[en] Although the Andean region is one of the most landslide-susceptible areas in the world, limited attention has been devoted to the topic in terms of research, risk reduction practice, and urban policy. Based on the collection of early landslide data for the Andean city of Quito, Ecuador, this article aims to explore the predictive power of a binary logistic regression model (LOGIT) to test secondary data and an official multicriteria evaluation model for landslide susceptibility in this urban area. Cell size resampling scenarios were explored as a parameter, as the inclusion of new “urban” factors. Furthermore, two types of sensitivity analysis (SA), univariate and Monte Carlo methods, were applied to improve the calibration of the LOGIT model. A Kolmogorov–Smirnov (K-S) test was included to measure the classification power of the models. Charts of the three SA methods helped to visualize the sensitivity of factors in the models. The Area Under the Curve (AUC) was a common metric for validation in this research. Among the ten factors included in the model to help explain landslide susceptibility in the context of Quito, results showed that population and street/road density, as novel “urban factors”, have relevant predicting power for high landslide susceptibility in urban areas when adopting data standardization based on weights assigned by experts. The LOGIT was validated with an AUC of 0.79. Sensitivity analyses suggested that calibrations of the best-performance reference model would improve its AUC by up to 0.53%. Further experimentation regarding other methods of data pre-processing and a finer level of disaggregation of input data are suggested. In terms of policy design, the LOGIT model coefficient values suggest the need for deep analysis of the impacts of urban features, such as population, road density, building footprint, and floor area, at a household scale, on the generation of landslide susceptibility in Andean cities such as Quito. This would help improve the zoning for landslide risk reduction, considering the safety, social and economic impacts that this practice may produce.
Bathrellos, G.D., Kalivas, D.P., Skilodimou, H.D., GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece (2009) Estud Geol, 65 (1), pp. 49-65
Blanchard-Boehm, R.D., Natural hazards in Latin America: tectonic forces and storm fury (2004) Soc Stud, 95 (3), pp. 93-105
Bouyer, J., (2009), Modélisation et simulation des microclimats urbains: Étude de l’impact de l’aménagement urbain sur les consommations énergétiques des bâtiments. Thèse, Université de Nantes. https://tel.archives-ouvertes.fr/tel-00426508. Accessed 25 Dec 2019
Bui, D.T., Tsangaratos, P., Nguyen, V.T., Van Liem, N., Trinh, P.T., Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment (2020) Catena, 188, p. 104426
Catani, F., Lagomarsino, D., Segoni, S., Tofani, V., Exploring model sensitivity issues across different scales in landslide susceptibility (2013) Nat Hazards Earth Syst Sci Discuss, 1 (2), pp. 583-623. , https://nhess.copernicus.org/preprints/1/583/2013/nhessd-1-583-2013.pdf
Catani, F., Lagomarsino, D., Segoni, S., Tofani, V., Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues (2013) Nat Hazards Earth Syst Sci, 13 (11), pp. 2815-2831
Chang, K.T., Merghadi, A., Yunus, A.P., Pham, B.T., Dou, J., Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques (2019) Sci Rep, 9 (1), pp. 1-21. , https://doi.org/10.1038/s41598-019-48773-2
(2017) Estrategia Andina Para La Gestión Del Riesgo De Desastres - Decisión No. 819., , http://www.comunidadandina.org/StaticFiles/2017522151956ESTRATEGIAANDINA.pdf
D’Ercole, R., Hardy, S., Metzger, P., Robert, J., Vulnerabilidades urbanas en los países andinos. Introducción general (2009) Bull l’Institut Français d’études Andines, 38 (3), pp. 401-410. , https://doi.org/10.4000/bifea.2222
Dragićević, S., Lai, T., Balram, S., GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments (2015) Habitat Int, 45 (P2), pp. 114-125. , https://doi.org/10.1016/j.habitatint.2014.06.031
Du, G., Zhang, Y., Iqbal, J., Yang, Z., Yao, X., Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China (2017) J Mt Sci, 14 (2), pp. 249-268
Du, J., Yin, K., Nadim, F., Lacasse, S., Quantitative vulnerability estimation for individual landslides (2013) Proceedings of the 18Th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013, pp. 2181-2184. , http://www.cfms-sols.org/sites/default/files/Actes/2181-2184.pdf, P. des Ponts
Ecuador Asamblea Nacional (2014) Ley Orgánica Reformatoria al Código Orgánico de Organización Territorial, Autonomía y Descentralización. http://www.misionpichincha.gob.ec/transparencia/organizacion-interna-base-legal/normasderegulacion/pdfs/RegistroOficial166LeyReformatoriaalCootad.pdf. Accessed 2 Apr 2020
Feizizadeh, B., Blaschke, T., An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping (2014) Int J Geogr Inf Sci, 28 (3), pp. 610-638
Funepsa, R.M., Salazar, A., Carvajal, A., Galárraga, R., Plaza, G., Singaucho, J.C., Álvarez, B., Salazar, D., (2015) Actualización De La Zonificación Por Amenaza De Deslizamiento En El Distrito Metropolitano De Quito, , SSG-MDMQ Official Report, Quito
Movimientos en masa en la región Andina: Una guía para la evaluación de amenazas (2007) Servicio Nacional De Geología Y Minería, 4, p. 432. , http://bvpad.indeci.gob.pe/doc/pdf/esp/doc2212/doc2212.htm
Grzenda, W., The role of discretization of continuous variables in socioeconomic classification models on the example of logistic regression models and artificial neural networks (2020) Classification and Data Analysis. Theory and Applications (First, pp. 35-52. , K. Jajuga, J. Batóg, M. Walesiak, Cham, Springer
Gudiyangada Nachappa, T., Kienberger, S., Meena, S.R., Hölbling, D., Blaschke, T., Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping (2020) Geomatics Nat Hazards Risk, 11 (1), pp. 572-600
Hemasinghe, H., Rangali, R.S.S., Deshapriya, N.L., Samarakoon, L., Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka) (2018) Proc Eng, 212, pp. 1046-1053
Highland, L.M., Bobrowsky, P., (2008) The Landslide Handbook — a Guide to Understanding Landslides. US Geological Survey Circular 1325, Reston, , https://pubs.usgs.gov/circ/1325/pdf/C1325_508.pdf
(2016) Proyeccion Cantonal Total 2010–2020. INEC Registry, , http://www.inec.gob.ec/estadisticas/index.php?option=com_content&view=article&id=329&Itemid=328&lang=es
Inostroza, L., Informal urban development in Latin American urban peripheries. Spatial assessment in Bogota, Lima and Santiago de Chile (2017) Landscape Urban Plan, 165 (1), pp. 267-279
Kaynia, A.M., Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., Wenzel, H., Medina-Cetina, Z., Probabilistic assessment of vulnerability to landslide: application to the village of Lichtenstein, Baden-Württemberg, Germany (2008) Eng Geol, 101 (1-2), pp. 33-48
Kirschbaum, D., Stanley, T., Satellite-based assessment of rainfall-triggered landslide Hazard for situational awareness (2018) Earth’s Future, 6 (3), pp. 505-523. , https://doi.org/10.1002/2017EF00071
Klimeš, J., Rios Escobar, V., A landslide susceptibility assessment in urban areas based on existing data: an example from the Iguaná Valley, Medellín City, Colombia (2010) Natural Hazards Earth Syst Sci, 10 (10), pp. 2067-2079
Lara, M., Sepúlveda, S.A., Celis, C., Rebolledo, S., Ceballos, P., Landslide susceptibility maps of Santiago city, Andean foothills, Chile (2018) Andean Geol, 45 (3), pp. 433-442
