 271–283.
Herbst, M., Pohlig, P., Graf, A., Weihermüller, L., Schmidt, M., Vanderborght, J., Vereecken, H., Quantification of water stress induced within-field variability of carbon dioxide fluxes in a sugar beet stand. Agric. Forest Meteorol., 297, 2021, 108242.
Huang, J., Gómez-Dans, J.L., Huang, H., Ma, H., Wu, Q., Lewis, P.E., Liang, S., Chen, Z., Xue, J.H., Wu, Y., Zhao, F., Wang, J., Xie, X., Assimilation of remote sensing into crop growth models: current status and perspectives. Agric. Forest Meteorol., 276-277, 2019, 107609.
Hupet, F., Lambot, S., Feddes, R.A., Van Dam, J.C., Vanclooster, M., Estimation of root water uptake parameters by inverse modeling with soil water content data. Water Resour. Res., 39, 2003.
Jenkinson, D., Coleman, K., The turnover of organic carbon in subsoils: Part 2. Modelling carbon turnover. Eur. J. Soil Sci. 59 (2008), 400–413.
Jonard, F., De Cannière, S., Brüggemann, N., Gentine, P., Short Gianotti, D.J., Lobet, G., Miralles, D.G., Montzka, C., Pagán, B.R., Rascher, U., Vereecken, H., Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: current status and challenges. Agric. Forest Meteorol., 291, 2020.
Jopia, A., Zambrano, F., Pérez-Martínez, W., Vidal-Páez, P., Molina, J., Mardones, F.d.l.H., Time-series of vegetation indices (VNIR/SWIR) derived from sentinel-2 (A/B) to assess turgor pressure in Kiwifruit. ISPRS Int. J. Geoinf. 9 (2020), 1–18.
Julitta, T., Corp, L.A., Rossini, M., Burkart, A., Cogliati, S., Davies, N., Hom, M., Mac Arthur, A., Middleton, E.M., Rascher, U., Schickling, A., Colombo, R., Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers. Remote Sens., 8, 2016.
Klosterhalfen, A., Herbst, M., Weihermüller, L., Graf, A., Schmidt, M., Stadler, A., Schneider, K., Subke, J.A., Huisman, J.A., Vereecken, H., Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands. Ecol. Model. 363 (2017), 137–156.
Kuhnert, M., Yeluripati, J., Smith, P., Hoffmann, H., van Oijen, M., Constantin, J., Coucheney, E., Dechow, R., Eckersten, H., Gaiser, T., Grosz, B., Haas, E., Kersebaum, K.C., Kiese, R., Klatt, S., Lewan, E., Nendel, C., Raynal, H., Sosa, C., Specka, X., Teixeira, E., Wang, E., Weihermüller, L., Zhao, G., Zhao, Z., Ogle, S., Ewert, F., Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands. Eur. J. Agronomy 88 (2017), 41–52.
Kumar, M., Impact of climate change on crop yield and role of model for achieving food security. Environ. Monit. Assess., 188, 2016.
Lee, J.E., Berry, J.A., van der Tol, C., Yang, X., Guanter, L., Damm, A., Baker, I., Frankenberg, C., Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4. Global Change Biol. 21 (2015), 3469–3477.
Lee, J.E., Frankenberg, C., van der Tol, C., Berry, J.A., Guanter, L., Boyce, C.K., Fisher, J.B., Morrow, E., Worden, J.R., Asefi, S., Badgley, G., Saatchi, S., Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proc. R. Soc. B: Biol. Sci., 230, 2013.
Maes, W.H., Pagán, B.R., Martens, B., Gentine, P., Guanter, L., Steppe, K., Verhoest, N.E., Dorigo, W., Li, X., Xiao, J., Miralles, D.G., Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sens. Environ., 249, 2020.
Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H.P., Schmidt, M., Steinbrecher, R., A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. Forest Meteorol. 169 (2013), 122–135.
Mohammed, G., Colombo, R., Middleton, E., Rascher, U., van der Tol, C., Ladislav, N., Goulas, Y., Perez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovsky, Z., Gastellu-Etchegorry, J.P., Miller, J.R., Guanter, L., Moreno, J., Moya, I., Berry, J., Frankenberg, C., Zarco-Tejeda, P., Remote sensing of solar-induced chlorophyll fluorescence (SIF) invegetation: 50 years of progress. Remote Sens. Environ., 231, 2019.
Murchie, E.H., Lawson, T., Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64 (2013), 3983–3998.
Nash, J., Sutcliffe, J., River flow forecasting through conceptual models: Part I – A discussion of principles. J. Hydrol. 10 (1970), 282–290.
Norton, A.J., Rayner, P.J., Koffi, E.N., Scholze, M., Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content. Geosci. Model Dev. 11 (2018), 1517–1536.
