A refinement of the S^{ν} -based multifractal formalism

T. Kleyntssens & S. Nicolay

GDR Analyse Multifractale

Porquerolles, Sept. 26-30, 2021

Road map

• The context

- The S^{ν} spaces and their generalization
- In practice
- More evolved examples
- A real life application

Information concerning the global smoothness of a signal can be grasped via its Hölder spectrum, which relies on the Hölder spaces.

Information concerning the global smoothness of a signal can be grasped via its Hölder spectrum, which relies on the Hölder spaces.

A locally bounded function f belongs to $\Lambda^{\alpha}(x_0)$ (with $\alpha \ge 0$ and $x_0 \in \mathbb{R}^n$) if there exist a constant C and a polynomial P_{x_0} of degree less than α such that

$$|f(x) - P_{x_0}(x)| < C|x - x_0|^{\alpha},$$

in a neighborhood of x_0 .

Information concerning the global smoothness of a signal can be grasped via its Hölder spectrum, which relies on the Hölder spaces.

A locally bounded function f belongs to $\Lambda^{\alpha}(x_0)$ (with $\alpha \ge 0$ and $x_0 \in \mathbb{R}^n$) if there exist a constant C and a polynomial P_{x_0} of degree less than α such that

$$|f(x) - P_{x_0}(x)| < C|x - x_0|^{\alpha},$$

in a neighborhood of x_0 .

The Hölder exponent of f at x_0 is defined as

$$h_f(x_0) = \sup\{\alpha \ge 0 : f \in \Lambda^{\alpha}(x_0)\}.$$

The sample path $B = \{B_x\}_{x \in \mathbb{R}}$ of a Brownian motion belongs to the Hölder space $\Lambda^{1/2-\epsilon}(\mathbb{R})$ almost surely for any $\epsilon > 0$, but not to $\Lambda^{1/2}(\mathbb{R})$.

The sample path $B = \{B_x\}_{x \in \mathbb{R}}$ of a Brownian motion belongs to the Hölder space $\Lambda^{1/2-\epsilon}(\mathbb{R})$ almost surely for any $\epsilon > 0$, but not to $\Lambda^{1/2}(\mathbb{R})$.

The Khintchin law of the iterated logarithm implies that for almost every $x_0 \in \mathbb{R}$, there exists a constant C > 0 such that, for any x in a neighborhood of x_0 , one has

$$|B_{x_0} - B_x| \le C |x_0 - x|^{1/2} w(|x - x_0|),$$

with $w(h) = \sqrt{|\log |\log h^{-1}||}$.

The sample path $B = \{B_x\}_{x \in \mathbb{R}}$ of a Brownian motion belongs to the Hölder space $\Lambda^{1/2-\epsilon}(\mathbb{R})$ almost surely for any $\epsilon > 0$, but not to $\Lambda^{1/2}(\mathbb{R})$.

The Khintchin law of the iterated logarithm implies that for almost every $x_0 \in \mathbb{R}$, there exists a constant C > 0 such that, for any x in a neighborhood of x_0 , one has

$$|B_{x_0} - B_x| \le C |x_0 - x|^{1/2} w(|x - x_0|),$$

with $w(h) = \sqrt{|\log |\log h^{-1}||}.$

Is it possible to numerically detect this correction w?

Road map

- The context
- The S^{ν} spaces and their generalization
- In practice
- More evolved examples
- A real life application

Under some general assumptions, there exist a function ϕ and $2^n - 1$ functions $(\psi^{(i)})_{1 \le i \le 2^n}$, called wavelets, such that

 $\{\phi(x-k): k \in \mathbb{Z}^n\} \cup \{\psi^{(i)}(2^jx-k): 1 \le i < 2^n, k \in \mathbb{Z}^n, j \in \mathbb{N}\}$

form an orthogonal basis of $L^2(\mathbb{R}^n)$.

Under some general assumptions, there exist a function ϕ and $2^n - 1$ functions $(\psi^{(i)})_{1 \le i \le 2^n}$, called wavelets, such that

$$\{\phi(x-k): k \in \mathbb{Z}^n\} \cup \{\psi^{(i)}(2^j x - k): 1 \le i < 2^n, k \in \mathbb{Z}^n, j \in \mathbb{N}\}$$

form an orthogonal basis of $L^2(\mathbb{R}^n)$.

Any function $f \in L^2(\mathbb{R}^n)$ can be decomposed as follows,

$$f(x) = \sum_{k \in \mathbb{Z}^n} C_k \phi(x-k) + \sum_{j \in \mathbb{N}} \sum_{k \in \mathbb{Z}^n} \sum_{1 \leq i < 2^n} c_{j,k}^{(i)} \psi^{(i)}(2^j x - k),$$

where

$$c_{j,k}^{(i)} = 2^{nj} \int_{\mathbb{R}^n} f(x) \psi^{(i)}(2^j x - k) \, dx$$

and

$$C_k = \int_{\mathbb{R}^n} f(x)\phi(x-k)\,dx.$$

On the torus $\mathbb{R}^n/\mathbb{Z}^n$, we will use the periodized wavelets

$$\psi_p^{(i)}(2^j x - k) = \sum_{l \in \mathbb{Z}^n} \psi^{(i)}(2^j (x - l) - k) \quad (j \in \mathbb{N}, \ k \in \{0, \dots, 2^j - 1\}^n)$$

to form a basis of the one-periodic functions on \mathbb{R}^n which locally belong to $L^2(\mathbb{R}^n)$.

The corresponding coefficients $c_{j,k}^{(i)}$ are naturally called the periodized wavelet coefficients.