Lee, S., Baek, W.K., Jung, H.S., Lee, S., Susceptibility mapping on urban landslides using deep learning approaches in (2020) Mt. Umyeon. Appl Sci, 10 (22), pp. 1-18. , https://doi.org/10.3390/app10228189
Leoni, G., Barchiesi, F., Catallo, F., Dramis, F., Fubelli, G., Lucifora, S., Mattei, M., Puglisi, C., GIS methodology to assess landslide susceptibility: application to a river catchment of Central Italy (2009) J Maps, 5 (1), pp. 87-93
Lombardo, L., Mai, P.M., Presenting logistic regression-based landslide susceptibility results (2018) Eng Geol, 244 (January), pp. 14-24
Meena, S.R., Ghorbanzadeh, O., Blaschke, T., A comparative study of statistics-based landslide susceptibility models: A case study of the region affected by the Gorkha earthquake in Nepal (2019) ISPRS Int J Geo Inf, 8 (2). , https://doi.org/10.3390/ijgi8020094
Melchiorre, C., Castellanos Abella, E.A., van Westen, C.J., Matteucci, M., Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantánamo, Cuba (2011) Comput Geosci, 37 (4), pp. 410-425
Norman, G., Likert scales, levels of measurement and the “laws” of statistics (2010) Adv Health Sci Educ, 15 (5), pp. 625-632
Orán Cáceres, J.P., Gómez Delgado, M., Bosque Sendra, J., Una propuesta complementaria de análisis de sensibilidad de un modelo basado en técnicas sig y evaluación multicriterio (2010) Pubs. Univ. De Sevilla., 14, pp. 971-987. , http://hdl.handle.net/11441/66681
Pascale, S., Parisi, S., Mancini, A., Schiattarella, M., Conforti, M., Sole, A., Murgante, B., Sdao, F., Landslide susceptibility mapping using artificial neural network in the urban area of Senise and San Costantino Albanese (Basilicata, southern Italy) (2013) Computational Science and Its Applications. ICCSA, 2013, pp. 473-488. , https://doi.org/10.1007/978-3-642-39649-6_34, Murgante B. et al., Lecture Notes in Computer Science. Springer, Berlin, Heidelberg
Pasta, D.J., (2009), Learning when to be discrete: continuous vs. categorical predictors. In: SAS Global Forum 2009, Statistics and Data Analysis. 2009 Mar (p. 248). https://support.sas.com/resources/papers/proceedings09/248-2009.pdf. Accessed 19 Nov 2019
Pawluszek, K., Borkowski, A., Tarolli, P., Sensitivity analysis of automatic landslide mapping: numerical experiments towards the best solution (2018) Landslides, 15 (9), pp. 1851-1865
Poelmans, L., Van Rompaey, A., Complexity and performance of urban expansion models (2010) Comput Environ Urban Syst, 34 (1), pp. 17-27
Puente-Sotomayor, F., Egas, A., Teller, J., Land policies for landslide risk reduction in Andean cities (2021) Habitat International 107(Jan), , https://doi.org/10.1016/j.habitatint.2020.102298
Puente-Sotomayor, F., Villamarin, P., Cevallos, A., (2018), Riesgos de deslizamiento en Quito, ¿funciona la política? In: Asociación Geográfica del Ecuador (ed) Territorios en transición: Transformaciones de la Geografía del Ecuador en el siglo XXI - Memorias del 1er Congreso Nacional de Geografía del Ecuador. Asociación Geográfica del Ecuador, Quito, pp 1–15. https://congresonacionalagec.files.wordpress.com/2018/02/memoria_cng_2018.pdf. Accessed 15 Dec 2019
Psomiadis, E., Papazachariou, A., Soulis, K.X., Alexiou, D.S., Charalampopoulos, I., Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data (2020) Land, 9 (5), p. 133. , (,),., (,):,., https://doi.org/10.3390/land9050133
Quito Alcaldia del Distrito Metropolitano (2018) Resolución Administrativa A008, Ordenanzas y Resoluciones 1–5 (2018). http://www7.quito.gob.ec/mdmq_ordenanzas/Resoluciones de Alcaldía/Año 2018/RA-2018-008-DIRECCION METROPOLITANA DE RESILIENCIACREACION.PDF. Accessed 20 Feb 2020
Quito Concejo del Distrito Metropolitano (2003) Ordenanza Metropolitana No. 095 Régimen de Suelo. http://www7.quito.gob.ec/mdmq_ordenanzas/Ordenanzas/ORDENANZAS AÑOS ANTERIORES/ORDM-095 - NUEVO REGIMEN DELSUELO.pdf. Accessed 15 Dec 2019
