Unpublished conference/Abstract (Scientific congresses and symposiums)
A refinement of the Snu-based multifractal formalism
Nicolay, Samuel
2021Journées annuelles du GDR AMA
 

Files


Full Text
gdr21.pdf
Publisher postprint (1.27 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
multifractal analysis; Snu spaces; law of the iterated logarithm
Abstract :
[en] In this work, we introduce a generalization of the Snu spaces underlying a multifractal formalism for non-concave spectra. We prove that the essential topological properties of the Snu spaces can be transposed in this context; in particular, these new spaces are metric. More importantly, we show that the associated multifractal formalism can detect the logarithmic correction in a Brownian motion resulting from the law of the iterated logarithm. We also build two families of multifractal functions with prescribed pointwise regularity and displaying a logarithmic correction in order to illustrate the usefulness of these generalized spaces.
Disciplines :
Mathematics
Author, co-author :
Nicolay, Samuel  ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
A refinement of the Snu-based multifractal formalism
Publication date :
27 September 2021
Number of pages :
84
Event name :
Journées annuelles du GDR AMA
Event organizer :
Julien Barral, Athanasios Batakis, Valérie Berthé, Edouard Daviaud, Stéphane Seuret
Event place :
Porquerolles, France
Event date :
du 26 au 30 septembre 2021
Audience :
International
Available on ORBi :
since 25 September 2021

Statistics


Number of views
122 (13 by ULiège)
Number of downloads
55 (8 by ULiège)

Bibliography


Similar publications



Contact ORBi