On the torus $\mathbb{R}^n/\mathbb{Z}^n$, we will use the periodized wavelets

$$\psi_p^{(i)}(2^j x - k) = \sum_{l \in \mathbb{Z}^n} \psi^{(i)}(2^j (x - l) - k) \quad (j \in \mathbb{N}, \ k \in \{0, \dots, 2^j - 1\}^n)$$

to form a basis of the one-periodic functions on \mathbb{R}^n which locally belong to $L^2(\mathbb{R}^n)$.

The corresponding coefficients $c_{j,k}^{(i)}$ are naturally called the periodized wavelet coefficients.

We will write $c_{j,k}$ instead of $c_{j,k}^{(i)}$; the sequence $(c_{j,k})$ will be denoted by c.

In this talk, ν will refer to

- a right-continuous increasing function
- for which there exists $\alpha_{\min} \in \mathbb{R}$ such that $\nu(\alpha) \in \begin{cases} \{-\infty\} & \text{if } \alpha < \alpha_{\min} \\ [0, n] & \text{if } \alpha \ge \alpha_{\min}. \end{cases}$

In this talk, ν will refer to

- a right-continuous increasing function
- for which there exists $\alpha_{\min} \in \mathbb{R}$ such that $\nu(\alpha) \in \begin{cases} \{-\infty\} & \text{if } \alpha < \alpha_{\min} \\ [0, n] & \text{if } \alpha \ge \alpha_{\min}. \end{cases}$

With these notations being fixed, one define the S^{ν} space as follows:

$$\begin{split} S^{\nu} &= \{ c : \forall \alpha \in \mathbb{R} \ \forall \epsilon > 0 \ \forall C > 0 \\ \exists J > 0 \ \forall j \geq J, \ \# E_j(C, \alpha)(c) \leq 2^{(\nu(\alpha) + \epsilon)j} \}, \end{split}$$

where

$$E_j(C,\alpha)(c) = \{k : |c_{j,k}| \ge C2^{-\alpha j}\}.$$

In this talk, ν will refer to

- a right-continuous increasing function
- for which there exists $\alpha_{\min} \in \mathbb{R}$ such that $\nu(\alpha) \in \begin{cases} \{-\infty\} & \text{if } \alpha < \alpha_{\min} \\ [0, n] & \text{if } \alpha \ge \alpha_{\min}. \end{cases}$

With these notations being fixed, one define the S^{ν} space as follows:

$$\begin{split} S^{\nu} &= \{ c : \forall \alpha \in \mathbb{R} \ \forall \epsilon > 0 \ \forall C > 0 \\ \exists J > 0 \ \forall j \geq J, \ \# E_j(C, \alpha)(c) \leq 2^{(\nu(\alpha) + \epsilon)j} \}, \end{split}$$

where

$$E_j(\mathcal{C},\alpha)(\mathbf{c}) = \{k : |\mathbf{c}_{j,k}| \ge \mathcal{C}2^{-\alpha j}\}.$$

If one considers the wavelet coefficients $c_{j,k}$ as a sequence, the space S^{ν} is a sequence space and one can study its topological properties.

Definition

For any $\alpha \in \mathbb{R}$, let $\sigma^{(\alpha)} = (\sigma_j^{(\alpha)})_{j \in \mathbb{N}}$ be a sequence of positive real numbers. We define

$$\begin{split} \mathcal{S}^{\nu,\sigma^{(\cdot)}} &= \{ \boldsymbol{c} : \forall \alpha \in \mathbb{R} \ \forall \epsilon > 0 \ \forall \boldsymbol{C} > 0 \\ \exists J > 0 \ \forall j \geq J, \ \# E_j(\boldsymbol{C},\sigma^{(\alpha)})(\boldsymbol{c}) \leq 2^{(\nu(\alpha)+\epsilon)j} \}, \end{split}$$

where

$$E_j(\mathcal{C},\sigma^{(lpha)})(\mathcal{c}) = \{k: |\mathcal{c}_{j,k}| \geq \mathcal{C}\sigma_j^{(lpha)}\}.$$

For
$$\alpha \in \mathbb{R}$$
 and $\beta \in \mathbb{R} \cup \{-\infty\}$, we first define the metric spaces $(E(\sigma^{(\alpha)}, \beta), d_{\sigma^{(\alpha)}, \beta})$ by

$$egin{aligned} & E(\sigma^{(lpha)},eta)=\{c:\exists C,C'>0\ \#E_j(C,\sigma^{(lpha)})\leq C'2^{eta j} ext{ for any } j\in\mathbb{N}\} \end{aligned}$$
 and set

$$egin{aligned} &d_{\sigma^{(lpha)},eta}(c,d) = \inf\{C+C':C,C'\geq 0\ &\#E_j(C,\sigma^{(lpha)})(c-d)\leq C'2^{eta j} ext{ for any } j\in\mathbb{N}\}. \end{aligned}$$

Proposition

We have the following properties:

- the space $E(\sigma^{(\alpha)}, \beta)$ is a vector space,
- 2 the sum is a continuous operation in $(E(\sigma^{(\alpha)}, \beta), d_{\sigma^{(\alpha)},\beta})$, while the product is not necessarily continuous,
- So the metric d_{σ(α),β} is invariant by translation and satisfies the inequality for any λ ∈ C, d_{σ(α),β}(λc, 0) ≤ sup{1, |λ|}d_{σ(α),β}(c, 0),
- if $\beta' \leq \beta$ and if there exists $J \in \mathbb{N}$ such that $\sigma_j^{(\alpha')} \leq \sigma_j^{(\alpha)}$ for any $j \geq J$, then $E(\sigma^{(\alpha')}, \beta')$ is included in $E(\sigma^{(\alpha)}, \beta)$,
- Suppose that $\sigma_j^{(\alpha')}/\sigma_j^{(\alpha)} \to 0$ as $j \to +\infty$ and $\beta' < \beta$. If the sequence $(\lambda_m)_{m \in \mathbb{N}}$ converges to λ in \mathbb{C} and if $(c^{(m)})_{m \in \mathbb{N}}$ is a sequence of $E(\sigma^{(\alpha)}, \beta)$ which converges to $c \in E(\sigma^{(\alpha')}, \beta')$ for $d_{\sigma^{(\alpha)},\beta}$, then the sequences $(\lambda_m c^{(m)})_{m \in \mathbb{N}}$ converges to λc for $d_{\sigma^{(\alpha)},\beta}$.

Proposition

The space $E(\sigma^{(\alpha)}, \beta)$ is complete.

Proposition

The space $E(\sigma^{(\alpha)}, \beta)$ is complete.

Theorem

Suppose that $\alpha < \alpha'$ implies $\sigma_j^{(\alpha')} / \sigma_j^{(\alpha)} \to 0$ as $j \to +\infty$. For any sequence $(\alpha_n)_{n \in \mathbb{N}}$ dense in \mathbb{R} and any sequence $(\epsilon_m)_{m \in \mathbb{N}}$ of strictly positive real numbers which converges to 0, we have

$$S^{\nu,\sigma^{(\cdot)}} = \bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} E(\sigma^{(\alpha_n)}, \nu(\alpha_n) + \epsilon_m).$$

Theorem

Under the hypothesis of the previous Theorem, if we set

$$d_{m,n} = d_{\sigma^{(\alpha_n)},\nu(\alpha_n) + \epsilon_m},$$

then the application

$$d:(c,d)\in S^{
u,\sigma^{(\cdot)}} imes S^{
u,\sigma^{(\cdot)}}\mapsto \sum_{m=1}^{+\infty}\sum_{n=1}^{+\infty}rac{1}{2^{m+n}}rac{d_{m,n}(c,d)}{1+d_{m,n}(c,d)}$$

is a metric on $S^{\nu,\sigma^{(\cdot)}}$. This application is invariant by translation and the space $(S^{\nu,\sigma^{(\cdot)}}, d)$ is a complete topological vector space. The induced topology is independent of the sequences $(\alpha_n)_{n\in\mathbb{N}}$ and $(\epsilon_m)_{m\in\mathbb{N}}$.

Definition

The generalized profile of a sequence c is defined by

$$\nu_{c,\sigma^{(\cdot)}}: \alpha \in \mathbb{R} \mapsto \lim_{\epsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# E_j(1,\sigma^{(\alpha+\epsilon)})(c)}{\log 2^j}.$$

This definition is well-founded if we suppose that for any $\alpha < \alpha'$ there exists $J \in \mathbb{N}$ such that $\sigma_j^{(\alpha')} \leq \sigma_j^{(\alpha)}$ for any $j \geq J$.

Theorem

Suppose that $\alpha < \alpha'$ implies $\sigma_j^{(\alpha')} / \sigma_j^{(\alpha)} \to 0$ as $j \to +\infty$. We have the following properties:

- 1. the function $\nu_{c,\sigma^{(\cdot)}}$ is right-continuous and increasing; moreover, we have $\nu_{c,\sigma^{(\cdot)}}(\alpha) \in [0, n] \cup \{-\infty\}$,
- 2. the constant 1 appearing in the definition of $\nu_{c,\sigma^{(\cdot)}}$ is arbitrary,
- 3. a sequence c belongs to $S^{\nu,\sigma^{(\cdot)}}$ if and only if $\nu_{c,\sigma^{(\cdot)}}(\alpha) \leq \nu(\alpha)$ for any $\alpha \in \mathbb{R}$,
- 4. if for any $\alpha < \beta$, we have $\sigma_j^{(\beta)} < \sigma_j^{(\alpha)}$ for any $j \in \mathbb{N}$, then there exists $c \in S^{\nu,\sigma^{(\cdot)}}$ such that $\nu_{c,\sigma^{(\cdot)}} = \nu$.

Theorem

Suppose that $\alpha < \alpha'$ implies $\sigma_j^{(\alpha')} / \sigma_j^{(\alpha)} \to 0$ as $j \to +\infty$. If for any $\alpha \in \mathbb{R}$, the sequence $\sigma^{(\alpha)}$ is admissible, then $S^{\nu,\sigma^{(\cdot)}}$ is a linear robust space.

Besides, for any $c \in S^{\nu,\sigma^{(\cdot)}}$, the function $\nu_{c,\sigma^{(\cdot)}}$ is robust, i.e. $\nu_{c,\sigma^{(\cdot)}} = \nu_{Ac,\sigma^{(\cdot)}}$ for any quasidiagonal matrix A.

Definition

Let σ be an admissible sequence and $0 < p, q \leq \infty$. The discrete counterpart of the generalized Besov space $B^{\sigma}_{p,q}([0,1]^n)$ is defined by

$$b_{p,q}^{\sigma} = \{c: \\ \left(\sum_{i \in \{0,...,2^{n}-1\}, \ j \in \mathbb{N}} (\sigma_{j} 2^{-jn/p})^{q} \left(\sum_{k \in \{0,...,2^{j}-1\}^{d}} |c_{j,k}|^{p}\right)^{q/p}\right)^{1/q} < \infty\}$$

with the usual modification if $p = \infty$ and/or $q = \infty$.

