Beaussier, J.; Mainguy, A.; Olivero, A.; Rolland, R. In orbit performance of the CACTUS accelerometer. Acta Astronaut. 1977, 4, 1085–1102. [CrossRef]
Toubul, P. CHAMP, GRACE, GOCE instruments and beyond Geodesy for Planet Earth. In Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August–4 September 2009; pp. 215–221.
Middelhoek, S. Celebration of the tenth transducers conference. Sens. Actuators A Phys. 2000, 82, 2–23. [CrossRef]
Roylance, L.; Angell, J. A batch-fabricated silicon accelerometer. IEEE Trans. Electron Devices 1979, 26, 1911–1917. [CrossRef]
Eloy, J.; Mounier, E.; Roussel, P. Status of the Inertial MEMS-based Sensors in the Automotive. In Advanced Microsystems for Automotive Applications 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 43–48.
Chen, W.-Y.; Wang, M.; Wu, Z.-S. Augmented reality game control of handy devices using a triaxial accelerometer and an electronic compass. Sens. Mater. 2017, 29, 727–739.
Yazdi, N.; Ayazi, F.; Najafi, K. Micromachined inertial sensors. Proc. IEEE 1998, 86, 1640–1659. [CrossRef]
Narasimhan, V.; Li, H.; Jianmin, M. Micromachined high-g accelerometers: A review. J. Micromech. Microeng. 2015, 25, 033001. [CrossRef]
Aaltonen, L.; Rahikkala, P.; Saukoski, M.; Halonen, K. High-resolution continuous-time interface for micromachined capacitive accelerometer. Int. J. Circuit Theory Appl. 2009, 37, 333–349. [CrossRef]
Aaltonen, L.; Halonen, K. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 µg and bandwidth of 300 Hz. Sens. Actuators A Phys. 2009, 154, 46–56. [CrossRef]
Xu, H.; Liu, X.;√ Yin, L. A Closed-Loop Σ∆ Interface for a High-Q Micromechanical Capacitive Accelerometer With 200 ng/ Hz Input Noise Density. IEEE J. Solid-State Circuits 2015, 50, 2101–2112. [CrossRef]
Wu, J.; Carley, L. Electromechanical/spl Delta//spl Sigma/modulation with high-Q micromechanical accelerometers and pulse density modulated force feedback. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 274–287.
Boom, B.A.; Bertolini, A.; Hennes, E.; Brookhuis, R.A.; Wiegerink, R.J.; Van den Brand, J.; Beker, M.; Oner, A.; Van Wees, D. Nano-G accelerometer using geometric anti-springs. In Proceedings of the IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 33–36.
Accadia, T.; Acernese, F.; Alshourbagy, M.; Amico, P.; Antonucci, F.; Aoudia, S.; Arnaud, N.; Arnault, C.; Arun, K.G.; Astone, P.; et al. Virgo: A laser interferometer to detect gravitational waves. J. Instrum. 2012, 7, P03012. [CrossRef]
Bertolini, A.; Cella, G.; DeSalvo, R.; Sannibale, V. Seismic noise filters, vertical resonance frequency reduction with geometric anti-springs: A feasibility study. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 435, 475–483. [CrossRef]
Kamp, P. Towards An Ultra Sensitive Seismic Accelerometer. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2016.
Middlemiss, R.; Samarelli, A.; Paul, D.J.; Hough, J.; Rowan, S.; Hammond, G. Measurement of the Earth tides with a MEMS gravimeter. Nature 2016, 531, 614–617. [CrossRef]
Prasad, A.; Bramsiepc, S.; Middlemiss, R.; Hough, J.; Rowan, S.; Hammond, G.; Paul, D. A Portable MEMS Gravimeter for the Detection of the Earth Tides. In Proceedings of the IEEE Sensors 2018, New Delhi, India, 28–31 October 2018; pp. 1–3.
