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Abstract: A numerical model was built using FEFLOW® to simulate groundwater flow and heat
transport in a confined aquifer in Brussels where two Aquifer Thermal Energy Storage (ATES)
systems were installed. These systems are operating in adjacent buildings and exploit the same
aquifer made up of mixed sandy and silty sublayers. The model was calibrated for groundwater
flow and partially for heat transport. Several scenarios were considered to determine if the two
ATES systems were interfering. The results showed that a significant imbalance between the injection
of warm and cold water in the first installed ATES system led to the occurrence of a heat plume
spreading more and more over the years. This plume eventually reached the cold wells of the same
installation. The temperature, therefore, increased in warm and cold wells and the efficiency of the
building’s cooling system decreased. When the second ATES system began to be operational, the
simulated results showed that, even if the heat plumes of the two systems had come into contact,
the influence of the second system on the first one was negligible during the first two years of joint
operation. For a longer modeled period, simulated results pointed out that the joint operation of the
two ATES systems was not adapted to balance, in the long term, the quantity of warm and cold water
injected in the aquifer. The groundwater temperature would rise inexorably in the warm and cold
wells of both systems. The heat plumes would spread more and more over the years at the expense of
the efficiency of both systems, especially concerning building’s cooling with stored cold groundwater.

Keywords: confined aquifer; heat storage; ATES; groundwater modeling; heat transport modeling;
thermal imbalance; urban engineering

1. Introduction

New demands for renewable energy sources have greatly increased the attention given
to shallow geothermal systems. When groundwater pumping and reinjection in a shallow
aquifer are considered associated with the use of a heat pump, an Aquifer Thermal Energy
Storage (ATES) can be developed. The basic operation of an ATES system is the following:
in summer, groundwater is pumped for cooling. Heat is captured from the building and
transferred to water which is then injected back into the aquifer at a higher temperature.
In winter, the system works the other way. Groundwater is pumped from the aquifer to
heat the building and injected back into the aquifer at a lower temperature. The advantage
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of ATES stands in the seasonal storage of heat and cold around warm and cold wells,
respectively. However, very specific hydrogeological conditions are still required [1,2]: the
aquifer hydraulic conductivity should be high enough to allow significant pumping to
provide the required power, the groundwater flow should be limited enough to prevent the
migration of the heat plume far away from where it can be used. For large power demands
(P > 100 kW), the efficiency and costs of an ATES system are known as quite optimized
as compared to Borehole Thermal Energy Storage systems known also as ‘closed-loop’
geothermal systems. While these systems are currently favored in urban areas to heat and
cool big buildings, leading in turn to CO2 savings [3–5], permit considerations could be a
major obstacle in rural areas as the protection of groundwater resources is often mostly
influenced by drinking water regulations [1].

The renewability and efficiency of ATES systems could be threatened by inadequate
conceptual and operational conditions. The objective of this paper is to show how the
thermal characteristics of the ATES system of a building and the hydrogeological conditions
can interact. Here, we will see that the remaining heat plumes due to the poor thermal
balance of the building (i.e., which requires more cooling than heating yearly), are not
removed by a sufficiently important groundwater flow in the aquifer. This is probably
instructive to show such a kind of ‘worst case study’ as it induces an unsatisfactory situation
impacting further ATES systems (even if these latter are balanced). Thus, the illustrated
case study is showing how one thermally unbalanced ATES system could partly jeopardize
shallow groundwater conditions in an urban area where other systems could suffer from
the induced thermal pollution limiting both efficiency and durability.

2. Materials and Methods
2.1. Context

Nowadays, more than 2800 ATES systems are operating worldwide [3]. In total, 99% of
ATES systems are low-temperature ATES and are working at temperatures below 25 ◦C [3].
Most of them are located in Europe, and particularly in the Netherlands [6]. In Belgium,
20 ATES systems are already used in Flanders in 2011 [7], four are operating in Brussels [8],
and the first one is currently under construction in Wallonia [9]. The number of ATES
systems is relatively low in Belgium, mainly because of the conflictual use of aquifers for
ATES and drinking water supply, raising concerns among drinking water companies and
environmental regulators [1,7,10].

