[en] The dynamics of the Jovian magnetosphere are controlled by the interplay of the planet's fast rotation, its main iogenic plasma source and its interaction with the solar wind. Magnetosphere-Ionosphere-Thermosphere (MIT) coupling processes controlling this interplay are significantly different from their Earth and Saturn counterparts. At the ionospheric level, they can be characterized by a set of key parameters: ionospheric conductances, electric currents and fields, exchanges of particles along field lines, Joule heating and particle energy deposition. From these parameters, one can determine (a) how magnetospheric currents close into the ionosphere, and (b) the net deposition/extraction of energy into/out of the upper atmosphere associated to MIT coupling. We present a new method combining Juno multi-instrument data (MAG, JADE, JEDI, UVS, JIRAM and Waves) and modeling tools to estimate these key parameters along Juno's trajectories. We first apply this method to two southern hemisphere main auroral oval crossings to illustrate how the coupling parameters are derived. We then present a preliminary statistical analysis of the morphology and amplitudes of these key parameters for eight among the first nine southern perijoves. We aim to extend our method to more Juno orbits to progressively build a comprehensive view of Jovian MIT coupling at the level of the main auroral oval.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Wang, Yuxian
Blanc, Michel
Louis, Corentin
Wang, Chi
André, Nicolas
Adriani, Alberto
Allegrini, Frederic
Blelly, Pierre-Louis
Bolton, Scott
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Clark, George
Dinelli, Bianca Maria
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Gladstone, Randy
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2017). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213(1–4), 393–446. https://doi.org/10.1007/s11214-014-0094-y
Adriani, A., Mura, A., Moriconi, M. L., Dinelli, B. M., Fabiano, F., Altieri, F., et al. (2017). Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora. Geophysical Research Letters, 44, 4633–4640. https://doi.org/10.1002/2017GL072905
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., et al. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 9, 7131–7139. https://doi.org/10.1002/2017gl073180
Allegrini, F., Mauk, B., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., et al. (2020). Energy flux and characteristic energy of electrons over Jupiter’s main auroral emission. Journal of Geophysical Research: Space Physics, 125(4), e2019JA027693. https://doi.org/10.1029/2019ja027693
Axford, W. I., & Hines, C. O. (1961). A unifying theory of high latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433–1464. https://doi.org/10.1139/p61-172
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1–4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bagenal, F., & Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 116(A5), A05209. https://doi.org/10.1029/2010ja016294
Banks, P. M., & Kockarts, G. (1973). Aeronomy. Academic Press.
Bigg, E. K. (1964). Influence of the satellite Io on Jupiter’s decametric emission. Nature, 203(4949), 1008–1010. https://doi.org/10.1038/2031008a0
Blelly, P.-L., Marchaudon, A., Indurain, M., Witasse, O., Amaya, J., Chide, B., et al. (2019). Transplanet: A web service dedicated to modeling of planetary ionospheres. Planetary and Space Science, 169, 35–44. https://doi.org/10.1016/j.pss.2019.02.008
Bolton, S. J., Bagenal, F., Blanc, M., Cassidy, T., Chané, E., Jackman, C., et al. (2015). Jupiter’s magnetosphere: Plasma sources and transport. Space Science Reviews, 192(1–4), 209–236. https://doi.org/10.1007/s11214-015-0184-5
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213(1–4), 5–37. https://doi.org/10.1007/978-94-024-1560-5_2
Bonfond, B., Grodent, D., Gérard, J.-C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophysical Research Letters, 39, L01105. https://doi.org/10.1029/2011gl050253
Bonfond, B., Yao, Z., & Grodent, D. (2020). Six pieces of evidence against the corotation enforcement theory to explain the main aurora at Jupiter. Journal of Geophysical Research: Space Physics, 125, e2020JA028152. https://doi.org/10.1029/2020JA028152
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J. C., Matar, J., et al. (2021). Are dawn storms Jupiter's auroral substorms? AGU Advances, 2, e2020AV000275. https://doi.org/10.1029/2020av000275