Middlemiss, R.; Bramsiepe, S.; Douglas, R.; Hough, J.; Paul, D.; Rowan, S.; Hammond, G. Field tests of a portable MEMS gravimeter. Sensors 2017, 17, 2571. [CrossRef]
Middlemiss, R.; Bramsiepe, S.G.; Douglas, R.; Hild, S.; Hough, J.; Paul, D.J.; Samarelli, A.; Rowan, S.; Hammond, G. Microelectromechanical system gravimeters as a new tool for gravity imaging. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170291. [CrossRef] [PubMed]
El Mansouri, B.; Middelburg, L.M.; Poelma, R.H.; Zhang, G.Q.; Van Zeijl, H.W.; Wei, J.; Jiang, H.; Vogel, J.; Van Driel, W.D. High-resolution MEMS inertial sensor combining large-displacement buckling behaviour with integrated capacitive readout. Microsyst. Nanoeng. 2019, 5, 1–14. [CrossRef]
Zhang, H.; Wei, X.; Ding, Y.; Jiang, Z.; Ren, J. A low noise capacitive MEMS accelerometer with anti-spring structure. Sens. Actuators A Phys. 2019, 296, 79–86. [CrossRef]
Tang, S.; Liu, H.; Yan, S.; Xu, X.; Wu, W.; Tu, L.C. A MEMS Gravimeter Qualified for Earth Tides Measurement. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Berlin, Germany, 23–27 June 2019; pp. 499–502.
Tang, S.; Liu, H.; Yan, S.; Xu, X.; Wu, W.; Fan, J.; Liu, J.; Hu, C.; Tu, L. A high-sensitivity MEMS gravimeter with a large dynamic range. Microsyst. Nanoeng. 2019, 5, 1–13. [CrossRef]
Suzuki, Y.; Tai, Y.-C. Micromachined High-Aspect-Ratio Parylene Spring and Its Application to Low-Frequency Accelerometers. J. Microelectromech. Syst. 2006, 15, 1364–1370. [CrossRef]
Si-WARE. Available online: https://www.si-ware.com/sensors-mems/(accessed on 15 May 2020).
Pike, W.; Standley, I.; Karl, W.; Kumar, S.; Stemple, T.; Vijendran, S.; Hopf, T. Design, fabrication and testing of a micromachined seismometer with NANO-G resolution. In Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Denver, CO, USA, 21–25 June 2009; pp. 668–671.
Pike, W.; Kumar, S. Improved design of micromachined lateral suspensions using intermediate frames. J. Micromech. Microeng. 2007, 17, 1680. [CrossRef]
Pike, W.; Delahunty, A.; Mukherjee, A.; Dou, G.; Liu, H.; Calcutt, S.; Standley, I. A self-levelling nano-g silicon seismometer. In Proceedings of the IEEE Sensors 2014, Valencia, Spain, 2–5 November 2014; pp. 1599–1602.
Liu, H.; Pike, W. A silicon/solder bilayer thermal actuator for compensating thermal drift of silicon suspensions. In Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 916–919.
Pike, W.; Calcutt, S.; Standley, I.; Mukherjee, A.; Temple, J.; Warren, T.; Charalambous, C.; Liu, H.; Stott, A.; McClean, J. A silicon seismic package (SSP) for planetary geophysics. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 2081.
Pike, W.; Standley, I.; Calcutt, S.; Mukherjee, A. A broad-band silicon microseismometer with 0.25 NG/rtHz performance. In Proceedings of the 31st IEEE International Conference on MEMS, Belfast, Northern Ireland, 21–25 January 2018.
