[en] A numerical model was built using FEFLOW® to simulate groundwater flow and heat
transport in a confined aquifer in Brussels where two Aquifer Thermal Energy Storage (ATES)
systems were installed. These systems are operating in adjacent buildings and exploit the same
aquifer made up of mixed sandy and silty sublayers. The model was calibrated for groundwater
flow and partially for heat transport. Several scenarios were considered to determine if the two
ATES systems were interfering. The results showed that a significant imbalance between the injection
of warm and cold water in the first installed ATES system led to the occurrence of a heat plume
spreading more and more over the years. This plume eventually reached the cold wells of the same
installation. The temperature, therefore, increased in warm and cold wells and the efficiency of the
building’s cooling system decreased. When the second ATES system began to be operational, the
simulated results showed that, even if the heat plumes of the two systems had come into contact,
the influence of the second system on the first one was negligible during the first two years of joint
operation. For a longer modeled period, simulated results pointed out that the joint operation of the
two ATES systems was not adapted to balance, in the long term, the quantity of warm and cold water
injected in the aquifer. The groundwater temperature would rise inexorably in the warm and cold
wells of both systems. The heat plumes would spread more and more over the years at the expense of
the efficiency of both systems, especially concerning building’s cooling with stored cold groundwater.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Bulté, Manon; Université de Liège - ULiège > Urban and Environmental Engineering > Hydrogeology and Environmental Geology > Master student in Geological Engineering in 2019-2020
Dassargues, A. Hydrogeology-Groundwater Science and Engineering; Taylor & Francis CRC Press: Boca Raton, FL, USA, 2018; pp. 323–343.
Dassargues, A. Hydrogéologie Appliquée-Science et Ingéniérie des Eaux Souterraines; Dunod: Paris, France, 2020; pp. 341–364. (In French)
Fleuchaus, P.; Godschalk, B.; Stober, I.; Blum, P. Worldwide application of aquifer thermal energy storage—A review. Renew. Sustain. Energy Rev. 2018, 94, 861–876. [CrossRef]
Sommer, W.; Valstar, J.; Leusbrock, I.; Grotenhuis, T.; Rijnaarts, H. Optimization and spatial pattern of large-scale aquifer thermal energy storage. Appl. Energy 2015, 137, 322–337. [CrossRef]
Vanhoudt, D.; Desmedt, J.; Van Bael, J.; Robeyn, N.; Hoes, H. An aquifer thermal storage system in a Belgian hospital: Long-term experimental evaluation of energy and cost savings. Energy Build. 2011, 43, 3657–3665. [CrossRef]
Gao, L.; Zhao, J.; An, Q.; Wang, J.; Liu, X. A review on system performance studies of aquifer thermal energy storage. Energy Procedia 2017, 142, 3537–3545. [CrossRef]
Possemiers, M.; Huysmans, M.; Batelaan, O. Influence of aquifer thermal energy storage on groundwater quality: A review illustrated by seven case studies from Belgium. J. Hydrol. Reg. Stud. 2014, 2, 20–34. [CrossRef]
BRUGEO. Cadastre des Systèmes Géothermiques; 2016. Available online: http://geothermie.brussels/fr/geothermie-a-bruxelles/cadastre-des-systemes-geothermiques (accessed on 21 May 2020). (In French).
