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Information concerning the global smoothness of a signal can be
grasped via its Hölder spectrum, which relies on the Hölder spaces.

A locally bounded function f belongs to Λα(x0) (with α ≥ 0 and
x0 ∈ Rn) if there exist a constant C and a polynomial Px0 of
degree less than α such that

|f (x)− Px0(x)| < C |x − x0|α,

in a neighborhood of x0.

The Hölder exponent of f at x0 is defined as

hf (x0) = sup{α ≥ 0 : f ∈ Λα(x0)}.
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The sample path B = {Bx}x∈R of a Brownian motion belongs to
the Hölder space Λ1/2−ε(R) almost surely for any ε > 0, but not to
Λ1/2(R).

The Khintchin law of the iterated logarithm implies that for almost
every x0 ∈ R, there exists a constant C > 0 such that, for any x in
a neighborhood of x0, one has

|Bx0 − Bx | ≤ C |x0 − x |1/2w(|x − x0|),

with w(h) =
√
| log | log h−1||.

Is it possible to numerically detect this correction w?
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Under some general assumptions, there exist a function φ and
2n − 1 functions (ψ(i))1≤i<2n , called wavelets, such that

{φ(x − k) : k ∈ Zn} ∪ {ψ(i)(2jx − k) : 1 ≤ i < 2n, k ∈ Zn, j ∈ N}

form an orthogonal basis of L2(Rn).

Any function f ∈ L2(Rn) can be decomposed as follows,

f (x) =
∑
k∈Zn

Ckφ(x − k) +
∑
j∈N

∑
k∈Zn

∑
1≤i<2n

c
(i)
j ,kψ

(i)(2jx − k),

where

c
(i)
j ,k = 2nj

∫
Rn

f (x)ψ(i)(2jx − k) dx

and

Ck =

∫
Rn

f (x)φ(x − k) dx .
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On the torus Rn/Zn, we will use the periodized wavelets

ψ
(i)
p (2jx−k) =

∑
l∈Zn

ψ(i)(2j(x−l)−k) (j ∈ N, k ∈ {0, . . . , 2j−1}n)

to form a basis of the one-periodic functions on Rn which locally
belong to L2(Rn).

The corresponding coefficients c
(i)
j ,k are naturally called the

periodized wavelet coefficients.

We will write cj ,k instead of c
(i)
j ,k ; the sequence (cj ,k) will be

denoted by c.
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In this talk, ν will refer to

a right-continuous increasing function

for which there exists αmin ∈ R such that

ν(α) ∈
{
{−∞} if α < αmin

[0, n] if α ≥ αmin.

With these notations being fixed, one define the Sν space as
follows:

Sν = {c : ∀α ∈ R ∀ε > 0 ∀C > 0

∃J > 0 ∀j ≥ J, #Ej(C , α)(c) ≤ 2(ν(α)+ε)j},

where
Ej(C , α)(c) = {k : |cj ,k | ≥ C2−αj}.

If one considers the wavelet coefficients cj ,k as a sequence, the
space Sν is a sequence space and one can study its topological
properties.
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Definition

For any α ∈ R, let σ(α) = (σ
(α)
j )j∈N be a sequence of positive real

numbers. We define

Sν,σ
(·)

= {c : ∀α ∈ R ∀ε > 0 ∀C > 0

∃J > 0 ∀j ≥ J, #Ej(C , σ
(α))(c) ≤ 2(ν(α)+ε)j},

where
Ej(C , σ

(α))(c) = {k : |cj ,k | ≥ Cσ
(α)
j }.
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For α ∈ R and β ∈ R ∪ {−∞}, we first define the metric spaces
(E (σ(α), β), dσ(α),β) by

E (σ(α), β) = {c : ∃C ,C ′ > 0 #Ej(C , σ
(α)) ≤ C ′2βj for any j ∈ N}

and set

dσ(α),β(c, d) = inf{C + C ′ : C ,C ′ ≥ 0

#Ej(C , σ
(α))(c − d) ≤ C ′2βj for any j ∈ N}.
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Proposition

We have the following properties:

1 the space E (σ(α), β) is a vector space,

2 the sum is a continuous operation in (E (σ(α), β), dσ(α),β),
while the product is not necessarily continuous,