Specific legislations are still relatively vague or non-existing in many countries in-
cluding European countries where the EU water directive (EU-WFD) mentioned that the
release of heat in the underground could be considered as groundwater pollution [11,12].
Only a few countries such as Germany, Denmark, Sweden, and Switzerland have national
regulations notably about temperature limits and/or minimum distances between systems,
varying widely [11,12]. As mentioned by Bloemendal et al. [13], the only ‘coordination’
takes place ‘through government issuing permits on a first-come, first-served basis’.

An elaborated harmonized management framework structure and a governance
model, which provide a roadmap for the different levels of management development of
13 EU countries was achieved in 2020 in the framework of the MUSE project [14]. This
sustainable governance model is adaptable to the different urban scales and independent
of hydrogeological conditions. The generalized structure of the shallow geothermal energy
management framework adopted in MUSE allows the effective analysis of policies to iden-
tify potential problems and plan effective solutions, as well as to select the best management
objectives, strategies, and measures according to the proposed policy principles.

Even if ATES allows better use of energy and a reduction of CO2 emissions and
has proven its cost-effectiveness [3,6], uncertainty about the long-term effects of thermal
storage in the subsurface can hinder the development of this technology [15,16]. Indeed, the
difference between the temperature of the injected water and the undisturbed temperature
of the aquifer leads to the formation of thermally affected zones. These cold and hot plumes
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can be modeled by using analytical solutions [17,18] and coupled groundwater flow and
heat transport numerical models [19–30].

Environmental impacts related to the induced cold or warm zones in aquifers are not
yet fully understood [31,32] especially in terms of groundwater quality and biodiversity
changes affecting various ecosystems [33]. Furthermore, thermal plumes can reach other
wells, leading to thermal interferences. These plumes can be observed inside a system
or between adjacent systems and can have a negative or a positive impact on the per-
formance of the systems, whether the interfering wells are storing, respectively, water at
different or similar temperatures [4,34]. Negative interferences should therefore be avoided
choosing proper well-to-well distances and adapted pumping rates [35,36] to the local
hydrogeological conditions. Thermal interferences can also result from thermal imbalances,
induced by unequal yearly volumes of warm and cold water injected in the aquifer [37].
Cooling demand may exceed heating demand even in Central and Northern European
countries [38]. Such variations in the heating and cooling demand are indeed related
to climatic fluctuations but are also induced by inefficient management of the heating
system [39] or inadequate structural and architectural features of the building.

Some research has been undertaken to find out how to perform adequate planning to
maximize the number of systems without creating negative interferences between them [4].
Indeed, a large distance between wells is better to avoid interferences and to increase the
performance of the system but reduces the number of systems that can be installed in a
given area [4,34]. It seems also that only 50–60% of the authorized ATES capacities are
used on average in the Netherlands [13,39]. Oversizing is applied mainly because of the
uncertainty related to the predicted energy demand of buildings during their lifetime [13].

As ATES is a recent technology, there is a lack of long-term monitoring data of op-
erating ATES systems [6,39]. This lack is induced by the high costs of measuring devices
and the difficult maintenance of permanent monitoring wells in urban areas [5]. Addi-
tionally, the optimized use of the thermal storage and heating/cooling system to provide
the maximum comfort of the building occupants does not correspond automatically to
the optimized use of the subsurface storage hydrogeological conditions [13,39]. Ideally,
networks of ATES systems could also be studied and optimized towards an optimum for
both the subsurface and comfort conditions in the buildings.