Theorem

For any $\alpha \in \mathbb{R}$, let $\sigma^{(\alpha)}$ be an admissible sequence and let us suppose that

- $\alpha < \alpha'$ implies $\sigma_j^{(\alpha')} / \sigma_j^{(\alpha)} \to 0$ as $j \to +\infty$,
- $\overline{s}(\sigma^{(\alpha)}) \to -\infty$ as $\alpha \to +\infty$.

For any p > 0, let $\theta^{(p)}$ be an admissible sequence. We have

$$S^{
u,\sigma^{(\cdot)}}\subseteq igcap_{p>0}igcap_{\epsilon>0}b^{(heta_j^{(p)}2^{-j\epsilon/p})_j}_{p,\infty}$$

if and only if for any $p,\epsilon>0$ and for any $\alpha\geq\alpha_{\min},$ there exists C>0 such that

$$heta_j^{(p)} 2^{-j\epsilon/p} \leq C 2^{jn/p} 2^{-j\nu(\alpha)/p} (\sigma_j^{(\alpha)})^{-1},$$

for any j.

Definition

The function $\tilde{\nu}$ is defined by

$$\tilde{\nu}(\alpha) = \begin{cases} \lim_{\eta \to 0^+} \inf_{p \ge 0} \limsup_{j \to +\infty} n - p \frac{\log(\theta_j^{(p)} \sigma_j^{(\alpha+\eta)})}{\log 2^j} & \text{if } \alpha \ge \alpha_{\min} \\ -\infty & \text{else} \end{cases}.$$

Theorem

Under the hypothesis of the previous Theorem, if $\tilde{\nu} \leq n$ and if for any $\alpha < \alpha_{\min}$, there exist $p, \epsilon > 0$ such that $2^{-jn/p} \sigma_j^{(\alpha)} \theta_j^{(p)} 2^{-j\epsilon/p} \to +\infty$ as $j \to +\infty$, then we have

$$igcap_{p>0}igcap_{\epsilon>0} b_{p,\infty}^{(heta_j^{(
ho)})^{2^{-j\epsilon/p}})_j} \subset S^{ ilde{
u},\sigma^{(\cdot)}}.$$

Theorem

Under the hypothesis of the previous Theorem, if $\tilde{\nu} \leq n$ and if for any $\alpha < \alpha_{\min}$, there exist $p, \epsilon > 0$ such that $2^{-jn/p} \sigma_j^{(\alpha)} \theta_j^{(p)} 2^{-j\epsilon/p} \to +\infty$ as $j \to +\infty$, then we have

$$\bigcap_{p>0} \bigcap_{\epsilon>0} b_{p,\infty}^{(\theta_j^{(p)}2^{-j\epsilon/p})_j} \subset S^{\tilde{\nu},\sigma^{(\cdot)}}.$$

Corollary

Under the hypothesis of the previous theorem, if for any $p, \epsilon > 0$ and for any $\alpha \ge \alpha_{\min}$, there exists C > 0 such that

$$heta_j^{(p)}2^{-j\epsilon/p}\leq C2^{jn/p}2^{-j ilde{
u}(lpha)/p}(\sigma_j^{(lpha)})^{-1},$$

for any j and if for any $\alpha < \beta$, we have $\sigma_j^{(\beta)} \le \sigma_j^{(\alpha)}$ for any j, then we have

$$S^{
u,\sigma^{(\cdot)}} = \bigcap_{p>0} \bigcap_{\epsilon>0} b_{p,\infty}^{(heta_j^{(p)}2^{-j\epsilon/p})_j}$$

if and only if $\nu = \tilde{\nu}$.

Road map

- The context
- The S^{ν} spaces and their generalization
- In practice
- More evolved examples
- A real life application

We approximate $\nu_{\boldsymbol{c},\sigma^{(\cdot)}}(\alpha)$ with the slope of

$$j \mapsto \frac{\log \# E_j(C, \sigma^{(\alpha+\epsilon)})(c)}{\log 2},$$

for large values of j as soon as $\alpha \geq \alpha_{\min}.$

This slope will be denoted $\nu_{c,\sigma^{(\cdot)}}^{\mathcal{C}}(\alpha)$.

In practice, the constant C is not arbitrary because we only have access to a finite number of wavelet coefficients.

In practice, the constant C is not arbitrary because we only have access to a finite number of wavelet coefficients.

If the typical value of these coefficients is too large (resp. too small) with respect to *C*, not enough (resp. too many) of them will be taken into account; the detected value of $\nu_{c,\sigma^{(\cdot)}}^{C}(\alpha)$ will thus be very different from the theoretical value $\nu_{c,\sigma^{(\cdot)}}(\alpha)$.

Consequently, for a fixed α , we construct the function

$$C > 0 \mapsto \nu_{c,\sigma^{(\cdot)}}^{C}(\alpha)$$

to approximate the value of $\nu_{c,\sigma^{(\cdot)}}(\alpha)$.

Consequently, for a fixed α , we construct the function

$$C > 0 \mapsto \nu_{c,\sigma^{(\cdot)}}^{C}(\alpha)$$

to approximate the value of $\nu_{c,\sigma^{(\cdot)}}(\alpha)$.

If $\alpha < \alpha_{\min}$, this function should be decreasing. If $\alpha \ge \alpha_{\min}$, there should exist an interval I for which the values $\nu_{c,\sigma}^{C}(\alpha)$ with $C \in I$ are close to each other.