Liua, H.; Pike, W.; Charalambous, C.; Stott, A.E. Passive Method for Reducing Temperature Sensitivity of a Microelectromechanical Seismic Accelerometer for Marsquake Monitoring Below 1 Nano-g. Phys. Rev. Appl. 2019, 12, 064057. [CrossRef]
Li, Z.; Wu, W.J.; Zheng, P.P.; Liu, J.Q.; Fan, J.; Tu, L.C. Novel Capacitive Sensing System Design of a Microelectromechanical Systems Accelerometer for Gravity Measurement Applications. Micromachines 2016, 7, 167. [CrossRef] [PubMed]
Fan, J.; Zhu, T.; Wu, W.J.; Tang, S.H.; Liu, J.Q.; Tu, L.C. Low Temperature Photosensitive Polyimide Based Insulating Layer Formation for Microelectromechanical Systems Applications. J. Electron. Mater. 2015, 44, 4891–4897. [CrossRef]
Wu, W.; Zhu, T.; Liu, J.; Fan, J.; Tu, L. Polyimide-Damage-Free, CMOS-Compatible Removal of Polymer Residues from Deep Reactive Ion Etching Passivation. J. Electron. Mater. 2015, 44, 991–998. [CrossRef]
Wu, W.J.; Liu, D.; Qiu, W.; Liua, H.; Hu, F.; Fan, J.; Hu, C.; Tu, L.C. A precise spacing-control method in MEMS packaging for capacitive accelerometer applications. J. Micromech. Microeng. 2018, 28, 125016. [CrossRef]
Wu, W.J.; Liu, J.; Fan, J.; Peng, D.; Liua, H.; Tu, L.C. A nano-g micromachined seismic sensor for levelling-free measurements. Sens. Actuators A Phys. 2018, 280, 238–244. [CrossRef]
Kim, M.; Moon, W.; Yoon, E.; Lee, K.-R. A new capacitive displacement sensor with high accuracy and long-range. Sens. Actuators A Phys. 2006, 130, 135–141. [CrossRef]
Weast, R.C.; Astle, M.J.; Beyer, W.H. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 1988.
Yamane, D.; Konishi,√T.; Toshiyoshi, H.; Masu, K.; Machida, K. A MEMS inertia sensor with Brownian noise of below 50 nG/ Hz by multi-layer metal technology. In Proceedings of the IEEE 3rd International Symposium on Inertial Sensors and Systems, Laguna Beach, CA, USA, 2–5 February 2016; pp. 148–149.
Edalatfar, F.; Yaghootkar, B.; Qureshi, A.Q.A.; Azimi, S.; Bahreyni, B. Design, fabrication and characterization of a high performance MEMS accelerometer. In Proceedings of the IEEE Sensors 2016, Orlando, FL, USA, 30 October–2 November 2016; pp. 1–3.
Edalafar, F.; Azimi, S.; Qureshi, A.Q.A.; Yaghootkar, B.; Keast, A.; Friedrich, W.; Leung, A.M.; Bahreyni, B.; Edalatfar, F. A Wideband, Low-Noise Accelerometer for Sonar Wave Detection. IEEE Sens. J. 2017, 18, 508–516. [CrossRef]
Yazdi, N.; Najafi, K. An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process. J. Microelectromech. Syst. 2000, 9, 544–550. [CrossRef]
Fougerat, A.; Guerineau, L. Ultra-low-noise MEMS accelerometer for Seismology. In Proceedings of the 20th EGU General Assembly, Vienna, Austria, 4–13 April 2018; p. 7188.
Walmsley, R.G.; Hopcroft, M.A.; Hartwell, P.G.; Corrigan, G.; Milligan, D. Three-phase capacitive position sensing. In Proceedings of the IEEE Sensors 2010, Waikoloa, HI, USA, 1–4 November 2010; pp. 2658–2661.
Colibrys. Available online: https://www.colibrys.com/(accessed on 15 May 2020).
Kinemetrics. Available online: https://kinemetrics.com/products/accelerographs-and-accelerometers/(accessed on 15 May 2020).
Ref Tek. Available online: https://www.reftek.com/category/products/seismic-sensors/(accessed on 15 May 2020).
Sercel. Available online: http://www.sercel.com/products/Pages/DSU1-508.aspx (accessed on 15 May 2020).
Laine, J.; Mougenot, D. A high-sensitivity MEMS-based accelerometer. Lead. Edge 2014, 33, 1234–1242. [CrossRef]
INOVA. Available online: https://www.inovageo.com/products (accessed on 15 May 2020).