2.2. Study Case
2.2.1. Problem Statement

Two ATES systems exploiting the same confined aquifer and located in adjacent
buildings have been operating for a few years. The objective is to evaluate the potential
thermal interferences between the two systems, using a groundwater and heat transport
numerical model with the available operational data. The first system was installed in
Building n◦ 1 (Figure 1) and started to operate in March 2014, while the second one was
installed in Building n◦ 2 (Figure 1) and started to operate around August 2017. The two
systems are characterized by eight wells each. Four of them pump groundwater to heat the
building in winter, heat being also stored around these wells seasonally (‘warm well’) by
injection of warm water in summer. The four other wells are used to pump groundwater
to cool the building in summer, cold being also stored around these wells seasonally (‘cold
wells’) by injection of cold water in winter.
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Figure 1. Location map of the study case in Belgium and in Brussels and location of the two studied buildings and their
‘cold’ and ‘warm’ wells belonging to their respective ATES systems.

The numerical model was implemented in FEFLOW®, this software allows to simulate
groundwater flow in saturated or variably saturated conditions, coupled with the transport of
heat and contaminants. Using the finite element numerical method, this code allows a highly
flexible meshing strategy and solves the equations described hereunder (see Section 2.3.1)
with temperature-related water density and viscosity variations. The available operational
data are total pumping rates measured during the operation of the ATES system in Building
n◦ 1 and a few temperature measurements from the wells of Building n◦ 1, representative of
the temperature of the aquifer. For the second building, the power and energy derived from
groundwater have been recorded. From these data, groundwater pumping and injection rates
have been deduced (i.e., using Equation (4)).

2.2.2. Hydrogeology Context

The study area is located in the Brussels-Capital Region of Belgium, characterized
by marine Cenozoic deposits overlying Mesozoic Cretaceous chalk and the Paleozoic
bedrock [40]. The shallow hydrogeological context of Brussels consists, therefore, in a
succession of sand and clay deposits (Table 1), i.e., alternating aquifers and aquitards
overlying the chalk aquifer and the Paleozoic fractured aquifer [41]. A simplified map
showing the location of the studied site and the boundaries of the model (see Section
2.3.3) is shown in Figure 2 (the local background map of Brussels is not shown due to
confidentiality constraints). The two ATES systems are exploiting the Cenozoic Palaeocene
aquifer system divided into multiple sub-layers with the main fine sand layers separated
by a clayey layer (Table 1). The sandy parts act as aquifers and host the well screens,
while the central unit is an irregular clayey aquitard. Groundwater interactions with the
Cretaceous chalk and the Paleozoic bedrock are considered negligible based on the very
low permeability of the lower layer of the Upper Palaeocene (aquiclude) and observations
of quite independent piezometric behaviors in these aquifer systems compared to the upper
system [42]. Furthermore, locally, pumping tests were performed in a well exploiting the
upper aquifer system without any measured groundwater arrival and influence from the
Cretaceous chalk and the Paleozoic bedrock aquifer systems.
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Table 1. Geology as observed during drilling at the location of Building n◦ 1.

Altitude (m DNG) Depth Description Formation

+18 to +11 0 to 7 Loam, clay Quaternary deposits
+11 to −2 7 to 20 Sand with gravel Quaternary deposits
−2 to −5 20 to 23 Clayey sand to sandy clay Lower Eocene
−5 to −40 23 to 58 Clay Lower Eocene
−40 to −46 58 to 64 Sand Upper Palaeocene
−46 to −56 64 to 74 Sand and clay Upper Palaeocene
−56 to −67.5 74 to 85.5 Clay Upper Palaeocene

−67.5 to −76.5 85.5 to 94.5 Marl (above) and chalk
(below) Cretaceous

From −76.5 From 94.5
Mainly phyllites with

quartzitic phyllites
intercalations

Paleozoic basement
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2.3. Methods
2.3.1. Groundwater Flow and Heat Transport Equations

The 3D transient groundwater flow in saturated conditions can be described by the
following equation [1]:

∇ · ρ(K · ∇h) + ρq′ = ρSs
∂h
∂t

(1)

where K is the hydraulic conductivity tensor (m/s), ∇h is the piezometric gradient vector
(-), ρ is the groundwater density (kg/m3), q′ is the water flow rate per unit volume of the
geological medium (s−1) that is injected (q′ > 0) or withdrawn (q′ < 0), Ss is the specific
storage coefficient (m−1) which is the volume of groundwater gained or released per unit
volume of a saturated porous medium and per unit of h change.
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The heat transport equation can be written [1]:

∂ρbcbT
∂t

= −∇ · [ρwcwqT − λb∇T] + QT (2)

where T is the temperature (◦K) and ∇T the temperature gradient (◦K/m), λb is the heat
(or thermal) conductivity (W/(m◦K)) of the bulk porous medium, ρw is the water density
(kg/m3), cw is the water heat capacity (J/(kg◦K)), so that ρwcw is the water volumetric heat
capacity (J/(m3◦K)), q is the total water flux vector (m/s) from Darcy’s law and the possible
temperature effect on the water density and viscosity, ρb is the bulk density (kg/m3) of the
porous medium, cb is the bulk heat capacity (J/(kg◦K)) of the porous medium, so that ρbcb
is the bulk volumetric heat capacity (J/(m3◦K)), QT is the heat source (if QT > 0) or sink (if
QT < 0) term (W/m3).

Indeed, coupling effects between these flow and heat transport equations must be
taken into account through the dependency of the hydraulic conductivity values on the
water viscosity (µ) and density variations induced by temperature changes:

K(T) = kρ(T)g/µ(T) (3)

When producing thermal energy with a heat pump, the power P (in W) can be
expressed by [1]:

P =
Q∆Tρwcw(
1− 1

COP

) (4)

where COP is the coefficient of performance (-) of the heat pump (i.e., the ratio between the
useful produced thermal work and the required work), Q is the water flow rate in the heat
pump (m3/s), ∆T the temperature difference between the upstream and downstream of
the heat pump (◦K). In practice, the power P is usually expressed in kW.

2.3.2. Conceptual Model

The groundwater model boundaries were defined regarding the hydrogeological
context and considering the boundary conditions (BCs) that could arise from them. The best
option was to place boundaries along with physical barriers or the furthest possible from
the place where results are expected, to avoid boundary conditions influencing these
results [1]. In this study case, the top and the bottom of the model correspond to the top
and bottom, respectively, of the Cenozoic aquifer as this is confined between two very
low permeability confining clayey layers. For the lateral boundaries, since the aquifer is
confined over a large area, an actual change of hydrogeological conditions could not be
advocated to define boundaries. These boundaries were therefore set at a ‘large enough’
distance from the study area, which was determined with regard to the measured radius
of influence during previous pumping tests performed in the site of interest. The lateral
boundaries were defined largely outside the measured drawdown cones induced by these
tests. Since the tests were performed without injection and with larger pumping rates than
those observed during the ATES operations, we can consider that the lateral boundaries
are defined conservatively. The SE and NW lateral boundaries (Figure 2) are prescribed
piezometric head BCs set along piezometric head contour lines of the sand aquifer, as
delineated in previous projects in Brussels [42]. Through the NE and SW lateral boundaries
(Figure 2), zero-flux BCs are considered as they are set along with perpendicular directions
with regard to the main regional groundwater flux. Then, at the location of the ATES
pumping and injection wells but also the location of the other groundwater abstraction
wells located inside the modeled zone, prescribed fluxes are imposed, corresponding to
the averaged values of pumping/reinjection during the different considered periods.

Concerning the heat transport simulations, heat BCs must also be prescribed. The
available temperature data over the modeled zone being limited, a temperature was
prescribed along all lateral boundaries corresponding to the undisturbed background
temperature in the aquifer. This latter was measured at the beginning of the operation
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of the first ATES system and is equal to 12.4 ◦C. On the upper and lower boundaries,
prescribed zero-conduction fluxes are added to zero-advection conditions to result in zero-
heat flux BCs. Any influence of the air temperature and from the mean thermal energy
earthflow (estimated between 0.05 and 0.11 W/m2 [43]) is neglected here.