Consequently, for a fixed α , we construct the function

$$C > 0 \mapsto \nu_{c,\sigma^{(\cdot)}}^{C}(\alpha)$$

to approximate the value of $\nu_{c,\sigma^{(\cdot)}}(\alpha)$.

If $\alpha < \alpha_{\min}$, this function should be decreasing. If $\alpha \ge \alpha_{\min}$, there should exist an interval I for which the values $\nu_{c,\sigma}^{C}(\alpha)$ with $C \in I$ are close to each other.

We use a gradient descent to detect this interval.

Consequently, for a fixed α , we construct the function

$$C > 0 \mapsto \nu_{c,\sigma^{(\cdot)}}^{C}(\alpha)$$

to approximate the value of $\nu_{\boldsymbol{c},\sigma^{(\cdot)}}(\alpha)$.

If $\alpha < \alpha_{\min}$, this function should be decreasing. If $\alpha \ge \alpha_{\min}$, there should exist an interval I for which the values $\nu_{c,\sigma}^{C}(\alpha)$ with $C \in I$ are close to each other.

We use a gradient descent to detect this interval.

We chose the length of the interval I to be at least the median of the values $|c_{j,k}|/\sigma_j^{(\alpha)}$ (the worthwhile wavelet coefficients $c_{j,k}$ satisfy $|c_{j,k}|/\sigma_j^{(\alpha)} \geq C$).

We intend to build a function f with a prescribed Hölder exponent $h_f(x_0)$ at every point x_0 for which there exists a function w such that

$$|f(x_0) - f(x)| \le C|x - x_0|^{h_f(x_0)}w(|x - x_0|),$$

for any x in a neighborhood of x_0 .

Such a function f does not belong to $\Lambda^{h_f(x_0)}(x_0)$.

Let us denote by $\underline{\mathcal{H}}_K$ the set of the functions from [0,1] to the compact K which are the lower limit of a sequence of continuous functions. For any $H \in \underline{\mathcal{H}}_K$, there exists a sequence $(Q_j)_{j \in \mathbb{N}}$ of polynomials such that

$$\begin{cases} H(t) = \liminf_{j \to +\infty} Q_j(t) \quad \forall t \in [0, 1] \\ ||Q'_j||_{\infty} \le j \qquad \forall j \in \mathbb{N} \end{cases},$$
(1)

We have a similar result if one replaces the lower limit by a limit in the definition of $\underline{\mathcal{H}}_{\mathcal{K}}$. In this case, the set is denoted by $\mathcal{H}_{\mathcal{K}}$ and the lower limit in relation (1) becomes a limit.

Proposition

Let $K \subset (0,1)$ be a compact set, $H \in \mathcal{H}_K$ and $(Q_j)_{j \in \mathbb{N}}$ be a sequence of polynomials satisfying Relations (1), where the lower limit is replaced by a limit. For any $(j, k) \in \mathbb{N} \times \{0, \ldots, 2^j - 1\}$, set

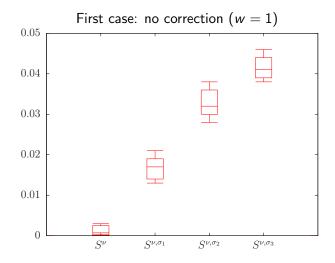
$$H_{j,k} = \max(rac{1}{\log j}, Q_j\left(rac{k}{2^j}
ight)).$$

If $(a_j)_{j\in\mathbb{N}}$ is a real sequence such that $\lim_{j\to+\infty} \frac{\log a_j}{\log 2^{-j}} = 0$, then the function f defined as

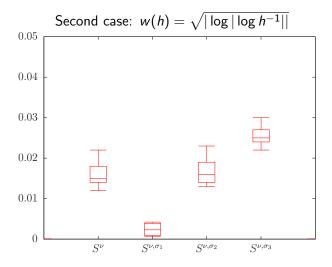
$$f(x) = \sum_{j=0}^{+\infty} \sum_{k=0}^{2^{j}-1} 2^{-H_{j,k}j} a_{j} \psi_{j,k}(x)$$

satisfies $h_f(x) = H(x)$ for any $x \in [0, 1]$.

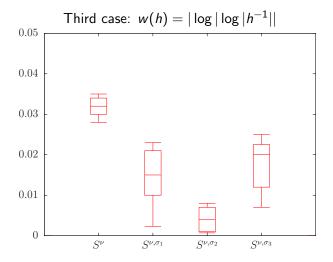
First test: a monofractal function with 20 simulations and Hölder exponent $H \in \{0.3, 0.35, \dots, 0.7\}$.



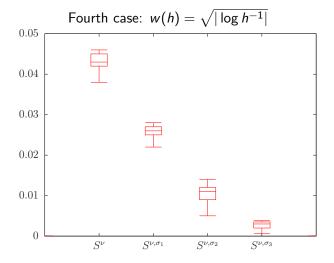
First test: a monofractal function with 20 simulations and Hölder exponent $H \in \{0.3, 0.35, \dots, 0.7\}$.

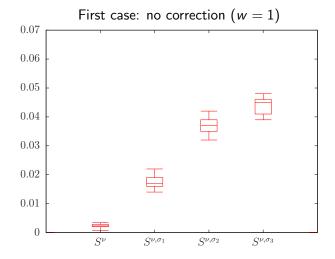


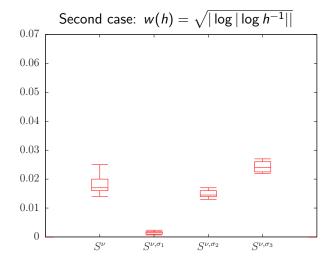
First test: a monofractal function with 20 simulations and Hölder exponent $H \in \{0.3, 0.35, \dots, 0.7\}$.