Bougher, S. W., Waite, J. H., Jr, Majeed, T., Gladstone, G. R. (2005). Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. Journal of Geophysical Research, 110(E4), E04008. https://doi.org/10.1029/2003je002230
Broadfoot, A. L., Belton, M. J., Takacs, P. Z., Sandel, B. R., Shemansky, D. E., Holberg, J. B., et al. (1979). Extreme ultraviolet observations from voyager 1 encounter with Jupiter. Science, 204(4396), 979–982. https://doi.org/10.1126/science.204.4396.979
Burke, B. F., & Franklin, K. L. (1955). Observations of a variable radio source associated with the planet Jupiter. Journal of Geophysical Research, 60(2), 213–217. https://doi.org/10.1029/jz060i002p00213
Chané, E., Saur, J., & Poedts, S. (2013). Modeling Jupiter’s magnetosphere: Influence of the internal sources. Journal of Geophysical Research: Space Physics, 118(5), 2157–2172. https://doi.org/10.1002/jgra.50258
Clarke, J. T., Ballester, G., Trauger, J., Ajello, J., Pryor, W., Tobiska, K., et al. (1998). Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission. Journal of Geophysical Research, 103(E9), 20217–20236. https://doi.org/10.1029/98JE01130
Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86(A10), 8370–8384. https://doi.org/10.1029/ja086ia10p08370
Connerney, J. E. P., Acuña, M. H., Ness, N. F., & Satoh, T. (1998). New models of Jupiter's magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 103, 11929–11939. https://doi.org/10.1029/97ja03726
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1–4), 39–138. https://doi.org/10.1007/978-94-024-1560-5_6
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45(6), 2590–2596. https://doi.org/10.1002/2018GL077312
Cowley, S. W. H., Alexeev, I. I., Belenkaya, E. S., Bunce, E. J., Cottis, C. E., Kalegaev, V. V., et al. (2005). A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter’s polar ionosphere. Journal of Geophysical Research, 110(A11), A11209. https://doi.org/10.1029/2005ja011237
Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planetary and Space Science, 49(10–11), 1067–1088. https://doi.org/10.1016/s0032-0633(00)00167-7
Cowley, S. W. H., Bunce, E. J., Stallard, T. S., & Miller, S. (2003). Jupiter’s polar ionospheric flows: Theoretical interpretation. Geophysical Research Letters, 30(5), 1220. https://doi.org/10.1029/2002gl016030
Cowley, S. W. H., Deason, A. J., & Bunce, E. J. (2008). Axi-symmetric models of auroral current systems in Jupiter’s magnetosphere with predictions for the Juno mission. Annales Geophysicae, 26(12), 4051–4074. https://doi.org/10.5194/angeo-26-4051-2008
Cowley, S. W. H., Provan, G., Bunce, E. J., & Nichols, J. D. (2017). Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model. Geophysical Research Letters, 44(10), 4497–4505. https://doi.org/10.1002/2017gl073129
Delamere, P. A., & Bagenal, F. (2010). Solar wind interaction with Jupiter’s magnetosphere. Journal of Geophysical Research, 115, A10201. https://doi.org/10.1029/2010JA015347
Dinelli, B. M., Fabiano, F., Adriani, A., Altieri, F., Moriconi, M. L., Mura, A., et al. (2017). Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 44, 10–4632. https://doi.org/10.1002/2017GL072929
Drossart, P., Maillard, J., Caldwell, J., Kim, S., Watson, J., Majewski, W., et al. (1989). Detection of H3+ on Jupiter. Nature, 340, 539–541. https://doi.org/10.1038/340539a0
Elliott, S. S., Sulaiman, A. H., Kurth, W. S., Faden, J., Allegrini, F., Valek, P., et al. (2021). The high-latitude extension of Jupiter's Io torus: Electron densities measured by Juno Waves. Journal of Geophysical Research: Space Physics, 126, e2021JA029195. https://doi.org/10.1029/2021ja029195
Gérard, J.-C., Bonfond, B., Grodent, D., Radioti, A., Clarke, J. T., Gladstone, G. R., et al. (2014). Mapping the electron energy in Jupiter's aurora: Hubble spectral observations. Journal of Geophysical Research: Space Physics, 119, 9072–9088. https://doi.org/10.1002/2014JA020514
Gérard, J.-C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124(11), 8298–8317. https://doi.org/10.1029/2019ja026862
Gérard, J.-C., Gkouvelis, L., Bonfond, B., Grodent, D., Gladstone, G. R., Hue, V., et al. (2020). Spatial distribution of the Pedersen conductance in the Jovian aurora from Juno-UVS spectral images. Journal of Geophysical Research: Space Physics, 125, e2020JA028142. https://doi.org/10.1029/2020ja028142