2.3.3. Numerical Model

The finite element method was used via the FEFLOW software. A finite element
mesh was designed, defining nodes at locations of ATES wells and abstraction wells. The
mesh was refined around all wells and a higher refinement level was used around the
zone of interest, leading to a mesh of about 62,000 elements (Figure 3). The model is 3D
extended to a third dimension with 10 layers representing the Cenozoic aquifer system.
Based on detailed drilling information from the different boreholes, the first 5 layers are
corresponding to the top part of the aquifer, layers 6 and 7 correspond to the clayey part
and layers 8–10 to the lower aquifer part. The aquifer system is fully confined and therefore
always saturated.
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Groundwater flow simulations were first performed to calibrate the model. Steady-
state simulations were carried out to obtain the initial hydraulic heads for transient state
simulations. Once the model was calibrated for groundwater flow, heat transport was
taken into account to simulate the operation of the two ATES systems and to obtain the
study results.

The boundary conditions defined for groundwater flow simulations are (Figure 2):

• on the upper and lower boundaries: zero-flux BCs;
• along the SE and NW boundaries: imposed piezometric heads, representative of the

piezometric level observed during the simulated period;
• along the NE and SW boundaries: zero-flux BCs;
• in abstraction wells: imposed flux, equal to the average annual abstracted flow rate.
• The defined heat transport BCs are (Figure 2):
• on the upper and lower boundaries: zero-diffusive flux BCs;
• along lateral boundaries: imposed temperature, equal to the undisturbed background

temperature.

Steady-state conditions were first calculated from initial confined piezometric con-
ditions. The calculated results were then used as initial conditions for the transient state
simulations. In simulations involving heat transport, the undisturbed initial background
temperature of 12.4 ◦C was chosen over the initial temperature in the whole domain.
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3. Results
3.1. Groundwater Flow Calibration

The model was first calibrated for groundwater flow. Values of the input parameters
were adapted manually to obtain simulated heads as close as possible to piezometric
heads observed in monitoring wells in the area of interest (Figure 2). Calibration was first
performed in steady-state to obtain initial conditions for the transient state calibration.
An automatic calibration was also used in a steady-state but not in a transient state.
Two different periods were selected to calibrate the model in a transient state. These
periods correspond to pumping test periods having led to important drawdowns in the
considered aquifer. To simplify the calibration process in a transient state, only the input
parameters (hydraulic conductivity and specific storage coefficient) of the first five layers
were modified. In the clayey part (layers 6 and 7) and in the lower aquifer part (layers 8–10)
typical values equal to 1 × 10−8 and 1.6 × 10−5 m/s, respectively, were adopted for the
hydraulic conductivity and 5 × 10−5/m for the specific storage coefficient [42].

Two examples of results are given in Figure 4 showing for the two piezometers Pz 367
and Pz 518 (Figure 2), located the closest to the considered ATES systems, the transient
evolution of the computed versus measured piezometric heads during the two computed
periods of 2013 and 2016.
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The hydraulic conductivity values obtained in the five upper layers are ranging
between 2 × 10−6 and 3 × 10−5 m/s and the specific storage coefficient values are ranging
between 1 × 10−5 and 5 × 10−4/m (Figure 5). With such parameter values, the obtained
simulated piezometric heads were the closest to the observed ones.
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3.2. Heat Transport Simulations

Once the model was calibrated for groundwater flow, heat transport was added to
simulate the operation of ATES systems in Building n◦ 1 and Building n◦ 2.

The ‘Open-Loop Design plug-in’ was used in FEFLOW to simulate the operation
of ATES systems. Power demands and injection temperatures, therefore, had to be de-
fined. For Building n◦ 1, the power extracted from the subsurface was calculated based
on abstraction rates measured during the operation of the system and assuming a ∆T of
6◦K between extraction and injection temperatures. For Building n◦ 2, the power was
determined from the energy derived from the subsurface and assuming a ∆T of 6◦K as well.
This assumption was made on injection temperatures because the temperatures measured
during the operation of the second ATES system were not available and those measured
during the operation of the first ATES system were not reliable. Indeed, measurements
being performed at the entrance and exit of the heat exchanger, are influenced by the
ambient temperature of the building basement and by frequent switches between ground-
water injection and abstraction. For Building n◦ 1, the obtained power curves already
highlight an imbalance between cooling and heating powers (Figure 6). The cooling season
is globally longer than the heating season and the power demand is way larger for cooling
than for heating. This imbalance is not observed in the power demand curve of Building
n◦ 2 (Figure 7), where the power demands are comparable for heating and cooling and the
duration of the seasons is also nearly equivalent. These differences are probably due to
huge structural and architectural differences between the two buildings.
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Figure 7. Power derived from groundwater by the ATES system of Building n◦ 2.

Due to a lack of temperature observation data, calibrating the model for heat transport
was limited to check that the simulated temperature values and trends are realistic when
compared to observed values (Figure 8) for the reference scenario (see hereunder). Typical
heat transport parameter values were introduced in the model (Table 2).
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Table 2. Heat transport parameters values introduced in the model [1,2,7,8].

Hydrogeological
Unit Lithology Layers

ne(-)
(Effective
Transport
Porosity)

ρscs (MJ/m3/◦K)
(Solid Heat
Volumetric
Capacity)

λs(W/m/◦K)
(Solid Heat

Conductivity)

Upper aquifer part Sand 1–5 0.1 2 2.5
Low K part Clay 6–7 0.03 3 2

Lower aquifer part Sand 8–10 0.1 3 2

3.2.1. Scenario Descriptions

Different scenarios were considered for the heat transport simulations. The first six
scenarios only take the operation of the first ATES system into account. The operation of the
second ATES system was added in scenarios 7 and 8. In scenario 1, taken as the reference
scenario, the operation of the first ATES system was simulated from 1 January 2014 to 29
February 2020. To investigate the sensitivity of the model results to changes in values of
the heat transport parameters, scenarios 2, 3, and 4 were performed. In scenario 2, the
thermal conductivity of the solid matrix was increased from 2.5 to 4 W/m/◦K in layers 1–5
and from 2 to 2.5 W/m/◦K in layers 6–10 of the model. In scenario 3, the volumetric heat
capacity of the solid matrix was modified from 2 to 3 MJ/m3/◦K in layers 1–5. Additionally,
in scenario 4, the effective transport porosity was increased from 0.10 to 0.15 in layers 1–5.

Then, taking back the heat transport parameters from scenario 1 (reference scenario)
the effect on the results of the ∆T used to calculate the power was investigated in scenarios
5 and 6, using a ∆T of 4 and 8◦K, respectively. In these two scenarios, the power is the
same as in the reference scenario, but the flow rates are different since these latter depend
on the abstraction and injection temperatures.

Then, taking back the condition from scenario 1 for the first ATES system, operation
of the second ATES system, starting in August 2017, was added in scenario 7, to detect
whether or not this second system has an impact on the first one and if the two systems
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interfere. Finally, a longer scenario, scenario 8, was considered to see how the thermal
plumes would behave in the future if current operating conditions are maintained. This
last simulation was performed until 31 December 2029, with average powers obtained
from the previous operation of the systems and a ∆T of 6◦K in both cases.

3.2.2. Simulation Results

In the first scenario (reference scenario), the temperature increases year after year in
warm (WW) and cold wells (CW) (Figure 8). The same trend could be observed in the
measured temperatures. Starting from the natural background temperature of groundwater
around 12.5 ◦C, a step increase was simulated in the hot wells at the spring period (May),
corresponding to the start of the building cooling period and thus to injection of hot
water in the hot wells. Then, the temperature in the hot wells is increased during the
whole summer period. During this summer period, the temperature is also increased in
the pumping cold wells to converge back towards the natural background groundwater
temperature. This latter is true from 2014 until 2016, but in the following years, the coldest
spring temperatures in the cold wells start to be shifted higher and higher, and thus, during
the summer, the temperatures increase towards higher temperatures each year. That is
clearly due to the Building n◦ 1 thermal imbalance that requires more cooling than heating,
especially during the last years. Similarly, at the starting of the winter period (October),
a step temperature decrease is logically simulated in the cold wells corresponding to the
start of the building heating period and thus injection of cold water in the cold wells. Then,
the temperature in the cold wells is decreased during the whole winter period. During this
winter period, the temperature is also decreased in the pumping hot wells to converge back
towards the natural background groundwater temperature but never reaching the initial
natural temperature due to the thermal imbalance. Consequently, and year after year, the
coldest spring temperatures in the hot wells are increased from 12.5 to 18 ◦C.

During the operation of the ATES system, heat and cold were stored through the
injection of warm and cold water. However, the amount of warm water injected into
the subsurface was larger than the amount of cold water. This thermal imbalance led to
thermal interferences between the heat plume and the cold wells of this system (Figure 9)
and the temperature increased in the cold wells. The cold storage is therefore ineffective or
non-existent and the efficiency of the system for cooling decreased year after year.

The modifications of the thermal conductivity made in scenario 2 had practically no
effect on the temperatures observed in the various wells. The heat plumes observed in
the two cases at similar periods are identical (Figure 9). When a higher volumetric heat
capacity of the solid matrix was used (scenario 3), a slight decrease in the temperature
could be observed compared to the reference scenario. Indeed, as the volumetric heat
capacity increases, more energy is needed to heat the solid matrix and less thermal energy
reaches the cold wells. The simulated heat plume at the end of the last simulated season is
slightly less spread out in scenario 3 than in scenario 1 (Figure 6) but the influence on the
results remains however limited. With a higher effective transport porosity in layers 1–5
(scenario 4), the temperatures observed in the wells of Building n◦ 1 are the same as those
in the reference scenario. The changes in heat transport parameters had almost no effect on
the simulation results (Figure 6).

With a lower ∆T to calculate the power derived from the subsurface (scenario 5), the
amplitude of the temperature variations between the heating and cooling seasons is lower.
The temperature increases more slowly in the warm wells, but the heat plume still reaches
the cold wells (Figure 9). Inversely, with a higher ∆T (Scenario 6), the amplitude of the
temperature variations is higher than in the reference scenario. Higher temperatures are
observed in the heat plume reaching the cold wells (Figure 9). However, the temperatures
obtained with a ∆T of 6◦K are closer to measured temperatures than the temperatures
observed in the other two cases.
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When the operation of the second ATES system is taken into account (scenario 7), the
temperatures observed in the wells of Building n◦ 1 stay similar to those in the reference
scenario. During the first two years of its operation, the second ATES system had therefore
almost no effect on the operation of the first ATES system. However, both systems interact
as their heat plumes came into contact in 2019. The second system is more balanced than
the first one since heat and cold plumes are induced (Figure 9). However, in the long term,
the results of scenario 8 show that, with the current operational conditions, the temperature
will increase in the warm and cold wells of both systems. The heat plumes will enlarge
year after year (Figure 9), at the expense of cold storage and efficiency for cooling of both
systems. Even if the second system is more balanced, the cooling season is still 15 days
longer than the heating season, which could lead to a larger injection of warm water than
cold water.

Since the flow is from southeast to northwest, the hot water plume created by Building
n◦ 1 (in the northwest zone) could be dissipated further in the northwest direction. Un-
fortunately, the groundwater flow is relatively weak, and the hot plume does not migrate
significantly. On the other hand, the hot water plume created by Building n◦ 2 could
potentially affect partially the cold wells of Building 1. In all scenarios, the simulated
plumes keep a relatively circular shape showing the limited influence of the groundwater
flow. Thermal energy losses by advection are therefore limited. In this particular case,
heat is not transported away from the wells, and the temperature increases locally around
these wells. As the groundwater flow influence is quite limited, it would be even more
necessary to reach a thermal balance between abstraction and injection. If it is not the case,
heat or cold accumulates and finally reaches the opposite wells. The system, therefore,
becomes inefficient.