First test: a monofractal function with 20 simulations and Hölder exponent $H \in \{0.3, 0.35, \dots, 0.7\}$.

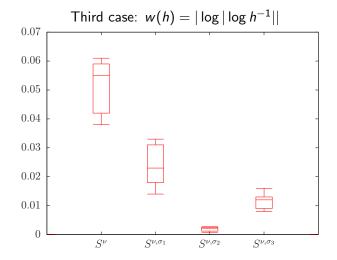


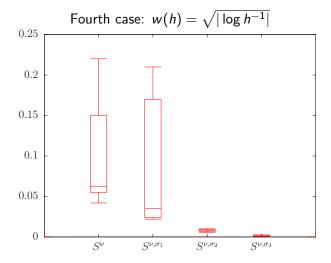




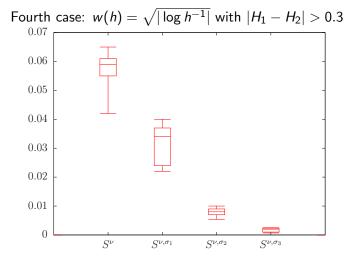
T. Kleyntssens & S. Nicolay

A refinement of the $S^{
u}$ -based multifractal formalism





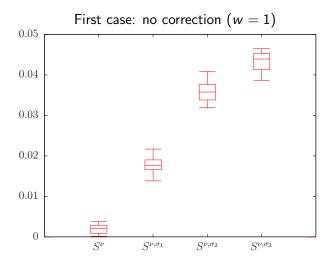
T. Kleyntssens & S. Nicolay

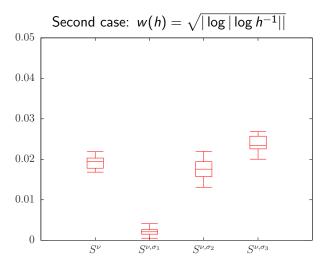


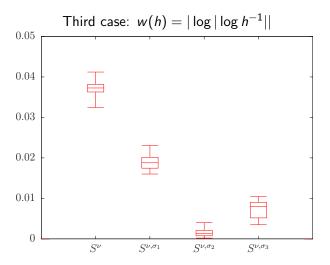
Third test: a multifractal function such that

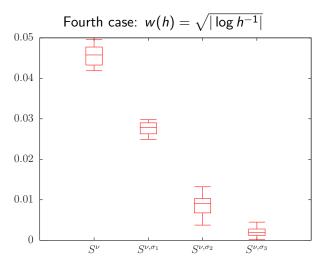
$$H(x) = \begin{cases} \frac{c-a}{b}x + a & \text{if } x < b \\ c & \text{if } x \ge b \end{cases},$$

with $a \in \{0, 0.1, \dots 0.5\}$, $b \in \{0.1, 0.2, \dots, 0.5\}$ and $c \in \{0.2, 0.3, \dots, 0.8\}$ (a < c).









Road map

- The context
- The S^{ν} spaces and their generalization
- In practice
- More evolved examples
- A real life application

The Weierstraß function

$$W(x) = \sum_{j=0}^{\infty} \frac{1}{2^j} \cos(2^{2j} x \pi)$$

belongs to $\Lambda^{1/2}(\mathbb{R})$.

The Weierstraß function

$$W(x) = \sum_{j=0}^{\infty} \frac{1}{2^j} \cos(2^{2j} x \pi)$$

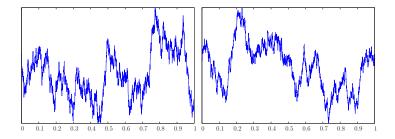
belongs to $\Lambda^{1/2}(\mathbb{R})$.

The uniform Weierstraß function of parameters (a, b) is the classical Weierstraß function coupled with a random phase. More precisely, this process is defined by

$$W(x) = \sum_{n=0}^{+\infty} a^n \cos((b^n x + U_n)\pi),$$

where 0 < a < 1 < b with $ab \ge 1$ and where each U_n is chosen independently with respect to the uniform probability measure on [0, 1].

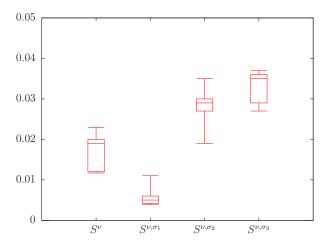
The Brownian motion vs the uniform Weierstraß function.



for W (right), we set a = 0.8 and b = 1.6.

The Brownian motion vs the uniform Weierstraß function.

For 20 simulations of a BM, we get

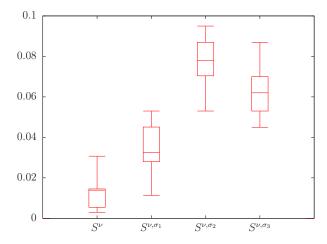


T. Kleyntssens & S. Nicolay A refinement of the S^{ν} -

A refinement of the $S^{
u}$ -based multifractal formalism

The Brownian motion vs the uniform Weierstraß function.

For 20 simulations of W, we get



Let us define a process based on the Lévy-Ciesielski construction (that allows to decompose the Brownian motion in the Schauder basis) to obtain a multifractal process which share the same local regularity as the Brownian motion. Let us define a process based on the Lévy-Ciesielski construction (that allows to decompose the Brownian motion in the Schauder basis) to obtain a multifractal process which share the same local regularity as the Brownian motion.