3 the metric dσ(α),β is invariant by translation and satisfies the
inequality for any λ ∈ C,
dσ(α),β(λc, 0) ≤ sup{1, |λ|}dσ(α),β(c, 0),

4 if β′ ≤ β and if there exists J ∈ N such that σ
(α′)
j ≤ σ(α)

j for

any j ≥ J, then E (σ(α′), β′) is included in E (σ(α), β),

5 suppose that σ
(α′)
j /σ

(α)
j → 0 as j → +∞ and β′ < β. If the

sequence (λm)m∈N converges to λ in C and if (c(m))m∈N is a
sequence of E (σ(α), β) which converges to c ∈ E (σ(α′), β′) for
dσ(α),β, then the sequences (λmc

(m))m∈N converges to λc for
dσ(α),β.
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Proposition

The space E (σ(α), β) is complete.

Theorem

Suppose that α < α′ implies σ
(α′)
j /σ

(α)
j → 0 as j → +∞. For any

sequence (αn)n∈N dense in R and any sequence (εm)m∈N of strictly
positive real numbers which converges to 0, we have

Sν,σ
(·)

=
⋂
m∈N

⋂
n∈N

E (σ(αn), ν(αn) + εm).
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Theorem

Under the hypothesis of the previous Theorem, if we set

dm,n = dσ(αn),ν(αn)+εm
,

then the application

d : (c, d) ∈ Sν,σ
(·) × Sν,σ

(·) 7→
+∞∑
m=1

+∞∑
n=1

1

2m+n

dm,n(c, d)

1 + dm,n(c, d)

is a metric on Sν,σ
(·)

.
This application is invariant by translation and the space
(Sν,σ

(·)
, d) is a complete topological vector space. The induced

topology is independent of the sequences (αn)n∈N and (εm)m∈N.
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Definition

The generalized profile of a sequence c is defined by

νc,σ(·) : α ∈ R 7→ lim
ε→0+

lim sup
j→+∞

log #Ej(1, σ(α+ε))(c)

log 2j
.

This definition is well-founded if we suppose that for any α < α′

there exists J ∈ N such that σ
(α′)
j ≤ σ(α)

j for any j ≥ J.
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Theorem

Suppose that α < α′ implies σ
(α′)
j /σ

(α)
j → 0 as j → +∞. We have

the following properties:

1. the function νc,σ(·) is right-continuous and increasing;
moreover, we have νc,σ(·)(α) ∈ [0, n] ∪ {−∞},

2. the constant 1 appearing in the definition of νc,σ(·) is arbitrary,

3. a sequence c belongs to Sν,σ
(·)

if and only if νc,σ(·)(α) ≤ ν(α)
for any α ∈ R,

4. if for any α < β, we have σ
(β)
j < σ

(α)
j for any j ∈ N, then

there exists c ∈ Sν,σ
(·)

such that νc,σ(·) = ν.
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Theorem

Suppose that α < α′ implies σ
(α′)
j /σ

(α)
j → 0 as j → +∞. If for

any α ∈ R, the sequence σ(α) is admissible, then Sν,σ
(·)

is a linear
robust space.

Besides, for any c ∈ Sν,σ
(·)

, the function νc,σ(·) is robust, i.e.
νc,σ(·) = νAc,σ(·) for any quasidiagonal matrix A.
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Definition

Let σ be an admissible sequence and 0 < p, q ≤ ∞. The discrete
counterpart of the generalized Besov space Bσp,q([0, 1]n) is defined
by

bσp,q = {c : ∑
i∈{0,...,2n−1}, j∈N

(σj2
−jn/p)q

 ∑
k∈{0,...,2j−1}d

|cj ,k |p
q/p


1/q

<∞}

with the usual modification if p =∞ and/or q =∞.
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Theorem

For any α ∈ R, let σ(α) be an admissible sequence and let us
suppose that

α < α′ implies σ
(α′)
j /σ

(α)
j → 0 as j → +∞,

s(σ(α))→ −∞ as α→ +∞.