Gérard, J.-C., Gkouvelis, L., Bonfond, B., Grodent, D., Gladstone, G. R., Hue, V., et al. (2021). Variability and hemispheric symmetry of the Pedersen conductance in the Jovian aurora. Journal of Geophysical Research: Space Physics, 126. e2020JA028949. https://doi.org/10.1029/2020ja028949
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., -Viñas, F. A., et al. (2019). Alfvénic fluctuations associated with Jupiter's auroral emissions. Geophysical Research Letters, 46, 7157–7165. https://doi.org/10.1029/2019GL082951
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The Ultraviolet Spectrograph on NASA’s Juno Mission. Space Science Reviews, 213(1–4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Gladstone, G. R., Waite, J. H., & Lewis, W. S. (1998). Secular and local time dependence of Jovian X ray emissions. Journal of Geophysical Research, 103(E9), 20083–20088. https://doi.org/10.1029/98je00737
Grodent, D. (2015). A Brief Review of Ultraviolet Auroral Emissions on Giant Planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/978-1-4939-3395-2_3
Grodent, D., Bonfond, B., Yao, Z., Gérard, J.-C., Radioti, A., Dumont, M., et al. (2018). Jupiter’s aurora observed with HST during Juno orbits 3 to 7. Journal of Geophysical Research: Space Physics, 123, 3299–3319. https://doi.org/10.1002/2017JA025046
Grodent, D., Waite, J. H., & Gérard, J.-C. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106(A7), 12933–12952. https://doi.org/10.1029/2000ja900129
Gurnett, D. A., Shawhan, S. D., & Shaw, R. R. (1983). Auroral hiss, Z mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE 1 observations. Journal of Geophysical Research, 88, 329–340. https://doi.org/10.1029/ja088ia01p00329
Hill, T. W. (2001). The Jovian auroral oval. Journal of Geophysical Research, 106(A5), 8101–8107. https://doi.org/10.1029/2000JA000302
Hiraki, Y., & Tao, C. (2008). Parameterization of ionization rate by auroral electron precipitation in Jupiter. Annales Geophysicae, 26(1), 77–86. https://doi.org/10.5194/angeo-26-77-2008
Huang, T. S., & Hill, T. W. (1989). Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere. Journal of Geophysical Research, 94(A4), 3761. https://doi.org/10.1029/ja094ia04p03761
Johnson, R. E., Melin, H., Stallard, T. S., Tao, C., Nichols, J. D., & Chowdhury, M. N. (2018). Mapping H3+ temperatures in Jupiter’s northern auroral ionosphere using VLT-CRIRES. Journal of Geophysical Research: Space Physics, 123, 5990–6008. https://doi.org/10.1029/2018JA025511
Johnson, R. E., Stallard, T. S., Melin, H., Nichols, J. D., & Cowley, S. W. H. (2017). Jupiter’s polar ionospheric flows: High resolution mapping of spectral intensity and line-of-sight velocity of H3+ ions. Journal of Geophysical Research: Space Physics, 122, 7599–7618. https://doi.org/10.1002/2017JA024176
Khurana (2001). Influence of solar wind on Jupiter's magnetosphere deduced from currents in the equatorial plane. Journal of Geophysical Research, 106(A11), 25999–26016. https://doi.org/10.1029/2000ja000352
Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interactions with satellites. Jupiter the Planet Satellites & Magnetosphere, 1, 513–536.
Kivelson, M. G., & Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. Journal of Geophysical Research, 15, A12209. https://doi.org/10.1029/2005ja011176
Kotsiaros, S., Connerney, J. E. P., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., et al. (2019). Birkeland currents in Jupiter’s magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3(10), 904–909. https://doi.org/10.1038/s41550-019-0819-7
Krupp, N., Woch, J., Lagg, A., Roelof, E. C., Williams, D. J., Livi, S., & Wilken, B. (2001). Local time asymmetry of energetic ion anisotropies in the Jovian magnetosphere. Planetary and Space Science, 49(3–4), 283–289. https://doi.org/10.1016/s0032-0633(00)00149-5
Kurth, W. S. (1992). Comparative observations of plasma waves at the outer planets. Advances in Space Research, 12(8), 83–90. https://doi.org/10.1016/0273-1177(92)90380-g
Kurth, W. S., Gurnett, D. A., Bolton, S. J., Roux, A., & Levin, S. M. (1997). Jovian radio emissions: An early overview of Galileo observations. In H. O. Rucker, S. J. Bauer, & A. Lecacheux (Eds.), Planetary radio emissions IV. Vienna: Austrian Academy of Sciences, pp. 1–13.