De Schepper, G.; Bolly, P.-Y.; Vizzotto, P.; Wecxsteen, H.; Robert, T. Investigations into the first operational aquifer thermal energy storage system in Wallonia (Belgium): What can potentially be expected? Geosciences 2020, 10, 33. [CrossRef]
Anibas, C.; Kukral, J.; Possemiers, M.; Huysmans, M. Assessment of seasonal aquifer thermal energy storage as a groundwater ecosystem service for the Brussels-Capital Region: Combining groundwater flow, and heat and reactive transport modelling. Energy Procedia 2016, 97, 179–185. [CrossRef]
Haehnlein, S.; Bayer, P.; Blum, P. International legal status of the use of shallow geothermal energy. Renew. Sustain. Energy Rev. 2010, 14, 2611–2625. [CrossRef]
Tsagarakis, K.P.; Efthymiou, L.; Michopoulos, A.; Mavragani, A.; An delković, A.S.; Antolini, F.; Bacic, M.; Bajare, D.; Baralis, M.; Bogusz, W.; et al. A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines. Renew. Energy 2020, 147, 2556–2571. [CrossRef]
Bloemendal, M.; Olsthoorn, T.; Boons, F. How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage. Energy Policy 2014, 66, 104–114. [CrossRef]
Garcia-Gil, A.; Goetlz, G.; Klonowski, M.; Borovic, S.; Boon, D.; Abesser, C.; Janza, M.; Herms, I.; Petitclerc, E.; Erlström, M.; et al. Governance of shallow geothermal energy resources. Energy Policy 2020, 138, 111283. [CrossRef]
Hamada, Y.; Marutani, K.; Nakamura, M.; Nagasaka, S.; Ochifuji, K.; Fuchigami, S.; Yokoyama, S. Study on underground thermal characteristics by using digital national land information, and its application for energy utilization. Appl. Energy 2002, 72, 659–675. [CrossRef]
Lo Russo, S.; Civita, M.V. Open-loop groundwater heat pumps development for large buildings: A case study. Geothermics 2009, 38, 335–345. [CrossRef]
Andrews, C. The impact of the use of heat pumps on ground-water temperatures. Ground Water 1978, 16, 437–443. [CrossRef]
Molina-Giraldo, N.; Bayer, P.; Blum, P. Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions. Int. J. Therm. Sci. 2011, 50, 1223–1231. [CrossRef]
Graf, T.; Therrien, R. Variable-density groundwater flow and solute transport in porous media containing non-uniform discrete fractures. Adv. Water Resour. 2005, 28, 1351–1367. [CrossRef]
Ma, R.; Zheng, C. Effects of density and viscosity in modeling heat as a groundwater tracer. Ground Water 2010, 48, 380–389. [CrossRef] [PubMed]
Vandenbohede, A.; Hermans, T.; Nguyen, F.; Lebbe, L. Shallow heat injection and storage experiment: Heat transport simulation and sensitivity analysis. J. Hydrol. 2011, 409, 262–272. [CrossRef]
Wildemeersch, S.; Jamin, P.; Orban, P.; Hermans, T.; Klepikova, M.; Nguyen, F.; Brouyère, S.; Dassargues, A. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers. J. Contam. Hydrol. 2014, 169, 90–99. [CrossRef] [PubMed]
Wagner, V.; Li, T.; Bayer, P.; Leven, C.; Dietrich, P.; Blum, P. Thermal tracer testing in a sedimentary aquifer: Field experiment (Lauswiesen, Germany) and numerical simulation. Hydrogeol. J. 2014, 22, 175–187. [CrossRef]
Hermans, T.; Wildemeersch, S.; Jamin, P.; Orban, P.; Brouyère, S.; Dassargues, A.; Nguyen, F. Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT. Geothermics 2015, 53, 14–26. [CrossRef]
Casasso, A.; Sethi, R. Modelling thermal recycling occurring in groundwater heat pumps (GWHPs). Renew. Energy 2015, 77, 86–93. [CrossRef]
Lo Russo, S.; Taddia, G.; Cerino Abdin, E.; Verda, V. Effects of different re-injection systems on the thermal affected zone (TAZ) modelling for open-loop groundwater heat pumps (GWHPs). Environ. Earth Sci. 2016, 75, 1–14. [CrossRef]
Klepikova, M.; Wildemeersch, S.; Jamin, P.; Orban, P.; Hermans, T.; Nguyen, F.; Brouyère, S.; Dassargues, A. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling. J. Hydrol. 2016, 540, 812–823. [CrossRef]