Honeywell. Available online: https://aerospace.honeywell.com/en/products/navigation-and-sensors/accelerometers (accessed on 15 May 2020).
Utz, A.; Walk, C.; Stanitzki, A.; Mokhtari, M.; Kraft, M.; Kokozinski, R. A High-Precision and High-Bandwidth MEMS-Based Capacitive Accelerometer. IEEE Sens. J. 2018, 18, 6533–6539. [CrossRef]
Kamada, Y.; Isobe, A.; Oshima, T.; Furubayashi, Y.; Ido, T.; Sekiguchi, T. Capacitive MEMS Accelerometer With Perforated and Electrically Separated Mass Structure for Low Noise and Low Power. J. Microelectromech. Syst. 2019, 28, 401–408. [CrossRef]
Furubayashi, Y.; Oshima, T.; Yamawaki,√ T.; Watanabe, K.; Mori, K.; Mori, N.; Matsumoto, A.; Kazama, H.; Kamada, Y.; Isobe, A. 10.2 A 22ng/ Hz 17mW MEMS Accelerometer with Digital Noise-Reduction Techniques. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 182–184.
Isobe, A.; Kamada, Y.; Oshima, T.; Furubayashi, Y.; Sakuma, N.; Takubo, C.; Tainaka, Y.; Watanabe, K.; Sekiguchi, T. Design of Perforated Membrane for Low-Noise Capacitive MEMS Accelerometers. In Proceedings of the IEEE Sensors 2018, New Delhi, India, 28–31 October 2018; pp. 1–4.
Abdolvand, R.; Ayazi, F. An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon. Sens. Actuators A Phys. 2008, 144, 109–116. [CrossRef]
Tan, Y.; Zhou, R.; Zhang, H.; Lu, G.; Li, Z. Modeling and simulation of the lag effect in a deep reactive ion etching process. J. Micromech. Microeng. 2006, 16, 2570–2575. [CrossRef]
Ayazi, F.; Najafi, K. High aspect-ratio polysilicon micromachining technology. Sens. Actuators A Phys. 2000, 87, 46–51. [CrossRef]
Abdolvand, R.; Amini, B.V.; Ayazi, F. Sub-Micro-Gravity In-Plane Accelerometers With Reduced Capacitive Gaps and Extra Seismic Mass. J. Microelectromech. Syst. 2007, 16, 1036–1043. [CrossRef]
Hessel, A.; Oliner, A.A. A New Theory of Wood’s Anomalies on Optical Gratings. Appl. Opt. 1965, 4, 1275. [CrossRef]
Wang, C.; Lu, Q.; Bai, J.; Wang, K. Tolerance analysis and optimization of a lateral deformable NEMS zeroth-order gratings. Opt. Commun. 2015, 355, 356–366. [CrossRef]
Wang, C.; Bai, J.; Wang, K. Tolerance analysis of the pulse signal of a novel lateral deformable optical NEMS grating transducer. In Proceedings of the Nanoengineering: Fabrication, Properties, Optics, and Devices XII, Sand, San Diego, CA, USA, 15–17 August 2015; p. 95560G.
Carr, D.W.; Keeler, B.E.; Sullivan, J.P.; Friedmann, T.A.; Wendt, J.R. Measurement of a laterally deformable optical MEMS grating transducer. In Proceedings of the MOEMS and Miniaturized Systems IV, San Jose, CA, USA, 27–28 January 2004; pp. 56–64.
Keeler, B.E.; Bogart, G.R.; Carr, D.W. Laterally deformable optical NEMS grating transducers for inertial sensing applications. In Proceedings of the Nanofabrication: Technologies, Devices, and Applications 2005, Philadelphia, PA, USA, 19–22 October 2004; pp. 306–313.
