1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity
[en] Metallo-β-lactamases (MBLs) are important contributors of Gram-negative bacteria resistance to β-lactam antibiotics. MBLs are highly worrying because of their carbapenemase activity, their rapid spread in major human opportunistic pathogens while no clinically useful inhibitor is available yet. In this context, we are exploring the potential of compounds based on the 1,2,4-triazole-3-thione scaffold as an original ligand of the di-zinc active sites of MBLs, and diversely substituted at its positions 4 and 5. Here, we present a new series of compounds substituted at the 4-position by a thioether-containing alkyl chain with a carboxylic and/or an aryl group at its extremity. Several compounds showed broad-spectrum inhibition with Ki values in the μM to sub-μM range against VIM-type enzymes, NDM-1 and IMP-1. The presence of the sulfur and of the aryl group was important for the inhibitory activity and the binding mode of a few compounds in VIM-2 was revealed by X-ray crystallography. Importantly, in vitro antibacterial susceptibility assays showed that several inhibitors were able to potentiate the activity of meropenem on Klebsiella pneumoniae clinical isolates producing VIM-1 or VIM-4, with a potentiation effect of up to 16-fold. Finally, a selected compound was found to only moderately inhibit the di-zinc human glyoxalase II, and several showed no or only moderate toxicity toward several human cells, thus favourably completing a promising behaviour.
1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity
Lee Ventola, C., The antibiotic resistance crisis: part1: causes and threats. Pharm. Ther. 40 (2015), 277–283 PMC4378521.
Reygaert, W.C., An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4 (2018), 482–501, 10.3934/microbiol.2018.3.482.
Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Colomb-Cotinat, M., Kretzschmar, M.E., Devleesschauwer, B., Cecchini, M., Ouakrim, D.A., Oliveira, T.C., Struelens, M.J., Suetens, C., Monnet, D.L., Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19 (2019), 56–66, 10.1016/S1473-3099(18)30605-4.
World Health Organization, Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery and Development of New Antibiotics. 2017 27 february.
Walsh, T.R., Toleman, M.A., The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J. Antimicrob. Chemother. 67 (2012), 1–3, 10.1093/jac/dkr378.
Nordmann, P., Naas, T., Poirel, L., Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17 (2011), 1791–1798, 10.3201/eid1710.110655.
Bush, K., Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother., 62, 2018, e01076, 10.1128/AAC.01076-18 18.
Boyd, S.E., Livermore, D.M., Hooper, D.C., Hope, W.W., Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob. Agents Chemother., 64, 2020, e00397, 10.1128/AAC.00397-20 20.
Bahr, G., Gonzalez, L.J., Vila, A.J., Metallo-β-lactamase inhibitors in the age of multidrug resistance: from structure and mechanism to evolution, dissemination, and inhibitor design. Chem. Rev. 121 (2021), 7957–8094, 10.1021/acs.chemrev.1c00138.
Gajamer, V.R., Bhattacharjee, A., Paul, D., Deshamukhya, C., Singh, A.K., Pradhan, N., Tiwari, H.K., Escherichia coli encoding blaNDM-5 associated with community-acquired urinary tract infections with unusual MIC creep-like phenomenon against imipenem. J. Glob. Antimicrob. Resist. 14 (2018), 228–232, 10.1016/j.jgar.2018.05.004.
Gonzalez-Bello, C., Rodriguez, D., Pernas, M., Rodriguez, A., Colchon, E., β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem. 63 (2020), 1859–1881, 10.1021/acs.jmedchem.9b01279.
Vazquez-Ucha, J.C., Arca-Suarez, J., Bou, G., Beceiro, A., New carbapenemase inhibitors: clearing the way for the β-lactams. Int. J. Mol. Sci., 21, 2020, 9308, 10.3390/ijms21239308.
Docquier, J.-D., Mangani, S., An update on β-lactamase inhibitor discovery and development. Drug Resist. Updat. 36 (2018), 13–29, 10.1016/j.drup.2017.11.002.
Ju, L.C., Cheng, Z., Fast, W., Bonomo, R.A., Crowder, M.W., The continuing challenge of metallo-β-lactamase inhibition: mechanism matters. Trends Pharmacol. Sci. 39 (2018), 635–647, 10.1016/j.tips.2018.03.007.
Palacios, A.R., Rossi, M.-A., Mahler, G.S., Vila, A.J., Metallo-β-lactamase inhibitors inspired on snapshots from the catalytic mechanism. Biomolecules, 10, 2020, 854, 10.3390/biom10060854.
Brem, J., van Berkel, S.S., Aik, W.S., Rydzik, A.M., Avison, M.B., Pettinati, I., Umland, K.-D., Kawamura, A., Spencer, J., Claridge, T.D.W., McDonough, M.A., Schofield, C.J., Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition. Nat. Chem. 6 (2014), 1084–1090, 10.1038/nchem.2110.
Xiang, Y., Chen, C., Wang, W.-M., Xu, L.-W., Yang, K.-W., Oelschlaeger, P., He, Y., Rhodanine as a potent scaffold for the development of broad-spectrum metallo-β-lactamase inhibitors. ACS Med. Chem. Lett. 9 (2018), 359–364, 10.1021/acsmedchemlett.7b00548.
Chen, A.Y., Thomas, P.W., Stewart, A.C., Bergstrom, A., Cheng, Z., Miller, C., Bethel, C.R., Marshall, S.H., Credille, C.V., Riley, C.L., Page, R.C., Bonomo, R.A., Crowder, M.W., Tierney, D.L., Fast, W., Cohen, S.M., Dipicolinic acid derivatives as inhibitors of New Delhi Metallo-β-lactamase-1. J. Med. Chem. 60 (2017), 7267–7283, 10.1021/acs.jmedchem.7b00407.
King, A.M., Reid-Yu, S.A., Wang, W., King, D.T., De Pascale, G., Strynadka, N.C., Walsh, T.R., Coombes, B.K., Wright, G.D., Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510 (2014), 503–506, 10.1038/nature13445.
Hecker, S.J., Reddy, K.R., Lomovskaya, O., Griffith, D.C., Rubio-Aparicio, D., Nelson, K., Tsivkovski, R., Sun, D., Sabet, M., Tarazi, Z., Parkinson, J., Totrov, M., Boyer, S.H., Glinka, T.W., Pemberton, O.A., Chen, Y., Dudley, M.N., Discovery of cyclic boronic acid QPX7728, an ultra-broad-spectrum inhibitor of serine and metallo-β-lactamases. J. Med. Chem. 63 (2020), 7491–7507, 10.1021/acs.jmedchem.9b01976.
Parkova, A., Lucic, A., Krajnk, A., Brem, J., Calvopina, K., Langley, G.W., McDonough, M.A., Trapencieris, P., Schofield, C.J., Broad spectrum β-lactamase inhibition by a thioether substituted bicyclic boronate. ACS Inf. Dis. 6 (2020), 1398–1404, 10.1021/acsinfecdis.9b00330.
Pemberton, O.A., Jaishankar, P., Akhtar, A., Adams, J.L., Shaw, L.N., Renslo, A.R., Chen, Y., Heteroaryl phosphonates as non covalent inhibitors of both serine- and metallocarbapenemases. J. Med. Chem. 62 (2019), 8480–8496, 10.1021/acs.jmedchem.9b00728.
Romero, E., Oueslati, S., Benchekroun, M., D'Hollander, A.C.A., Ventre, S., Vijayakumar, K., Minard, C., Exilie, C., Tlili, L., Retailleau, P., Zavala, A., Elisée, E., Selwa, E., Nguyen, L.A., Pruvost, A., Naas, T., Iorga, B.I., Dodd, R.H., Cariou, K., Azetidinimines, as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D). Eur. J. Med. Chem., 219, 2021, 113418, 10.1016/j.ejmech.2021.113418.
Reddy, N., Shungube, M., Arvidsson, P.I., Baijnath, S., Kruger, H.G., Govender, T., Naicker, T., A 2018-2019 patent review of metallo-β-lactamase inhibitors. Exp. Opin. Ther. Pat. 30 (2020), 541–555, 10.1080/13543776.2020.1767070.
Davies, D.T., Leiris, S., Sprynski, N., Castandet, J., Lozano, C., Bousquet, J., Zalacain, M., Vasa, S., Dasari, P.K., Pattipati, R., Vempala, N., Gujjewar, S., Godi, S., Jallala, R., Sathyap, R.R., Darshanoju, N.A., Ravu, V.R., Juventhala, R.R., Pottabathini, N., Sharma, S., Pothukanuri, S., Holden, K., Warn, P., Marcoccia, F., Benvenuti, M., Pozzi, C., Mangani, S., Docquier, J.-D., Lemonnier, M., Everett, M., ANT2681: SAR studies leading to the identification of a metallo-lactamase inhibitor with potential for clinical use in combination with meropenem for the treatment of infections caused by NDM-producing Enterobacteriaceae. ACS Infect. Dis. 6 (2020), 2419–2430, 10.1021/acsinfecdis.0c00207.
Liu, B., Trout, R.E.L., Chu, G.H., McGarry, D., Jackson, R.W., Hamrick, J.C., Daigle, D.M., Cusick, S.M., Pozzi, C., De Luca, F., Benvenuti, M., Mangani, S., Docquier, J.-D., Weis, W.J., Pevear, D.C., Xerri, L., Burns, C.J., Discovery of Taniborbactam (VNRX-5133): a broad spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J. Med. Chem. 63 (2020), 2789–2801, 10.1021/acs.jmedchem.9b01518.
Brem, J., Cain, R., Cahill, S., McDonough, M.A., Clifton, I.J., Jiménez-Castellanos, J.C., Avison, M.B., Spencer, J., Fishwick, C.W., Schofield, C.J., Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun., 7, 2016, 12406, 10.1038/ncomms12406.
Nauton, L., Kahn, R., Garau, G., Hernandez, J.-F., Dideberg, O., Structural insights into the design of inhibitiors of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia. J. Mol. Biol. 375 (2008), 257–269, 10.1016/j.jmb.2007.10.036.
Olsen, L., Jost, S., Adolph, H.W., Pettersson, I., Hemmingsen, L., Jørgensen, F.S., New leads of metallo-β-lactamase inhibitors from structure-based pharmacophore design. Bioorg. Med. Chem. 14 (2006), 2627–2635, 10.1016/j.bmc.2005.11.046.
Vella, P., Hussein, W.M., Leung, E.W., Clayton, D., Ollis, D.L., Mitić, N., Schenk, G., McGeary, R.P., The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg. Med. Chem. Lett 21 (2011), 3282–3285, 10.1016/j.bmcl.2011.04.027.
Christopeit, T., Carlsen, T.J., Helland, R., Leiros, H.K., Discovery of novel inhibitor scaffolds against the metallo-β-lactamase VIM-2 by surface plasmon resonance (SPR) based fragment screening. J. Med. Chem. 58 (2015), 8671–8682, 10.1021/acs.jmedchem.5b01289.
Spyrakis, F., Celenza, G., Marcoccia, F., Santucci, M., Cross, S., Bellio, P., Cendron, L., Perilli, M., Tondi, D., Structure-based virtual screening for the discovery of novel inhibitors of New Delhi Metallo-β-lactamase-1. ACS Med. Chem. Lett. 9 (2018), 45–50, 10.1021/acsmedchemlett.7b00428.
Gavara, L., Sevaille, L., De Luca, F., Mercuri, P., Bebrone, C., Feller, G., Legru, A., Cerboni, G., Tanfoni, S., Baud, D., Cutolo, G., Bestgen, B., Chelini, G., Verdirosa, F., Sannio, F., Pozzi, C., Benvenuti, M., Kwapien, K., Fischer, M., Becker, K., Frère, J.-M., Mangani, S., Gresh, N., Berthomieu, D., Galleni, M., Docquier, J.-D., Hernandez, J.-F., 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors. Eur. J. Med. Chem., 208, 2020, 112720, 10.1016/j.ejmech.2020.112720.
Spyrakis, F., Santucci, M., Maso, L., Cross, S., Gianquinto, E., Sannio, F., Verdirosa, F., De Luca, F., Docquier, J.-D., Cendron, L., Tondi, D., Venturelli, A., Cruciani, G., Costi, M.P., Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Sci. Rep., 10, 2020, 12763, 10.1038/s41598-020-69431-y.
Sevaille, L., Gavara, L., Bebrone, C., De Luca, F., Nauton, L., Achard, M., Mercuri, P., Tanfoni, S., Borgianni, L., Guyon, C., Lonjon, P., Turan-Zitouni, G., Dzieciolowski, J., Becker, K., Bénard, L., Condon, C., Maillard, L., Martinez, J., Frère, J.-M., Dideberg, O., Galleni, M., Docquier, J.-D., Hernandez, J.-F., 1,2,4-Triazole-3-thione compounds as inhibitors of dizinc metallo-β-lactamase. ChemMedChem 12 (2017), 972–985, 10.1002/cmdc.201700186.
Gavara, L., Verdirosa, F., Legru, A., Mercuri, P.S., Nauton, L., Sevaille, L., Feller, G., Berthomieu, D., Sannio, F., Marcoccia, F., Tanfoni, S., De Luca, F., Gresh, N., Galleni, M., Docquier, J.-D., Hernandez, J.-F., 4-(N-Alkyl- and -acyl-amino)-1,2,4-triazole-3-thione analogs as metallo-β-lactamase inhibitors: impact of 4-linker on potency and spectrum of inhibition. Biomolecules, 10, 2020, 1094, 10.3390/biom10081094.
Gavara, L., Legru, A., Verdirosa, F., Sevaille, L., Nauton, L., Corsica, G., Mercuri, P.S., Sannio, F., Feller, G., Coulon, R., De Luca, F., Cerboni, G., Tanfoni, S., Chelini, G., Galleni, M., Docquier, J.-D., Hernandez, J.-F., 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. Bioorg. Chem., 113, 2021, 105024, 10.1016/j.bioorg.2021.105024.
Deprez-Poulain, R.F., Charton, J., Leroux, V., Deprez, B.P., Convenient synthesis of 4H-1,2,4-triazole-3-thiols using di-2-pyridylthionocarbamate. Tetrahedron Lett. 48 (2007), 8157–8162, 10.1016/j.tetlet.2007.09.094.
Thomas, C.A., Cheng, Z., Yang, K., Hellwarth, E., Yurkiewicz, C.J., Baxter, F.M., Fullington, S.A., Klinsky, S.A., Otto, J.L., Chen, A.Y., Cohen, S.M., Crowder, M.W., Probing the mechanism of inhibition for various inhibitors of metallo-β-lactamases VIM-2 and NDM-1. J. Inorg. Biochem., 210, 2020, 111123, 10.1016/j.jinorgbio.2020.111123.
Huang, L., Haagensen, J., Verotta, D., Lizak, P., Aweeka, F., Yang, K., Determination of meropenem in bacterial media by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 961 (2014), 71–76, 10.1016/j.jchromb.2014.05.002.
Landini, G., Di Maggio, T., Sergio, F., Docquier, J.-D., Rossolini, G.M., Pallecchi, L., Effect of high N-acetylcysteine concentrations on antibiotic activity against a large collection of respiratory pathogens. Antimicrob. Agents Chemother. 60 (2016), 7513–7517, 10.1128/AAC.01334-16.
Hall, M.J., Middleton, R.F., Westmacott, D., The fractional inhibitory concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother. 11 (1983), 427–433, 10.1093/jac/11.5.427.
European committee for antimicrobial susceptibility testing (EUCAST) of the European society of clinical microbiology and infectious dieases (ESCMID), EUCAST definitive document E.def 1.2, may 2000: terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 6 (2000), 503–508, 10.1046/j.1469-0691.2000.00149.x.
Mugnaini, C., Sannio, F., Brizzi, A., Del Prete, R., Simone, T., Ferraro, T., De Luca, F., Corelli, F., Docquier, J.-D., Screen of unfocused libraries identifies compounds with direct or synergistic antibacterial activity. ACS Med. Chem. Lett. 11 (2020), 899–905, 10.1021/acsmedchemlett.9b00674.
Docquier, J.-D., Lamotte-Brasseur, J., Galleni, M., Amicosante, G., Frère, J.M., Rossolini, G.M., On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J. Antimicrob. Chemother. 51 (2003), 257–266, 10.1093/jac/dkg067.
Clinical Laboratory Standard Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Document M07-A10. twelfth ed., 2015 Wayne, PA, USA.
Cagnacci, S., Gualco, L., Roveta, S., Mannelli, S., Borgianni, L., Docquier, J.-D., Dodi, F., Centanaro, M., Debbia, E., Marchese, A., Rossolini, G.M., Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-β-lactamase: first Italian outbreak. J. Antimicrob. Chemother. 61 (2008), 296–300, 10.1093/jac/dkm471.
Luzzaro, F., Docquier, J.-D., Colinon, C., Endimiani, A., Lombardi, G., Amicosante, G., Rossolini, G.M., Toniolo, A., Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-β-lactamase encoded by a conjugative plasmid. Antimicrob. Agents Chemother. 48 (2004), 648–650, 10.1128/AAC.48.2.648-650.2004.
Akoachere, M., Iozef, R., Rahlfs, S., Deponte, M., Mannervik, B., Creighton, D.J., Schirmer, H., Becker, K., Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol. Chem. 386 (2005), 41–52, 10.1515/BC.2005.006.
Garcia-Saez, I., Docquier, J.-D., Rossolini, G.M., Dideberg, O., The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J. Mol. Biol. 375 (2008), 604–611, 10.1016/j.jmb.2007.11.012.
Benvenuti, M., Mangani, S., Crystallization of soluble proteins in vapor diffusion for X-ray crystallography. Nat. Protoc. 2 (2007), 1633–1651, 10.1038/nprot.2007.198.
Kabsch, W., XDS, Acta Crystallogr. D Biol. Crystallog. 66 (2010), 125–132, 10.1107/S0907444909047337.
Evans, P.R., An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallog. 67 (2011), 282–292, 10.1107/S090744491003982X.
Wynn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., McNicholas, S.J., Murshudov, G.N., Pannu, N.S., Potterton, E.A., Powell, H.R., Read, R.J., Vagin, A., Wilson, K.S., Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67 (2011), 235–242, 10.1107/S0907444910045749.
Vagin, A., Teplyakov, A., Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallog. 66 (2010), 22–25, 10.1107/S0907444909042589.
Murshudov, G.N., Shubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., Vagin, A.A., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67 (2011), 355–367, 10.1107/S0907444911001314.
Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66 (2010), 486–501, 10.1107/S0907444910007493.
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallog. 26 (1993), 283–291, 10.1107/S0021889892009944.
Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan, K., Emsley, P., Murshudov, G.N., Cohen, S., Perrakis, A., Noble, M., Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60 (2004), 2288–2294, 10.1107/S0907444904023716.