[en] ABSTRACT Over the last two decades, antimicrobial resistance has become a global
health problem. In Gram-negative bacteria, metallo-b-lactamases (MBLs), which inactivate
virtually all b-lactams, increasingly contribute to this phenomenon. The aim of this
study is to characterize VIM-52, a His224Arg variant of VIM-1, identified in a Klebsiella
pneumoniae clinical isolate. VIM-52 conferred lower MICs to cefepime and ceftazidime
compared to VIM-1. These results were confirmed by steady-state kinetic measurements,
where VIM-52 yielded a lower activity toward ceftazidime and cefepime but not against
carbapenems. Residue 224 is part of the L10 loop (residues 221 to 241), which borders
the active site. As Arg 224 and Ser 228 both play an important and interrelated role in
enzymatic activity, stability, and substrate specificity for the MBLs, targeted mutagenesis
at both positions was performed and further confirmed their crucial role for substrate
specificity.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
de Barsy, Marie
Mercuri, Paola ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Oueslati, Saoussen
Elisée, Eddy
Huang, Te-Din
Sacré, Pierre
Iorga, Bogdan I
Naas, Thierry
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Bogaerts, Pierre
Language :
English
Title :
Detection and Characterization of VIM-52, a New Variant of VIM-1 from a Klebsiella pneumoniae Clinical Isolate
Publication date :
18 October 2021
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
American Society for Microbiology, United States - District of Columbia
Theuretzbacher U. 2017. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr Opin Microbiol 39:106-112. https://doi.org/10.1016/j.mib.2017.10.028.
Boyd SE, Livermore DM, Hooper DC, Hope WW. 2020. Metallo-beta-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother 64:e00397-20. https://doi.org/10.1128/AAC.00397-20.
Sabath LD, Abraham EP. 1966. Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J 98:11C-13C. https://doi.org/10.1042/bj0980011c.
Hansen GT. 2021. Continuous evolution: perspective on the epidemiology of carbapenemase resistance among Enterobacterales and other Gram-negative bacteria. Infect Dis Ther 10:75-92. https://doi.org/10.1007/s40121 -020-00395-2.
Mojica MF, Bonomo RA, Fast W. 2016. B1-metallo-beta-lactamases: where do we stand? Curr Drug Targets 17:1029-1050. https://doi.org/10.2174/1389450116666151001105622.
Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, Rossolini GM. 1999. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 43:1584-1590. https://doi.org/10.1128/AAC.43.7.1584.
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046-5054. https://doi.org/10.1128/AAC.00774-09.
Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, Retailleau P, Iorga BI. 2017. Beta-lactamase database (BLDB)-structure and function. J Enzyme Inhib Med Chem 32:917-919. https://doi.org/10.1080/14756366.2017.1344235.
Oelschlaeger P, Ai N, Duprez KT, Welsh WJ, Toney JH. 2010. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? J Med Chem 53:3013-3027. https://doi.org/10.1021/jm9012938.
Borgianni L, Vandenameele J, Matagne A, Bini L, Bonomo RA, Frere JM, Rossolini GM, Docquier JD. 2010. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Antimicrob Agents Chemother 54:3197-3204. https://doi.org/10.1128/AAC.01336-09.
Franceschini N, Caravelli B, Docquier JD, Galleni M, Frere JM, Amicosante G, Rossolini GM. 2000. Purification and biochemical characterization of the VIM-1 metallo-beta-lactamase. Antimicrob Agents Chemother 44: 3003-3007. https://doi.org/10.1128/AAC.44.11.3003-3007.2000.
Garau G, Garcia-Saez I, Bebrone C, Anne C, Mercuri P, Galleni M, Frere JM, Dideberg O. 2004. Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 48:2347-2349. https://doi.org/10.1128/AAC.48.7.2347-2349.2004.
Garcia-Saez I, Docquier JD, Rossolini GM, Dideberg O. 2008. The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J Mol Biol 375:604-611. https://doi.org/10.1016/j.jmb.2007.11.012.
Lassaux P, Traore DA, Loisel E, Favier A, Docquier JD, Sohier JS, Laurent C, Bebrone C, Frere JM, Ferrer JL, Galleni M. 2011. Biochemical and structural characterization of the subclass B1 metallo-beta-lactamase VIM-4. Antimicrob Agents Chemother 55:1248-1255. https://doi.org/10.1128/AAC.01486-09.
Leiros HK, Edvardsen KS, Bjerga GE, Samuelsen O. 2015. Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-beta-lactamases. FEBS J 282:1031-1042. https://doi.org/10.1111/febs.13200.
Salimraj R, Hinchliffe P, Kosmopoulou M, Tyrrell JM, Brem J, van Berkel SS, Verma A, Owens RJ, McDonough MA, Walsh TR, Schofield CJ, Spencer J. 2019. Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-beta-lactamases. FEBS J 286:169-183. https://doi.org/10.1111/febs.14695.
Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA. 2015. Exploring the role of residue 228 in substrate and inhibitor recognition by VIM metallo-beta-lactamases. Biochemistry 54:3183-3196. https://doi.org/10.1021/acs.biochem.5b00106.
Karampatakis T, Antachopoulos C, Iosifidis E, Tsakris A, Roilides E. 2016. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in Greece. Future Microbiol 11:809-823. https://doi.org/10.2217/fmb -2016-0042.