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., et al. (2017). The Juno waves investigation. Space Science Reviews, 213(1–4), 347–392. https://doi.org/10.1007/s11214-017-0396-y
Kurth, W. S., Imai, M., Hospodarsky, G. B., Gurnett, D. A., Louarn, P., Valek, P., et al. (2017). A new view of Jupiter’s auroral radio spectrum. Geophysical Research Letters, 44(14), 7114–7121. https://doi.org/10.1002/2017gl072889
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., et al. (2017). Generation of the Jovian hectometric radiation: First lessons from Juno. Geophysical Research Letters, 44(10), 4439–4446. https://doi.org/10.1002/2017gl072923
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., et al. (2018). Observation of electron conics by Juno: Implications for Radio generation and acceleration processes. Geophysical Research Letters, 45(18), 9408–9416. https://doi.org/10.1029/2018gl078973
Louis, C. K., Prangé, R., Lamy, L., Zarka, P., Imai, M., Kurth, W. S., & Connerney, J. E. P. (2019). Jovian auroral radio sources detected in situ by Juno/Waves: Comparisons with model auroral ovals and simultaneous HST FUV images. Geophysical Research Letters, 46(21), 11606–11614. https://doi.org/10.1029/2019gl084799
Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A., Allegrini, F., et al. (2020). Energetic particles and acceleration regions over Jupiter’s polar cap and main aurora: A broad overview. Journal of Geophysical Research: Space Physics, e2019JA027699. https://doi.org/10.1029/2019ja027699
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., et al. (2017). The Jupiter energetic particle detector instrument (JEDI) Investigation for the Juno Mission. Space Science Reviews, 213(1–4), 289–346. https://doi.org/10.1007/s11214-013-0025-3
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian Auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1–4), 547–643. https://doi.org/10.1007/s11214-013-9990-9
Metzger, A. E., Gilman, D. A., Luthey, J. L., Hurley, K. C., Schnopper, H. W., Seward, F. D., & Sullivan, J. D. (1983). The detection of X rays from Jupiter. Journal of Geophysical Research, 88(A10), 7731–7741. https://doi.org/10.1029/ja088ia10p07731
Millward, G., Miller, S., Stallard, T., Aylward, A. D., Achilleos, N. (2002). On the dynamics of the Jovian ionosphere and thermosphere III. The modelling of auroral conductivity. Icarus, 160(1), 95–107. https://doi.org/10.1006/icar.2002.6951
Moriconi, M. L., Adriani, A., Dinelli, B. M., Fabiano, F., Altieri, F., Tosi, F., et al. (2017). Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 44(10), 4641–4648. https://doi.org/10.1002/2017gl073592
Mura, A., Adriani, A., Altieri, F., Connerney, J. E. P., Bolton, S. J., Moriconi, M. L., et al. (2017). Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 44, 11–5316. https://doi.org/10.1002/2017GL072954, issue.
Nichols, J. D., & Cowley, S. W. H. (2004). Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Annales Geophysicae, 22(5), 1799–1827. https://doi.org/10.5194/angeo-22-1799-2004
Perry, J. J., Kim, Y. H., Fox, J. L., & Porter, H. S. (1999). Chemistry of the Jovian auroral ionosphere. Journal of Geophysical Research, 104(E7), 16541–16565. https://doi.org/10.1029/1999je900022
Sarkango, Y., Jia, X., & Toth, G. (2019). Global MHD simulations of the response of Jupiter’s magnetosphere and ionosphere to changes in the solar wind and IMF. Journal of Geophysical Research: Space Physics, 124(7), 5317–5341. https://doi.org/10.1029/2019ja026787
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., et al. (2018). Wave-particle interaction of Alfvén Waves in Jupiter’s magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123(11), 9560–9573. https://doi.org/10.1029/2018ja025948
Seiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., et al. (1998). Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. Journal of Geophysical Research, 103(E10), 22857–22889. https://doi.org/10.1029/98je01766
Southwood, D. J., & Kivelson, M. G. (2001). A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. Journal of Geophysical Research, 106(A4), 6123–6130. https://doi.org/10.1029/2000ja000236
Stallard, T., Miller, S., Millward,G., Joseph, R. D. (2001). On the dynamics of the Jovian ionosphere and thermosphere I. The measurement of ion winds. Icarus, 154(2), 475–491. https://doi.org/10.1006/icar.2001.6681