The Schauder functions evaluated at t are the integrates of the Haar wavelets on [0, t]. More precisely, let us set

$$F_0(t) = \left\{ egin{array}{ll} 0 & ext{if} \ t < 0 \ t & ext{if} \ t \in [0,1] \ 1 & ext{else} \end{array}
ight.,$$

and for any $(j,k) \in \mathbb{N} \times \{0,\ldots,2^j-1\}$,

$$F_{j,k}(t) = \begin{cases} t - k2^{-j} & \text{if } t \in [k2^{-j}, k2^{-j} + 2^{-(j+1)}] \\ -t + (k+1)2^{-j} & \text{if } t \in [k2^{-j} + 2^{-(j+1)}, (k+1)2^{-j}] \\ 0 & \text{else} \end{cases}$$

Let us recall that we have the following properties:

• let $(a_{j,k})_{(j,k)\in\mathbb{N}\times\{0,\ldots,2^{j}-1\}}$ be a real sequence, $a_{0}\in\mathbb{R}$ and $\epsilon\in(0,1/2)$. If $\max_{k\in\{0,\ldots,2^{j}-1\}}|a_{j,k}|=O(2^{j\epsilon})$ as $j\to+\infty$ then the function f defined by

$$t \mapsto a_0 F_0(t) + \sum_{j=0}^{+\infty} \sum_{k=0}^{2^j-1} a_{j,k} 2^{j/2} F_{j,k}(t)$$
(2)

is uniformly absolutely-convergent on [0,1]. Besides, f is a real continuous function such that f(0) = 0,

2 any continuous function f from [0,1] to \mathbb{R} such that f(0) = 0 can be written in the form (2). Besides, if $f \in \Lambda^{\alpha}(x_0)$ then there exists a constant C > 0 such that

$$|a_{j,k}2^{-j/2}| \le C(2^{-j} + |k2^{-j} - x_0|)^{\alpha}$$

for any $(j, k) \in \mathbb{N} \times \{0, \dots, 2^j - 1\}.$

Let $(Z_{j,k})_{(j,k)\in\mathbb{N}\times\{0,\ldots,2^{j}-1\}}$ be a sequence of independents real-valued $\mathcal{N}(0,1)$ Gaussian random variables defined on the probability space Ω . Then, there exists an event $\Omega^* \subset \Omega$ of probability 1 such that, for any $\omega \in \Omega^*$, the function $B_{\cdot}(\omega)$ defined by

$$B_{.}(\omega): t \mapsto Z_{0}(\omega)F_{0}(t) + \sum_{j=0}^{+\infty}\sum_{k=0}^{2^{j}-1}Z_{j,k}(\omega)2^{j/2}F_{j,k}(t)$$

is uniformly absolutely-convergent on [0, 1]. Besides, the process $B = \{B_t\}_t$ is a Brownian motion.

Let K be a compact of (-1/2, 1/2), $H \in \underline{\mathcal{H}}_K$ and $(Q_j)_{j \in \mathbb{N}}$ be a sequence of polynomials satisfying Relation (1). For any $(j, k) \in \mathbb{N} \times \{0, \dots, 2^j - 1\}$, set

$$H_{j,k}=Q_j\left(rac{k}{2^j}
ight).$$

Let $(Z_{j,k})_{(j,k)\in\mathbb{N}\times\{0,\ldots,2^{j}-1\}}$ be a sequence of independents real-valued $\mathcal{N}(0,1)$ Gaussian random variables defined on the probability space Ω and let us define

$$B_t^H(\omega) = Z_0(\omega)F_0(t) + \sum_{j=0}^{+\infty}\sum_{k=0}^{2^j-1} 2^{-jH_{j,k}}Z_{j,k}(\omega)2^{j/2}F_{j,k}(t).$$

$$B_t^H(\omega) = Z_0(\omega)F_0(t) + \sum_{j=0}^{+\infty}\sum_{k=0}^{2^j-1} 2^{-jH_{j,k}}Z_{j,k}(\omega)2^{j/2}F_{j,k}(t).$$

Theorem

There exists an event $\Omega^* \subset \Omega$ of probability 1 such that, for any $\omega \in \Omega^*$, we have the following properties:

- the function $t \mapsto B_t^H(\omega)$ is a continuous function defined on [0, 1],
- ② we have the following relation: $h_{B_{\cdot}^{H}(\omega)}(t) = 1/2 + H(t)$, for any $t \in [0, 1]$,
- let $t \in [0, 1]$; if there exists C > 0 such that $H(t) - Q_j(t) \le Cj^{-1}$, for any $j \in \mathbb{N}$ then there exist a constant C' > 0 independent of t such that

$$|B_{t+h}^{H}(\omega) - B_{t}^{H}(\omega)| \le C' 2^{C} |h|^{1/2 + H(t)} \sqrt{\log h^{-1}}$$

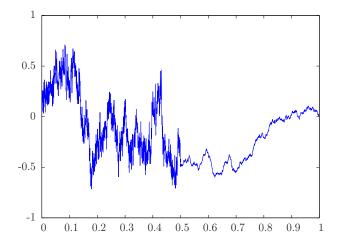
for any h in a neighborhood of 0.