Ludden C, Lotsch F, Alm E, Kumar N, Johansson K, Albiger B, Huang TD, Denis O, Hammerum AM, Hasman H, Jalava J, Raisanen K, Dortet L, Jousset AB, Gatermann S, Haller S, Cormican M, Brennan W, Del Grosso M, Monaco M, Schouls L, Samuelsen O, Pirs M, Cerar T, Oteo-Iglesias J, Perez-Vazquez M, Sjostrom K, Edquist P, Hopkins KL, Struelens MJ, Palm D, Monnet DL, Kohlenberg A. 2020. Cross-border spread of bla NDM-1- and bla OXA-48-positive Klebsiella pneumoniae: a European collaborative analysis of whole genome sequencing and epidemiological data, 2014 to 2019. Euro Surveill 25:2000627. https://doi.org/10.2807/1560-7917.ES.2020.25.20.2000627.
Pitt ME, Elliott AG, Cao MD, Ganesamoorthy D, Karaiskos I, Giamarellou H, Abboud CS, Blaskovich MAT, Cooper MA, Coin LJM. 2018. Multifactorial chromosomal variants regulate polymyxin resistance in extensively drug-resistant Klebsiella pneumoniae. Microb Genom 4:e000158. https://doi.org/10.1099/mgen.0.000158.
Cheng Z, Shurina BA, Bethel CR, Thomas PW, Marshall SH, Thomas CA, Yang K, Kimble RL, Montgomery JS, Orischak MG, Miller CM, Tennenbaum JL, Nix JC, Tierney DL, Fast W, Bonomo RA, Page RC, Crowder MW. 2019. A single salt bridge in VIM-20 increases protein stability and antibiotic resistance under low-zinc conditions. mBio 10:e02412-19. https://doi.org/10.1128/mBio.02412-19.
Merino M, Perez-Llarena FJ, Kerff F, Poza M, Mallo S, Rumbo-Feal S, Beceiro A, Juan C, Oliver A, Bou G. 2010. Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallobeta-lactamases. J Antimicrob Chemother 65:1950-1954. https://doi.org/10.1093/jac/dkq259.
Rodriguez-Martinez JM, Nordmann P, Fortineau N, Poirel L. 2010. VIM-19, a metallo-beta-lactamase with increased carbapenemase activity from Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother 54:471-476. https://doi.org/10.1128/AAC.00458-09.
Docquier JD, Lamotte-Brasseur J, Galleni M, Amicosante G, Frere JM, Rossolini GM. 2003. On functional and structural heterogeneity of VIM-type metallo-beta-lactamases. J Antimicrob Chemother 51:257-266. https://doi.org/10.1093/jac/dkg067.
Yamaguchi Y, Jin W, Matsunaga K, Ikemizu S, Yamagata Y, Wachino J, Shibata N, Arakawa Y, Kurosaki H. 2007. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J Med Chem 50: 6647-6653. https://doi.org/10.1021/jm701031n.
Bogaerts P, Yunus S, Massart M, Huang TD, Glupczynski Y. 2016. Evaluation of the BYG Carba test, a new electrochemical assay for rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. J Clin Microbiol 54:349-358. https://doi.org/10.1128/JCM.02404-15.
Bogaerts P, Rezende de Castro R, de Mendonca R, Huang TD, Denis O, Glupczynski Y. 2013. Validation of carbapenemase and extended-spectrum beta-lactamase multiplex endpoint PCR assays according to ISO 15189. J Antimicrob Chemother 68:1576-1582. https://doi.org/10.1093/jac/dkt065.
Bogaerts P, Huang TD, Rodriguez-Villalobos H, Bauraing C, Deplano A, Struelens MJ, Glupczynski Y. 2008. Nosocomial infections caused by multidrug-resistant Pseudomonas putida isolates producing VIM-2 and VIM-4 metallo-beta-lactamases. J Antimicrob Chemother 61:749-751. https://doi.org/10.1093/jac/dkm529.
Cornish-Bowden A. 1995. Fundamentals of enzyme kinetics. Portland Press, London, United Kingdom.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605-1612. https://doi.org/10.1002/jcc.20084.
Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E. 2013. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845-854. https://doi.org/10.1093/bioinformatics/btt055.
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. 2001. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474-6487. https://doi.org/10.1021/jp003919d.
Parrinello M, Rahman A. 1981. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182-7190. https://doi.org/10.1063/1.328693.
Hoover WG. 1985. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A Gen Phys 31:1695-1697. https://doi.org/10.1103/physreva.31.1695.
Nosé S. 1984. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511-519. https://doi.org/10.1063/1.447334.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. 1995. A smooth particle mesh Ewald method. J Chem Phys 103:8577-8593. https://doi.org/10.1063/1.470117.
Hess B. 2008. P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116-122. https://doi.org/10.1021/ct700200b.
Beckstein O, Michaud-Agrawal N, Woolf TB. 2009. Quantitative analysis of water dynamics in and near proteins. Biophys J 96:601a. https://doi.org/10.1016/j.bpj.2008.12.3147.
Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. 2003. Improved protein-ligand docking using GOLD. Proteins 52:609-623. https://doi.org/10.1002/prot.10465.