For any p > 0, let θ(p) be an admissible sequence. We have

Sν,σ
(·) ⊆

⋂
p>0

⋂
ε>0

b
(θ

(p)
j 2−jε/p)j

p,∞

if and only if for any p, ε > 0 and for any α ≥ αmin, there exists
C > 0 such that

θ
(p)
j 2−jε/p ≤ C2jn/p2−jν(α)/p(σ

(α)
j )−1,

for any j .
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Definition

The function ν̃ is defined by

ν̃(α) =

 lim
η→0+

inf
p>0

lim sup
j→+∞

n − p
log(θ

(p)
j σ

(α+η)
j )

log 2j
if α ≥ αmin

−∞ else

.
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Theorem

Under the hypothesis of the previous Theorem, if ν̃ ≤ n and if for any

α < αmin, there exist p, ε > 0 such that 2−jn/pσ
(α)
j θ

(p)
j 2−jε/p → +∞ as

j → +∞, then we have⋂
p>0

⋂
ε>0

b
(θ

(p)
j 2−jε/p)j

p,∞ ⊂ S ν̃,σ
(·)

.

Corollary

Under the hypothesis of the previous theorem, if for any p, ε > 0 and for
any α ≥ αmin, there exists C > 0 such that

θ
(p)
j 2−jε/p ≤ C2jn/p2−j ν̃(α)/p(σ

(α)
j )−1,

for any j and if for any α < β, we have σ
(β)
j ≤ σ(α)

j for any j , then we
have

Sν,σ
(·)

=
⋂
p>0

⋂
ε>0

b
(θ

(p)
j 2−jε/p)j

p,∞

if and only if ν = ν̃.
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We approximate νc,σ(·)(α) with the slope of

j 7→
log #Ej(C , σ

(α+ε))(c)

log 2
,

for large values of j as soon as α ≥ αmin.

This slope will be denoted νC
c,σ(·)(α).
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In practice, the constant C is not arbitrary because we only have
access to a finite number of wavelet coefficients.

If the typical value of these coefficients is too large (resp. too
small) with respect to C , not enough (resp. too many) of them
will be taken into account; the detected value of νC

c,σ(·)(α) will thus

be very different from the theoretical value νc,σ(·)(α).
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Consequently, for a fixed α, we construct the function

C > 0 7→ νC
c,σ(·)(α)

to approximate the value of νc,σ(·)(α).

If α < αmin, this function should be decreasing. If α ≥ αmin, there
should exist an interval I for which the values νC

c,σ(·)(α) with C ∈ I

are close to each other.
We use a gradient descent to detect this interval.

We chose the length of the interval I to be at least the median of

the values |cj ,k |/σ
(α)
j (the worthwhile wavelet coefficients cj ,k

satisfy |cj ,k |/σ
(α)
j ≥ C ).
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We intend to build a function f with a prescribed Hölder exponent
hf (x0) at every point x0 for which there exists a function w such
that

|f (x0)− f (x)| ≤ C |x − x0|hf (x0)w(|x − x0|),

for any x in a neighborhood of x0.

Such a function f does not belong to Λhf (x0)(x0).
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Let us denote by HK the set of the functions from [0, 1] to the
compact K which are the lower limit of a sequence of continuous
functions. For any H ∈ HK , there exists a sequence (Qj)j∈N of
polynomials such that{

H(t) = lim inf
j→+∞

Qj(t) ∀t ∈ [0, 1]

||Q ′j ||∞ ≤ j ∀j ∈ N
, (1)

We have a similar result if one replaces the lower limit by a limit in
the definition of HK . In this case, the set is denoted by HK and
the lower limit in relation (1) becomes a limit.

T. Kleyntssens & S. Nicolay A refinement of the Sν -based multifractal formalism



Proposition

Let K ⊂ (0, 1) be a compact set, H ∈ HK and (Qj)j∈N be a
sequence of polynomials satisfying Relations (1), where the lower
limit is replaced by a limit. For any (j , k) ∈ N×{0, . . . , 2j − 1}, set

Hj ,k = max(
1

log j
,Qj

(
k

2j

)
).