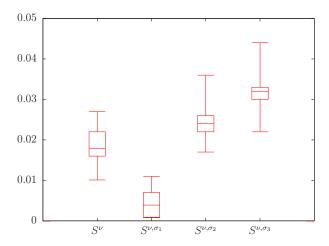
Proposition

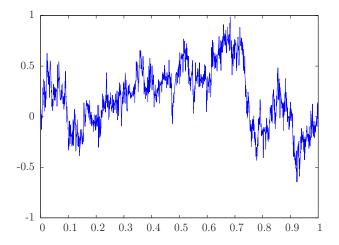
Under hypothesis of the previous theorem, there exists an event $\Omega^* \subset \Omega$ of probability 1 such that, for any $\omega \in \Omega^*$ and for almost every $t \in [0, 1]$, there exists a constant C > 0 such that

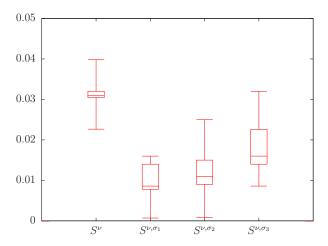
$$|B_{t+h}^{H}(\omega) - B_t^{H}(\omega)| \le C|h|^{1/2 + H(t)} \sqrt{|\log|\log h^{-1}||},$$

for any h small enough.

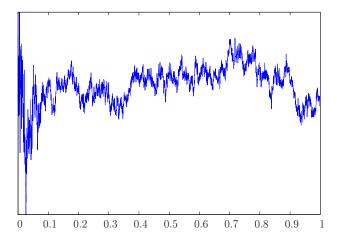




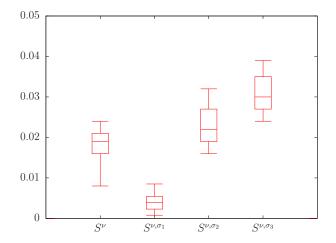




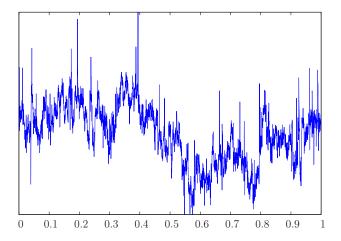
$$H(x) = \begin{cases} \frac{c-a}{b}x + a & \text{if } x < b \\ c & \text{if } x \ge b \end{cases},$$



$$H(x) = \begin{cases} \frac{c-a}{b}x + a & \text{if } x < b \\ c & \text{if } x \ge b \end{cases},$$



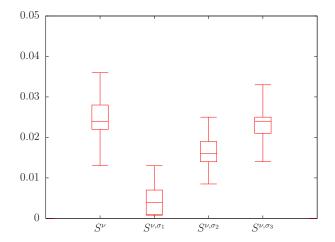
$$H(x) = \begin{cases} \frac{c-a}{b}x + a & \text{if } x < b \\ c & \text{if } x \ge b \end{cases},$$



T. Kleyntssens & S. Nicolay

A refinement of the $S^{
u}$ -based multifractal formalism

$$H(x) = \begin{cases} \frac{c-a}{b}x + a & \text{if } x < b \\ c & \text{if } x \ge b \end{cases},$$



T. Kleyntssens & S. Nicolay A refinement of the S

A refinement of the $S^{
u}$ -based multifractal formalism

Road map

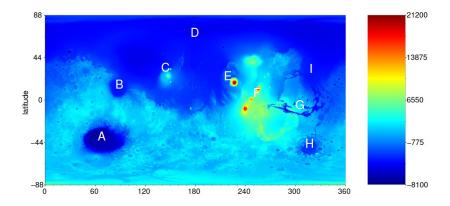
- The context
- The S^{ν} spaces and their generalization
- In practice
- More evolved examples
- A real life application

Application: a 2D study of Mars' topography.

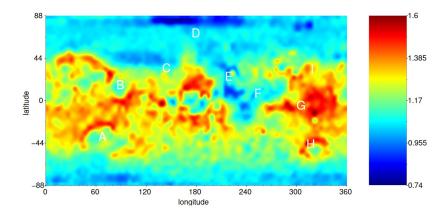
We used the 128-pixel-per-degree map from the MOLA experiment.

This map almost represents the whole planet; the latitude ranges from $88^\circ S$ to $88^\circ N.$

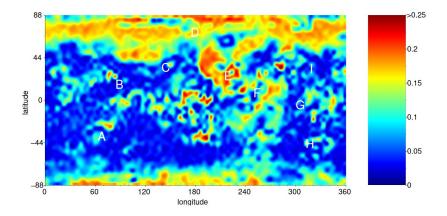
The main Hölder exponent



The main Hölder exponent



A 2D investigation of the multifractility



Let us give a method for detecting the existence of a Hölder exponent h such that $d_f(h) < n$ (where d_f denotes the multifractal spectrum).

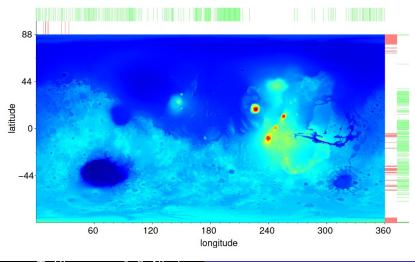
Let us give a method for detecting the existence of a Hölder exponent h such that $d_f(h) < n$ (where d_f denotes the multifractal spectrum).

It suffices to find a h such that

$$C > 0 \mapsto \nu^{C}_{C,\sigma^{(\cdot)}}(h)$$

has a stabilisation associated to a value strictly smaller than n.

When looking at longitudinal and latitudinal bands, most of these signals seem to be multifractal.



T. Kleyntssens & S. Nicolay

A refinement of the $S^{
u}$ -based multifractal formalism