Pacheco-Labrador, J., Perez-Priego, O., El-Madany, T.S., Julitta, T., Rossini, M., Guan, J., Moreno, G., Carvalhais, N., Martín, M.P., Gonzalez-Cascon, R., Kolle, O., Reischtein, M., van der Tol, C., Carrara, A., Martini, D., Hammer, T.W., Moossen, H., Migliavacca, M., Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sens. Environ., 234, 2019, 111362, 10.1016/j.rse.2019.111362.
Parazoo, N.C., Bowman, K., Fisher, J.B., Frankenberg, C., Jones, D.B., Cescatti, A., Pérez-Priego, Ó., Wohlfahrt, G., Montagnani, L., Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Global Change Biol. 20 (2014), 3103–3121.
Parkash, V., Singh, S., A review on potential plant-basedwater stress indicators for vegetable crops. Sustainability (Switzerland), 12, 2020.
Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C., Flexas, J., Pfündel, E.E., Moreno, J., Frankenberg, C., Berry, J.A., Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65 (2014), 4065–4095.
Qiu, B., Xue, Y., Fisher, J.B., Guo, W., Berry, J.A., Zhang, Y., Satellite chlorophyll fluorescence and soil moisture observations lead to advances in the predictive understanding of global terrestrial coupled carbon-water cycles. Global Biogeochem. Cycles 32 (2018), 360–375.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol. 11 (2005), 1424–1439.
Simunek, J., Suarez, D., Modeling of carbon dioxide transport and production in soil 1. Model development. Water Resour. Res. 29 (1993), 484–497.
Spitters, C., van Keulen, H., van Kraailingen, D., A Simple But Universal Crop Growth Simulation Model, SUCROS87. Simulation Monographs. 1988, PUDOC, Wageningen.
van der Tol, C., Rossini, M., Cogliati, S., Verhoef, W., Colombo, R., Rascher, U., Mohammed, G., A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops. Remote Sens. Environ. 186 (2016), 663–677.
Tolomio, M., Casa, R., Dynamic crop models and remote sensing irrigation decision support systems: a review of water stress concepts for improved estimation of water requirements. Remote Sens. 12 (2020), 1–34.
van der Tol, C., Berry, J.A., Campbell, P.K., Rascher, U., Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. Biogeosci. 119 (2014), 2312–2327.
van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 6 (2009), 3109–3129.
Vereecken, H., Huisman, J.A., Bogena, H., Vanderborght, J., Vrugt, J.A., Hopmans, J.W., On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour. Res. 46 (2008), 1–21.
Verhoef, A., Egea, G., Modeling plant transpiration under limited soil water: comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models. Agric. Forest Meteorol. 191 (2014), 22–32.
Verhoef, W., Jia, L., Xiao, Q., Su, Z., Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE Trans. Geosci. Remote Sens. 45 (2007), 1808–1822.
Verrelst, J., Pablo Rivera, J., van der Tol, C., Magnani, F., Mohammed, G., Moreno, J., Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced fluorescence?. Remote Sens. Environ., 8, 2015, 55-L.
Vilfan, N., van der Tol, C., Verhoef, W., Estimating photosynthetic capacity from leaf reflectance and Chl fluorescence by coupling radiative transfer to a model for photosynthesis. New Phytol. 223 (2019), 487–500.
Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., Rascher, U., Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: implications for improved estimates of gross primary productivity. Remote Sens. Environ. 184 (2016), 654–667.
Wieneke, S., Burkart, A., Cendrero-mateo, M.P., Julitta, T., Rossini, M., Schickling, A., Linking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales. Remote Sens. Environ. 219 (2018), 247–258.
Wohlfahrt, G., Gerdel, K., Migliavacca, M., Rotenberg, E., Tatarinov, F., Müller, J., Hammerle, A., Julitta, T., Spielmann, F.M., Yakir, D., Sun-induced fluorescence and gross primary productivity during a heat wave. Sci. Rep. 8 (2018), 1–9.
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., Reichstein, M., Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15 (2018), 5015–5030.
Yang, K., Ryu, Y., Dechant, B., Berry, J.A., Hwang, Y., Jiang, C., Kang, M., Kim, J., Kimm, H., Kornfeld, A., Yang, X., Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. Remote Sens. Environ. 216 (2018), 658–673.
Yang, P., van der Tol, C., Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sens. Environ. 209 (2018), 456–467.
Yang, P., van der Tol, C., Campbell, P.K., Middleton, E.M., Fluorescence Correction Vegetation Index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sens. Environ., 240, 2020.
Zhou, S., Medlyn, B., Sabaté, S., Sperlich, D., Colin Prentice, I., Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiol. 34 (2014), 1035–1046.