If (aj)j∈N is a real sequence such that limj→+∞
log aj

log 2−j = 0, then
the function f defined as

f (x) =
+∞∑
j=0

2j−1∑
k=0

2−Hj,k jajψj ,k(x)

satisfies hf (x) = H(x) for any x ∈ [0, 1].
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First test: a monofractal function
with 20 simulations and Hölder exponent H ∈ {0.3, 0.35, . . . , 0.7}.

First case: no correction (w = 1)
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First test: a monofractal function
with 20 simulations and Hölder exponent H ∈ {0.3, 0.35, . . . , 0.7}.

Second case: w(h) =
√
| log | log h−1||
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First test: a monofractal function
with 20 simulations and Hölder exponent H ∈ {0.3, 0.35, . . . , 0.7}.

Fourth case: w(h) =
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| log h−1|
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Second test: a bifractal function
with 20 simulations and Hölder exponents
H1 ∈ {0.2, 0.25, . . . , 0.35} and H2 ∈ {0.65, 0.7, . . . , 0.8}.
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Second test: a bifractal function
with 20 simulations and Hölder exponents
H1 ∈ {0.2, 0.25, . . . , 0.35} and H2 ∈ {0.65, 0.7, . . . , 0.8}.

Fourth case: w(h) =
√
| log h−1| with |H1 − H2| > 0.3
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Third test: a multifractal function such that

H(x) =

{
c−a
b x + a if x < b

c if x ≥ b
,

with a ∈ {0, 0.1, . . . 0.5}, b ∈ {0.1, 0.2, . . . , 0.5} and
c ∈ {0.2, 0.3, . . . , 0.8} (a < c).
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Third test: a multifractal function with 20 simulations.

First case: no correction (w = 1)
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Road map

The context

The Sν spaces and their generalization

In practice

More evolved examples

A real life application
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The Weierstraß function

W (x) =
∞∑
j=0

1

2j
cos(22jxπ)

belongs to Λ1/2(R).

The uniform Weierstraß function of parameters (a, b) is the
classical Weierstraß function coupled with a random phase.
More precisely, this process is defined by

W (x) =
+∞∑
n=0

an cos((bnx + Un)π),

where 0 < a < 1 < b with ab ≥ 1 and where each Un is chosen
independently with respect to the uniform probability measure on
[0, 1].
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The Brownian motion vs the uniform Weierstraß function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

for W (right), we set a = 0.8 and b = 1.6.
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The Brownian motion vs the uniform Weierstraß function.

For 20 simulations of a BM, we get
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The Brownian motion vs the uniform Weierstraß function.

For 20 simulations of W , we get
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Let us define a process based on the Lévy-Ciesielski construction
(that allows to decompose the Brownian motion in the Schauder
basis) to obtain a multifractal process which share the same local
regularity as the Brownian motion.

The Schauder functions evaluated at t are the integrates of the
Haar wavelets on [0, t]. More precisely, let us set

F0(t) =


0 if t < 0
t if t ∈ [0, 1]
1 else

,

and for any (j , k) ∈ N× {0, . . . , 2j − 1},

Fj ,k(t) =


t − k2−j if t ∈ [k2−j , k2−j + 2−(j+1)]

−t + (k + 1)2−j if t ∈ [k2−j + 2−(j+1), (k + 1)2−j ]
0 else

.
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(that allows to decompose the Brownian motion in the Schauder
basis) to obtain a multifractal process which share the same local
regularity as the Brownian motion.

The Schauder functions evaluated at t are the integrates of the
Haar wavelets on [0, t]. More precisely, let us set

F0(t) =


0 if t < 0
t if t ∈ [0, 1]
1 else

,

and for any (j , k) ∈ N× {0, . . . , 2j − 1},

Fj ,k(t) =


t − k2−j if t ∈ [k2−j , k2−j + 2−(j+1)]

−t + (k + 1)2−j if t ∈ [k2−j + 2−(j+1), (k + 1)2−j ]
0 else

.