Keeler, B.E.N.; Carr, D.W.; Sullivan, J.P.; Friedmann, T.A.; Wendt, J.R. Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer. Opt. Lett. 2004, 29, 1182–1184. [CrossRef] [PubMed]
Krishnamoorthy, U.; Olsson, R.; Bogart, G.; Baker, M.; Carr, D.; Swiler, T.; Clews, P. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens. Actuators A Phys. 2008, 145, 283–290. [CrossRef]
Hall, N.A.; Bicen, B.; Jeelani, M.K.; Lee, W.; Qureshi, S.; Degertekin, F.L.; Okandan, M. Micromachined microphones with diffraction-based optical displacement detection. J. Acoust. Soc. Am. 2005, 118, 3000–3009. [CrossRef]
Hall, N.A.; Okandan, M.; Littrell, R.; Serkland, D.K.; Keeler, G.A.; Peterson, K.; Bicen, B.; Garcia, C.T.; Degertekin, F.L. Micromachined Accelerometers With Optical Interferometric Read-Out and Integrated Electrostatic Actuation. J. Microelectromech. Syst. 2008, 17, 37–44. [CrossRef]
Silicon Audio. Available online: http://www.siaudio.com/(accessed on 15 May 2020).
Garcia, C.T.; Onaran, G.; Avenson, B.; Yocom, B.A.; Hall, N.A. Micro-seismometers via advanced meso-scale fabrication. In Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, Los Alamos, NM, USA, 13–15 September 2011.
Williams, R.P.; Hall, N.A.; Avenson, B.D. Grating-Based Acceleration Sensors with Optical Interferometric Readout and Closed-Loop Control. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Berlin, Germany, 23–27 June 2019; pp. 507–510.
Lu, Q.; Bai, J.; Wang, K.; He, S. Design, Optimization, and Realization of a High-Performance MOEMS Accelerometer From a Double-Device-Layer SOI Wafer. J. Microelectromech. Syst. 2017, 26, 859–869. [CrossRef]
Lu, Q.; Wang, C.; Bai, J.; Wang, K.; Lian, W.; Lou, S.; Jiao, X.; Yang, G. Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl. Opt. 2015, 54, 4188. [CrossRef]
Lu, Q.; Bai, J.; Wang, K.; Chen, P.; Fang, W.; Wang, C. Single Chip-Based Nano-Optomechanical Accelerometer Based on Subwavelength Grating Pair and Rotated Serpentine Springs. Sensors 2018, 18, 2036. [CrossRef]
Cervantes, F.G.; Kumanchik, L.; Pratt, J.; Taylor, J.M. High sensitivity optomechanical reference accelerometer over 10 kHz. Appl. Phys. Lett. 2014, 104, 221111. [CrossRef]
Eklund, E.J.; Shkel, A.M. Factors affecting the performance of micromachined sensors based on Fabry–Perot interferometry. J. Micromech. Microeng. 2005, 15, 1770–1776. [CrossRef]
Perez, M.; Shkel, A.M. Design and Demonstration of a Bulk Micromachined Fabry–PÉrot µg-Resolution Accelerometer. IEEE Sens. J. 2007, 7, 1653–1662. [CrossRef]
Lu, Y.; Zhang, S.; Li, Y.; Xie, B.; Chen, D.; Wang, J.; Chen, J. A High-sensitivity, Small-size Resonant Pressure Microsensor Based on Optimized Resonator-diaphragm Structure. In Proceedings of the 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Bangkok, Thailand, 11–14 April 2019; pp. 488–491.
Bao, Y.; Cervantes, F.G.; Balijepalli, A.; Lawall, J.R.; Taylor, J.M.; LeBrun, T.W.; Gorman, J.J. An optomechanical accelerometer with a high-finesse hemispherical optical cavity. In Proceedings of the 2016 IEEE International Symposium on Inertial Sensors and Systems, Laguna Beach, CA, USA, 22–25 February 2016; pp. 105–108.