4. Discussion

The heat transport simulations that were performed indicated that the large imbalance
between the injection of warm and cold water in the subsurface led to thermal interferences
between the heat plume and the cold wells of Building n◦ 1. This resulted in a temperature
increase in the warm and cold wells of this system. The temperature in cold wells is
now higher than the undisturbed background temperature in the aquifer, which leads
to a lower efficiency of the system. Changing the main heat transport parameter values
did not influence significantly the results, which demonstrated that even if these values
were slightly different in reality, this would not have a large impact on the results. The
simulations made with a different ∆T showed that this parameter has a large impact on
the results and that the temperatures obtained with a ∆T of 6◦K were the closest from the
measured temperatures. Adding the operation of the second ATES system had almost no
effect on the temperatures and heat plumes of Building n◦ 1. The two systems, however,
interacted as their heat plumes came into contact. In the long term, keeping operational
conditions the same as currently, the heat plumes will enlarge year after year, at the expense
of cold storage and efficiency for cooling of both systems. The local hydrogeological
conditions are such that the growing heat plume is not counterbalanced by sufficient
groundwater flow to bring the groundwater temperature down to its background value.

We are clearly showing here a bad example, but we believe that it is by pointing out
such examples that we can avoid this type of mistake in the future. Here, the management
of both ATES systems should therefore be changed quickly to rebalance the heat and cold
storage. This change must be designed to limit interferences between wells of the same
system and/or of the neighbor system and to improve efficiency in the short and long
terms. This is especially true for Building n◦ 1 since the ATES system in Building n◦ 2 has
been in operation for less than three years and no imbalance in heat and cold storage has
been observed yet.

Indeed, for Building n◦ 1, this is particularly uneasy to correct such a thermal unbal-
ance after construction and active ATES operations for years. To balance the amount of
heat stored in the aquifer, less warm water and/or more cold water should be injected.
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Thus, in other words, the use of the system for cooling should be decreased, and/or the use
of the system for heating should be maximized. Among the possible solutions currently
investigated for Building n◦ 1, there are:

• increased use of heat during winter by providing heat to neighboring buildings;
• ncreased night ventilation and window solar protection during the summer.

These efforts should reduce the need for cooling during warm days combined with an
increased need for heat during winters. At the same time, new aquifer temperature mea-
surements (temperature sensors) are being installed to obtain better monitoring of the im-
pact of the ATES systems. Different management scenarios involving the above-mentioned
solutions should then be simulated for prediction purposes and further decisions.

More generally, if the concept of seasonal heat storage is considered in an aquifer,
results from this bad case study are striking by the induced impact in terms of heat plume.
Here, the groundwater flow and heat advection are very limited, and a global thermal
balance for hot and cold injections would have been required before issuing the permitting
certificate. On the contrary, in other hydrogeological conditions, if the groundwater flow
and heat advection are very important, thermal energy cannot be stored efficiently locally as
heat and cold plumes are transported far away from the wells [36,44–46]. If the groundwater
flow and heat advection are moderate, a detailed simulation of the groundwater flow and
heat transport in the aquifer is particularly required to find out if the annual imbalance can
be managed in relation to the specific local hydrogeological conditions.

Another important point lies in the fact that the reliability and accuracy of the model
results are indeed highly related to the available measurements: piezometric heads, ground-
water temperatures, detailed pumping, and injection flow rate, etc. After a few months
or years, these data can be used to improve the reliability of the model results through a
longer and more detailed calibration procedure. This last point is often forgotten or ignored
by real estate developers and civil engineering designers in their rush to build as quickly
as possible and at the lowest cost.
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