T. Kleyntssens & S. Nicolay A refinement of the Sν -based multifractal formalism



Let us recall that we have the following properties:

1 let (aj ,k)(j ,k)∈N×{0,...,2j−1} be a real sequence, a0 ∈ R and

ε ∈ (0, 1/2). If maxk∈{0,...,2j−1} |aj ,k | = O(2jε) as j → +∞
then the function f defined by

t 7→ a0F0(t) +
+∞∑
j=0

2j−1∑
k=0

aj ,k2j/2Fj ,k(t) (2)

is uniformly absolutely-convergent on [0, 1]. Besides, f is a
real continuous function such that f (0) = 0,

2 any continuous function f from [0, 1] to R such that f (0) = 0
can be written in the form (2). Besides, if f ∈ Λα(x0) then
there exists a constant C > 0 such that

|aj ,k2−j/2| ≤ C (2−j + |k2−j − x0|)α

for any (j , k) ∈ N× {0, . . . , 2j − 1}.
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Let (Zj ,k)(j ,k)∈N×{0,...,2j−1} be a sequence of independents
real-valued N (0, 1) Gaussian random variables defined on the
probability space Ω. Then, there exists an event Ω∗ ⊂ Ω of
probability 1 such that, for any ω ∈ Ω∗, the function B·(ω) defined
by

B.(ω) : t 7→ Z0(ω)F0(t) +
+∞∑
j=0

2j−1∑
k=0

Zj ,k(ω)2j/2Fj ,k(t)

is uniformly absolutely-convergent on [0, 1]. Besides, the process
B = {Bt}t is a Brownian motion.
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Let K be a compact of (−1/2, 1/2), H ∈ HK and (Qj)j∈N be a
sequence of polynomials satisfying Relation (1). For any
(j , k) ∈ N× {0, . . . , 2j − 1}, set

Hj ,k = Qj

(
k

2j

)
.

Let (Zj ,k)(j ,k)∈N×{0,...,2j−1} be a sequence of independents
real-valued N (0, 1) Gaussian random variables defined on the
probability space Ω and let us define

BH
t (ω) = Z0(ω)F0(t) +

+∞∑
j=0

2j−1∑
k=0

2−jHj,kZj ,k(ω)2j/2Fj ,k(t).
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BH
t (ω) = Z0(ω)F0(t) +

+∞∑
j=0

2j−1∑
k=0

2−jHj,kZj,k (ω)2j/2Fj,k(t).

Theorem

There exists an event Ω∗ ⊂ Ω of probability 1 such that, for any
ω ∈ Ω∗, we have the following properties:

1 the function t 7→ BH
t (ω) is a continuous function defined on

[0, 1],

2 we have the following relation: hBH
. (ω)(t) = 1/2 + H(t), for

any t ∈ [0, 1],

3 let t ∈ [0, 1]; if there exists C > 0 such that
H(t)− Qj(t) ≤ Cj−1, for any j ∈ N then there exist a
constant C ′ > 0 independent of t such that

|BH
t+h(ω)− BH

t (ω)| ≤ C ′2C |h|1/2+H(t)
√

log h−1,

for any h in a neighborhood of 0.
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Proposition

Under hypothesis of the previous theorem, there exists an event
Ω∗ ⊂ Ω of probability 1 such that, for any ω ∈ Ω∗ and for almost
every t ∈ [0, 1], there exists a constant C > 0 such that

|BH
t+h(ω)− BH

t (ω)| ≤ C |h|1/2+H(t)
√
| log | log h−1||,

for any h small enough.
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Let us define a bifractal process, with H1 ∈ {0.2, 0.25, . . . , 0.4} and
H2 ∈ {0.6, 0.65, . . . , 0.8}.
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Let us set again

H(x) =

{
c−a
b x + a if x < b

c if x ≥ b
,
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Application: a 2D study of Mars’ topography.

We used the 128-pixel-per-degree map from the MOLA
experiment.

This map almost represents the whole planet; the latitude ranges
from 88◦S to 88◦N.
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The main Hölder exponent
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The main Hölder exponent
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A 2D investigation of the multifractility
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Let us give a method for detecting the existence of a Hölder
exponent h such that df (h) < n (where df denotes the multifractal
spectrum).

It suffices to find a h such that

C > 0 7→ νC
C ,σ(·)(h)

has a stabilisation associated to a value strictly smaller than n.
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When looking at longitudinal and latitudinal bands, most of these
signals seem to be multifractal.

T. Kleyntssens & S. Nicolay A refinement of the Sν -based multifractal formalism