Hermans, T.; Nguyen, F.; Klepikova, M.; Dassargues, A.; Caers, J. Uncertainty quantification of medium-term heat storage from short-term geophysical experiments. Water Resour. Res. 2018, 54, 2931–2948. [CrossRef]
Wang, G.; Song, X.; Shi, Y.; Sun, B.; Zheng, R.; Li, J.; Pei, Z.; Song, H. Numerical investigation on heat extraction performance of an open loop geothermal system in a single well. Geothermics 2019, 80, 170–184. [CrossRef]
Park, D.K.; Kaown, D.; Lee, K.K. Development of a simulation-optimization model for sustainable operation of groundwater heat pump system. Renew. Energy 2020, 145, 585–595. [CrossRef]
Brielmann, H.; Griebler, C.; Schmidt, S.I.; Michel, R.; Lueders, T. Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol. Ecol. 2009, 68, 273–286. [CrossRef]
Haehnlein, S.; Bayer, P.; Ferguson, G.; Blum, P. Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 2013, 59, 914–925. [CrossRef]
Griebler, C.; Brielmann, H.; Haberer, C.M.; Kaschuba, S.; Kellermann, C.; Stumpp, C.; Hegler, F.; Kuntz, D.; Walker-Hertkorn, S.; Lueders, T. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 2016, 75, 1–18. [CrossRef]
Bakr, M.; van Oostrom, N.; Sommer, W. Efficiency of and interference among multiple Aquifer Thermal Energy Storage systems; A Dutch case study. Renew. Energy 2013, 60, 53–62. [CrossRef]
Jongchan, K.; Lee, Y.; Yoon, W.S.; Jeon, J.S.; Koo, M.-H.; Keehm, Y. Numerical modelling of aquifer thermal energy storage system. Energy 2010, 35, 4955–4965. [CrossRef]
Yapparova, A.; Matthäi, S.; Driesner, T. Realistic simulation of an aquifer thermal energy storage: Effects of injection temperature, well placement and groundwater flow. Energy 2014, 76, 1011–1018. [CrossRef]
Herbert, A.; Arthur, S.; Chillingworth, G. Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool. Appl. Energy 2013, 109, 94–103. [CrossRef]
Kranz, S.; Frick, S. Efficient cooling energy supply with aquifer thermal energy storages. Appl. Energy 2013, 109, 321–327. [CrossRef]
Fleuchaus, P.; Schüppler, S.; Godschalk, B.; Bakema, G.; Blum, P. Performance analysis of Aquifer Thermal Energy Storage (ATES). Renew. Energy 2020, 146, 1536–1548. [CrossRef]
Devleeschouwer, X.; Goffin, C.; Vandaele, J.; Meyvis, B. Modélisation Stratigraphique en 2D et 3D du Sous-sol de la Région de Bruxelles-Capitale; Final report of the project BRUSTRATI3D Version 1.0.; Royal Institute of Belgium for Natural Sciences Institute (RIBNS), Belgian Geological Survey, Brussels: 2018. Available online: https://document.environnement.brussels/opac_ css/index.php?lvl=notice:display&id=10964 (accessed on 21 May 2020). (In French).
IBGE-Institut Bruxellois Pour la Gestion de l’environnement. Unités Hydrogéologiques de la Région de Bruxelles-Capitale; Brussels Environment, Brussels 2020. Available online: https://environnement.brussels/thematiques/geologie-et-hydrogeologie/eaux-souterraines/hydrogeologie/unites-hydrogeologiques (accessed on 29 April 2020). (In French).
IBGE-Institut Bruxellois Pour la Gestion de l’environnement. Atlas: Hydrogéologie; Brussels Environment, Brussels 2020. Available online: https://geodata.environnement.brussels/client/view/82645188-dd20-430c-b1d1-df829c94dc1d (accessed on 16 May 2020). (In French).
Pollack, H.N.; Hurter, S.J.; Johnson, J.R. Heat flow from the earth’s interior: Analysis of the global data set. Rev. Geophys. 1993, 31, 267–280. [CrossRef]
Lee, K.S. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation. Hydrogeol. J. 2014, 22, 251–262. [CrossRef]
Bloemendal, M.; Hartog, N. Analysis of the impact of storage conditions on the thermal recovery efficiency of low-temperature ATES systems. Geothermics 2018, 71, 306–319. [CrossRef]
Bloemendal, M.; Olsthoorn, T. ATES systems in aquifers with high ambient groundwater flow velocity. Geothermics 2018, 75, 81–92. [CrossRef]