Zhao, M.; Jiang, K.; Bai, H.; Wang, H.; Wei, X. A MEMS based Fabry–Pérot accelerometer with high resolution. Microsyst. Technol. 2020, 26, 1961–1969. [CrossRef]
Fourguette, D.; Ötügen, V.; Larocque, L.M.; Ritter, G.A.; Ioppolo, T.; Hart, D. Optical mems-based seismometer. In Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, Portsmouth, Virginia, 23–25 September 2008.
Fourquette, D.; Otugen, V.; Larocque, L.M.; Ritter, G.A.; Meeusen, J.J.; Ioppolo, T. Optical MEMS-Based Seismometer WhiGS. In Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring, Portsmouth, WV, USA, 23–25 September 2008.
Li, T.; Tan, Y.; Zhou, Z. A fiber Bragg grating sensing-based micro-vibration sensor and its application. Sensors 2016, 16, 547. [CrossRef] [PubMed]
Duo, Y.; Xiangge, H.; Fei, L.; Lijuan, G.; Zhang, M.; Xiaokang, Q.; Han, Y. Self-suppression of common-mode noises of the different fiber optic interferometric accelerometers. Opt. Express 2018, 26, 15384–15397. [CrossRef]
Manalis, S.R.; Minne, S.C.; Atalar, A.; Quate, C.F. Interdigital cantilevers for atomic force microscopy. Appl. Phys. Lett. 1996, 69, 3944–3946. [CrossRef]
Loh, N.C.; Schmidt, M.A.; Manalis, S.R. Sub-10 cm/sup 3/interferometric accelerometer with nano-g resolution. J. Microelectromech. Syst. 2002, 11, 182–187. [CrossRef]
Jaksic, Z.; Radulovic, K.; Tanaskovic, D. MEMS accelerometer with all-optical readout based on twin-defect photonic crystal waveguide. In Proceedings of the 24th International Conference on Microelectronics; Nis, Serbia, 16–19 May 2004, pp. 231–234.
Krause, A.G.; Winger, M.; Blasius, T.D.; Lin, Q.; Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 2012, 6, 768–772. [CrossRef]
Eichenfield, M.; Camacho, R.; Chan, J.; Vahala, K.J.; Painter, O. A picogram-and nanometre-scale photonic-crystal optomechanical cavity. Nature 2009, 459, 550–555. [CrossRef]
Flores, J.G.F.; Huang, Y.; Li, Y.; Wang, D.; Goldberg, N.; Zheng, J.; Yu, M.; Lu, M.; Kutzer, M.; Rogers, D. A CMOS-compatible oscillation-mode optomechanical DC accelerometer at 730-ng/Hz1/2 resolution. In Proceedings of the 29th IEEE International Conference on MEMS, Shanghai, China, 24–28 January 2016; pp. 125–127.
Gao, J.; McMillan, J.F.; Wu, M.-C.; Zheng, J.; Assefa, S.; Wong, C.W. Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes. Appl. Phys. Lett. 2010, 96, 51123. [CrossRef]
Davies, E.; George, D.S.; Gower, M.C.; Holmes, A.S. MEMS Fabry–Pérot optical accelerometer employing mechanical amplification via a V-beam structure. Sens. Actuators A Phys. 2014, 215, 22–29. [CrossRef]
Zang, J.; Li, C.; Xu, M.; Shi, M. Efficacy of induction chemotherapy plusÃ, concurrent chemoradiotherapy for different histologicalÃ, typesÃ, of advancedÃ, nasopharyngeal carcinomaÃ, in NorthwestÃ, China. Int. J. Radiat. Oncol. 2017, 99, E385. [CrossRef]
Su, S.X.-P.; Yang, H.S. Analytical modeling and FEM Simulations of single-stage microleverage mechanism. Int. J. Mech. Sci. 2002, 44, 2217–2238. [CrossRef]
Pandit, M.; Zhao, C.; Sobreviela, G.; Mustafazade, A.; Zou, X.; Seshia, A.A. An ultra-high resolution resonant mems accelerometer. In Proceedings of the 32rd IEEE International Conference on MEMS, Coex, Seoul, Korea, 27–31 January 2019.
