Article (Scientific journals)
Landslide Susceptibility Mapping of Urban Areas: Logistic Regression and Sensitivity Analysis applied to Quito, Ecuador
Puente Sotomayor, Fernando Xavier; Mustafa, Ahmed; Teller, Jacques
2021In Geoenvironmental Disasters, 8 (19)
Peer Reviewed verified by ORBi
 

Files


Full Text
LSM_Quito_Pue_Mus_Tel_ORBI.pdf
Author preprint (2.57 MB)
Download

Puente-Sotomayor, F., Mustafa, A. & Teller, J. Landslide Susceptibility Mapping of Urban Areas: Logistic Regression and Sensitivity Analysis applied to Quito, Ecuador. Geoenviron Disasters 8, 19 (2021). https://doi.org/10.1186/s40677-021-00184-0


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
landslide susceptibility; LOGIT; sensitivity analysis
Abstract :
[en] Although the Andean region is one of the most landslide-susceptible areas in the world, limited attention has been devoted to the topic in terms of research, risk reduction practice, and urban policy. Based on the collection of early landslide data for the Andean city of Quito, Ecuador, this article aims to explore the predictive power of a binary logistic regression model (LOGIT) to test secondary data and an official multicriteria evaluation model for landslide susceptibility in this urban area. Cell size resampling scenarios were explored as a parameter, as the inclusion of new “urban” factors. Furthermore, two types of sensitivity analysis (SA), univariate and Monte Carlo methods, were applied to improve the calibration of the LOGIT model. A Kolmogorov–Smirnov (K-S) test was included to measure the classification power of the models. Charts of the three SA methods helped to visualize the sensitivity of factors in the models. The Area Under the Curve (AUC) was a common metric for validation in this research. Among the ten factors included in the model to help explain landslide susceptibility in the context of Quito, results showed that population and street/road density, as novel “urban factors”, have relevant predicting power for high landslide susceptibility in urban areas when adopting data standardization based on weights assigned by experts. The LOGIT was validated with an AUC of 0.79. Sensitivity analyses suggested that calibrations of the best-performance reference model would improve its AUC by up to 0.53%. Further experimentation regarding other methods of data pre-processing and a finer level of disaggregation of input data are suggested. In terms of policy design, the LOGIT model coefficient values suggest the need for deep analysis of the impacts of urban features, such as population, road density, building footprint, and floor area, at a household scale, on the generation of landslide susceptibility in Andean cities such as Quito. This would help improve the zoning for landslide risk reduction, considering the safety, social and economic impacts that this practice may produce.
Research Center/Unit :
Local Environmental Management and Analysis
Disciplines :
Architecture
Author, co-author :
Puente Sotomayor, Fernando Xavier  ;  Université de Liège - ULiège > UEE
Mustafa, Ahmed;  The New School > Public Engagement Department
Teller, Jacques  ;  Université de Liège - ULiège > Département ArGEnCo > Urbanisme et aménagement du territoire
Language :
English
Title :
Landslide Susceptibility Mapping of Urban Areas: Logistic Regression and Sensitivity Analysis applied to Quito, Ecuador
Publication date :
20 August 2021
Journal title :
Geoenvironmental Disasters
eISSN :
2197-8670
Publisher :
Springer, Heidelberg, Germany
Volume :
8
Issue :
19
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Land Use Planning and Management for Landslide Risk Reduction - Conditions and Potentials in Andean Cities
Funders :
ARES - Académie de Recherche et d'Enseignement Supérieur
UCE - Universidad Central del Ecuador
Available on ORBi :
since 25 September 2021

Statistics


Number of views
83 (4 by ULiège)
Number of downloads
79 (4 by ULiège)

Scopus citations®
 
10
Scopus citations®
without self-citations
10
OpenCitations
 
1
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi