2D materials; Spintronics; Field-effect; Spin-layer locking; Density-functional Theory
Abstract :
[en] A recent 2D spinFET concept proposes to switch electrostatically between two separate sublayers with strong and opposite intrinsic Rashba effects, exploiting the spin-layer locking mechanism in centrosymmetric materials with local dipole fields.
Here, we propose a novel monolayer material within this family, lutetium oxide iodide (LuIO). It displays one of the largest Rashba effects among 2D materials (up to $k_R = 0.08 \si{\angstrom}^{-1}$), leading to a $\pi/2$ rotation of the spins over just 1 nm. The monolayer was predicted to be exfoliable from its experimentally-known 3D bulk counterpart, with a binding energy lower than graphene. We characterize and simulate the interplay of the two gate-controlled parameters for such devices: doping and spin channel selection. We show that the ability to split the spin channels in energy diminishes with doping, leading to specific gate-operation guidelines that can apply to all devices based on spin-layer locking.
Disciplines :
Physics
Author, co-author :
Zhang, Rong; Ecole Polytechnique Fédérale de Lausanne - EPFL > Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL)
Marrazzo, Antimo; University of Trieste > Department of Physics
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Marzari, Nicola; Ecole Polytechnique Fédérale de Lausanne - EPFL > Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL)
Sohier, Thibault ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Language :
English
Title :
Gate control of spin-layer-locking FETs and application to monolayer LuIO
Publication date :
30 August 2021
Journal title :
Nano Letters
ISSN :
1530-6984
eISSN :
1530-6992
Publisher :
American Chemical Society, United States - District of Columbia
SNSF - Swiss National Science Foundation ULiège FSR - Université de Liège. Fonds spéciaux pour la recherche
Funding text :
The results of this research have been partially achieved using the DECI resource ARCHER UK National Supercomputing Service with sup-
port from the PRACE aisbl. Simulation time was also awarded by PRACE (project id. 2020225411) on MareNostrum at Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (The Spanish National Supercomputing Center) and on MARCONI at CINECA Italy (project id. 2016163963). R.Z., A.M., N.M. and T.S. acknowledges support
from NCCR MARVEL funded by the Swiss National Science Foundation, R.Z. was supported by the NCCR MARVEL INSPIRE Potentials fellowship. T.S. acknowledges support from the University of Liege under the Special Funds for Research, IPD-STEMA Programme.
Hu, G.; Xiang, B. Recent Advances in Two-Dimensional Spintronics. Nanoscale Res. Lett. 2020, 15, 226, 10.1186/s11671-020-03458-y
Datta, S.; Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 1990, 56, 665-667, 10.1063/1.102730
Zhang, X.; Liu, Q.; Luo, J.-W.; Freeman, A. J.; Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 2014, 10, 387-393, 10.1038/nphys2933
Liu, Q.; Guo, Y.; Freeman, A. J. Tunable Rashba Effect in Two-Dimensional LaOBiS2 Films: Ultrathin Candidates for Spin Field Effect Transistors. Nano Lett. 2013, 13, 5264-5270, 10.1021/nl4027346
Riley, J. M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 2014, 10, 835-839, 10.1038/nphys3105
Yao, W.; Wang, E.; Huang, H.; Deng, K.; Yan, M.; Zhang, K.; Miyamoto, K.; Okuda, T.; Li, L.; Wang, Y.; Gao, H.; Liu, C.; Duan, W.; Zhou, S. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe 2 film. Nat. Commun. 2017, 8, 14216, 10.1038/ncomms14216
Lee, S.; Kwon, Y.-K. Unveiling giant hidden Rashba effects in two-dimensional Si 2 Bi 2. npj 2D Materials and Applications 2020, 4, 45, 10.1038/s41699-020-00180-2
Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G.; Marzari, N. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246-252, 10.1038/s41565-017-0035-5
Lee, K.; Murray, é. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Higher-Accuracy van Der Waals Density Functional. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 081101, 10.1103/PhysRevB.82.081101
Cooper, V. R. Van Der Waals Density Functional: An Appropriate Exchange Functional. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 161104, 10.1103/PhysRevB.81.161104
Vydrov, O. A.; Van Voorhis, T. Nonlocal van Der Waals Density Functional Made Simple. Phys. Rev. Lett. 2009, 103, 063004, 10.1103/PhysRevLett.103.063004
Sabatini, R.; Gorni, T.; de Gironcoli, S. Nonlocal van Der Waals Density Functional Made Simple and Efficient. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 041108, 10.1103/PhysRevB.87.041108
Giannozzi, P. et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 395502, 10.1088/0953-8984/21/39/395502
Giannozzi, P. et al. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901, 10.1088/1361-648X/aa8f79
Prandini, G.; Marrazzo, A.; Castelli, I. E.; Mounet, N.; Marzari, N. Precision and Efficiency in Solid-State Pseudopotential Calculations. npj Computational Materials 2018, 4, 72, 10.1038/s41524-018-0127-2
Kucukbenli, E.; Monni, M.; Adetunji, B. I.; Ge, X.; Adebayo, G. A.; Marzari, N.; de Gironcoli, S.; Corso, A. D. Projector augmented-wave and all-electron calculations across the periodic table: a comparison of structural and energetic properties. 2014, arXiv:1404.3015 [cond-mat.mtrl-sci]. arXiv.org e-Print archive. https://arxiv.org/abs/1404.3015 (accessed September 11th, 2017).
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868, 10.1103/PhysRevLett.77.3865
van Setten, M. J.; Giantomassi, M.; Bousquet, E.; Verstraete, M. J.; Hamann, D. R.; Gonze, X.; Rignanese, G. M. The PseudoDojo: Training and Grading a 85 Element Optimized Norm-Conserving Pseudopotential Table. Comput. Phys. Commun. 2018, 226, 39-54, 10.1016/j.cpc.2018.01.012
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 085117, 10.1103/PhysRevB.88.085117
Sohier, T.; Calandra, M.; Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: Theoretical developments and application to flexural phonons in graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 075448, 10.1103/PhysRevB.96.075448
Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal Contraction and Disordering of the Al(110) Surface. Phys. Rev. Lett. 1999, 82, 3296-3299, 10.1103/PhysRevLett.82.3296