Stallard, T. S., Burrell, A. G., Melin, H., Fletcher, L. N., Miller, S., Moore, L., et al. (2018). Identification of Jupiter’s magnetic equator through H3+ ionospheric emission. Nature Astronomy, 2(10), 773–777. https://doi.org/10.1038/s41550-018-0523-z
Stallard, T. S., Miller, S., Cowley, S. W. H., & Bunce, E. J. (2003). Jupiter’s polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval. Geophysical Research Letters, 30(5), 1221. https://doi.org/10.1029/2002GL016031
Stone, R. G., Pedersen, B. M., Harvey, C. C., Canu, P., Cornilleau-Wehrlin, N., Desch, M. D., et al. (1992). Ulysses radio and plasma wave observations in the Jupiter environment. Science, 257, 1524–1531. https://doi.org/10.1126/science.257.5076.1524
Sulaiman, A. H., Elliott, S. S., Kurth, W. S., Faden, J. B., Hospodarsky, G. B., & Menietti, J. D. (2021). Inferring Jovian electron densities using plasma wave spectra obtained by the Juno/Waves instrument. Journal of Geophysical Research: Space Physics, 126, e2021JA029263. https://doi.org/10.1029/2021JA029263
Sundstrom, G., Mowat, J. R., Danared, H., Datz, S., Brostrom, L., Filevich, A., et al. (1994). Destruction rate of H3+ by low-energy electrons measured in a storage-ring experiment. Science, 263(5148), 785–787. https://doi.org/10.1126/science.263.5148.785
Tao, C., Badman, S. V., & Fujimoto, M. (2011). UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus, 213(2), 581–592. https://doi.org/10.1016/j.icarus.2011.04.001
Tao, C., Fujiwara, H., & Kasaba, Y. (2009). Neutral wind control of the Jovian magnetosphere-ionosphere current system. Journal of Geophysical Research, 114(A8), A08307. https://doi.org/10.1029/2008ja013966
Tao, C., Miyoshi, Y., Achilleos, N., & Kita, H. (2014). Response of the Jovian thermosphere to variations in solar EUV flux. Journal of Geophysical Research: Space Physics, 119(5), 3664–3682. https://doi.org/10.1002/2013ja019411
Tetrick, S. S., Gurnett, D. A., Kurth, W. S., Imai, M., Hospodarsky, G. B., Bolton, S. J., et al. (2017). Plasma waves in Jupiter’s high-latitude regions: Observations from the Juno spacecraft: Jupiter’s high-latitude plasma waves. Geophysical Research Letters, 44(10), 4447–4454. https://doi.org/10.1002/2017gl073073
Vasyliunas, V. M. (1983). Plasma distribution and flow. New York: Cambridge University Press.
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., & Walker, R. J. (2010). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations: Reconnection in the Jovian magnetotail. Journal of Geophysical Research, 115(A6), A06219. https://doi.org/10.1029/2009ja015098
Waite, J. H., Bagenal, F., Seward, F., Na, C., Gladstone, G. R., Cravens, T. E., et al. (1994). ROSAT observations of the Jupiter aurora. Journal of Geophysical Research, 99(A8), 14799–14809. https://doi.org/10.1029/94ja01005
Wang, Y., Blanc, M., André, N., Wang, C., Allegrini, F., Blelly, P.-L., et al. (2021). A preliminary study of Magnetosphere-Ionosphere-Thermosphere coupling at Jupiter: Juno multi-instrument measurements and modelling tools. V1. NSSDC Space Science Article Data Repository.
Wang, Y., Guo, X., Tang, B., Li, W., Wang, C., & Wang, C. (2018). Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation. Earth and Planetary Physics, 2(4), 303–309. https://doi.org/10.26464/epp2018028
Wibisono, A. D., Branduardi-Raymont, G., Dunn, W. R., Coates, A. J., Weigt, D. M., Jackman, C. M., et al. (2020). Temporal and spectral studies by XMM-Newton of Jupiter's X-ray auroras during a compression event. Journal of Geophysical Research: Space Physics, 125, e2019JA027676. https://doi.org/10.1029/2019JA027676
Zarka, P. (1998). Auroral radio emissions at the outer planets: Observations and theories. Journal of Geophysical Research, 103(E9), 20159–20194. https://doi.org/10.1029/98je01323
Zarka, P. (2004). Radio and plasma waves at the outer planets. Advances in Space Research, 33(11), 2045–2060. https://doi.org/10.1016/j.asr.2003.07.055
Zhang, B., Delamere, P. A., Ma, X., Burkholder, B., Wiltberger, M., Lyon, J. G., et al. (2018). Asymmetric Kelvin-Helmholtz instability at Jupiter’s magnetopause boundary: Implications for corotation-dominated systems. Geophysical Research Letters, 45(1), 56–63. https://doi.org/10.1002/2017gl076315
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.