Zhao, C.; Pandit, M.; Sobreviela, G.; Steinmann, P.; Mustafazade, A.; Zou, X.; Seshia, A. A Resonant MEMS Accelerometer With 56ng Bias Stability and 98ng/Hz 1/2 Noise Floor. J. Microelectromech. Syst. 2019, 28, 324–326. [CrossRef]
Yin, Y.; Fang, Z.; Han, F.; Yan, B.; Dong, J.; Wu, Q. Design and test of a micromachined resonant accelerometer with high scale factor and low noise. Sens. Actuators A Phys. 2017, 268, 52–60. [CrossRef]
Shin, D.D.; Ahn, C.H.; Chen, Y.; Christensen, D.L.; Flader, I.B.; Kenny, T.W. Environmentally robust differential resonant accelerometer in a wafer-scale encapsulation process. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 17–20.
Loret, T.; Hardy, G.; Vallée, C.; Demutrecy, V.; Kerrien, T.; Cochain, S.; Boutoille, D.; Taïbi, R.; Blondeau, R. Navigation grade accelerometer with quartz vibrating beam. In Proceedings of the 2014 DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 16–17 September 2014; pp. 1–14.
Le Traon, O.; Janiaud, D.; Guerard, J.; Levy, R.; Masson, S.; Ducloux, O.; Pernice, M.; Taibi, R. The fairy world of quartz vibrating MEMS. In Proceedings of the 2012 European Frequency and Time Forum, Gothenburg, Sweden, 24–26 April 2012; pp. 214–220.
Levy, R.; Bourgeteau, B.; Guerard, J.; Lavenus, P. A high precision quartz crystal mems accelerometer based 2 axis inclinometer. In Proceedings of the 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Budapest, Hungary, 30 May–2 June 2016; pp. 1–3.
Spletzer, M.; Raman, A.; Wu, A.Q.; Xu, X.; Reifenberger, R. Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett. 2006, 88, 254102. [CrossRef]
Zhang, H.; Li, B.; Yuan, W.; Kraft, M.; Chang, H. An Acceleration Sensing Method Based on the Mode Localization of Weakly Coupled Resonators. J. Microelectromech. Syst. 2016, 25, 286–296. [CrossRef]
Pandit, M.; Zhao, C.; Sobreviela, G.; Mustafazade, A.; Zou, X.; Seshia, A.A. A mode-localized MEMS accelerometer with 7µg bias stability. In Proceedings of the 31st IEEE International Conference on MEMS, Belfast, Northern Ireland, 21–25 January 2018; pp. 968–971.
Pandit, M.; Zhao, C.; Sobreviela, G.; Zou, X.; Seshia, A. A High Resolution Differential Mode-Localized MEMS Accelerometer. J. Microelectromech. Syst. 2019, 28, 782–789. [CrossRef]
Zhao, C.; Wood, G.S.; Xie, J.; Chang, H.; Pu, S.H.; Kraft, M. A Three Degree-of-Freedom Weakly Coupled Resonator Sensor With Enhanced Stiffness Sensitivity. J. Microelectromech. Syst. 2015, 25, 38–51. [CrossRef]
Kang, H.; Yang, J.; Zhong, J.; Zhang, H.; Chang, H. A mode-localized accelerometer based on three degree-of-freedom weakly coupled resonator. In Proceedings of the IEEE Sensors 2017, Glasgow, UK, 29 October–1 November 2017; pp. 1–3.
Kang, H.; Yang, J.; Chang, H. A Closed-Loop Accelerometer Based on Three Degree-of-Freedom Weakly Coupled Resonator With Self-Elimination of Feedthrough Signal. IEEE Sens. J. 2018, 18, 3960–3967. [CrossRef]
Zhao, C.; Zhou, X.; Pandit, M.; Sobreviela, G.; Du, S.; Zou, X.; Seshia, A. Toward High-Resolution Inertial Sensors Employing Parametric Modulation in Coupled Micromechanical Resonators. Phys. Rev. Appl. 2019, 12, 044005. [CrossRef]
Pandit, M.; Zhao, C.; Sobreviela, G.; Mustafazade, A.; Du, S.; Zou, X.; Seshia, A. Closed-Loop Characterization of Noise and Stability in a Mode-Localized Resonant MEMS Sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018, 66, 170–180. [CrossRef]
Liu, C.-H.; Kenny, T. A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. Microelectromech. Syst. 2001, 10, 425–433.
Levchenko, D.G.; Kuzin, I.P.; Safonov, M.V.; Sychikov, V.N.; Ulomov, I.V.; Kholopov, B.V. Experience in seismic signal recording using broadband electrochemical seismic sensors. Seism. Instrum. 2010, 46, 250–264. [CrossRef]
Huang, H. Molecular Electronic Transducer-Based Seismometer and Accelerometer Fabricated with Micro-Electro-Mechanical Systems Techniques; Arizona State University: Tempe, AZ, USA, 2014.
Liang, M.; Huang, H.; Agafonov, V.; Tang, R.; Han, R.; Yu, H. Molecular electronic transducer based planetary seismometer with new fabrication process. In Proceedings of the 29th IEEE International Conference on MEMS, Shanghai, China, 24–28 January 2016; pp. 986–989.
Deng, T.; Chen, D.; Wang, J.; Chen, J.; He, W. A MEMS Based Electrochemical Vibration Sensor for Seismic Motion Monitoring. J. Microelectromech. Syst. 2013, 23, 92–99. [CrossRef]
Huang, H.; Carande, B.; Tang, R.; Oiler, J.; Zaitsev, D.; Agafonov, V.; Yu, H. A micro seismometer based on molecular electronic transducer technology for planetary exploration. Appl. Phys. Lett. 2013, 102, 193512. [CrossRef]
Deng, T.; Chen, D.; Chen, J.; Sun, Z.; Li, G.; Wang, J. Microelectromechanical Systems-Based Electrochemical Seismic Sensors With Insulating Spacers Integrated Electrodes for Planetary Exploration. IEEE Sens. J. 2015, 16, 650–653. [CrossRef]
Han, F.; Sun, B.; Li, L.; Wu, Q. Performance of a Sensitive Micromachined Accelerometer With an Electrostatically Suspended Proof Mass. IEEE Sens. J. 2014, 15, 209–217.
Houlihan, R.; Kraft, M. Modelling squeeze film effects in a MEMS accelerometer with a levitated proof mass. J. Micromech. Microeng. 2005, 15, 893–902. [CrossRef]
Houlihan, R.; Kraft, M. Modelling of an accelerometer based on a levitated proof mass. J. Micromech. Microeng. 2002, 12, 495–503. [CrossRef]
Gindila, M.V.; Kraft, M.; Houlihan, R.; Redman-White, W. Solid-state electronic interface for a levitated disc accelerometer. In Proceedings of the 18th European Conference on Solid-State Sensors, Rome, Italy, 13–15 September 2004.
Cui, F.; Liu, W.; Chen, W.; Zhang, W.; Wu, X. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer. Sensors 2011, 11, 11206–11234. [CrossRef] [PubMed]
Toda, R.; Takeda, N.; Murakoshi, T.; Nakamura, S.; Esashi, M. Electrostatically levitated spherical 3-axis accelerometer. In Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 20–24 January 2002; pp. 710–713.
Pakula, L.; French, P. Post-Processing Micromachined Pull-In Accelerometer. In Proceedings of the Transducers 2007–2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 1171–1174.
Garcia, I.S.; Moreira, E.E.; Dias, R.A.; Gaspar, J.; Alves, F.S.; Rocha, L.A. Sub-Micron Mems Accelerometer with Handle-Layer Patterning for Damping Enhancement Using Time Transduction. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Berlin, Germany, 23–27 June 2019; pp. 2045–2048.