(2011) Ordenanza Metropolitana No. 172 Régimen De Suelo De Quito, , http://www7.quito.gob.ec/mdmq_ordenanzas/ConcejoAbierto/Ordenanzas/ORDENANZASMUNICIPALES/MUNICIPAL(172)/MUNICIPAL_0172_517.pdf, Accessed 4 Jan 2020
Quito Municipio del Distrito Metropolitano (2015) Plan de Desarrollo y Ordenamiento Territorial 2015 - Diagnóstico Eje Territorial. MDMQ. http://www7.quito.gob.ec/mdmq_ordenanzas/Sesiones del Concejo/2015/Sesión Extraordinaria 2015-02-13/PMDOT 2015-2025/Volumen I/6. Diagnóstico Territorial.pdf. Accessed 12 Nov 2019
Quito Municipio del Distrito Metropolitano (2017) Estrategia de Resiliencia Distrito Metropolitano de Quito. MDMQ. http://www.pichincha.gob.ec/pichincha/cantones/item/23-distrito-metropolitano-de-quito.html. Accessed 21 Nov 2019
Ramos-Bernal, R.N., Vázquez-Jiménez, R., Sánchez Tizapa, S., Arroyo Matus, R., Characterization of susceptible landslide zones by an accumulated index (2019) Landslides - Investigation and Monitoring, pp. 1-26. , https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
Rebotier, J., El Riesgo y su Gestión en Ecuador - Una Mirada de Geografía Social y Política (2016) Centro De Publicaciones Pontificia Universidad Católica Del Ecuador, Quito., , https://biblio.flacsoandes.edu.ec/shared/biblio_view.php?bibid=143165&tab=opac
Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., Guzzetti, F., A review of statistically-based landslide susceptibility models (2018) Earth Sci Rev, 180 (March), pp. 60-91
Ronchetti, F., Corsini, A., Kollarits, S., Leber, D., Papez, J., Plunger, K., Preseren, T., Stefani, M., Improve information provision for disaster management: MONITOR II, EU project (2013) Landslide Science and Practice, Social and Economic Impact and Policies, 7, pp. 47-54. , https://doi.org/10.1007/978-3-642-31313-4_7, Margottini C, Canuti P, Sassa K, Springer, Rome
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., Wu, Q., Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices (2019) Environ Model Softw, 114 (2019), pp. 29-39. , https://doi.org/10.1016/j.envsoft.2019.01.012
Shahabi, H., Hashim, M., Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment (2015) Sci Rep, 5, pp. 1-15. , https://doi.org/10.1038/srep09899
Shahri, A.A., Spross, J., Johansson, F., Larsson, S., Landslide susceptibility hazard map in Southwest Sweden using artificial neural network (2019) Catena, 183 (2019). , https://doi.org/10.1016/j.catena.2019.104225
Sepúlveda, S.A., Petley, D.N., Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean (2015) Nat Hazards Earth Syst Sci, 15 (8), pp. 1821-1833
Sîrbu, F., Drăguț, L., Oguchi, T., Hayakawa, Y., Micu, M., Scaling land-surface variables for landslide detection (2019) Progress Earth Planet Sci, 6 (1), pp. 1-13. , https://doi.org/10.1186/s40645-019-0290-1
Landslide Types and Processes (2004) Highway Research Board Special Report. U.S. Department of the Interior, U.S. Geological Survey., , https://pubs.usgs.gov/fs/2004/3072/pdf/fs2004-3072.pdf, Accessed 21 Nov 2019
van Dessel, W., van Rompaey, A., Szilassi, P., Sensitivity analysis of logistic regression parameterization for land use and land cover probability estimation (2011) Int J Geogr Inf Sci, 25 (3), pp. 489-508. , (,),., (,):., https://doi.org/10.1080/13658810903194256
van Lindert, P., Rethinking urban development in Latin America: a review of changing paradigms and policies (2016) Habitat Int, 54, pp. 253-264
Wang, Y., Feng, L., Li, S., Ren, F., Du, Q., A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China (2020) Catena, 188 (July 2019), p. 104425
Williams, R., (2019) Ordinal Independent Variables, , https://www3.nd.edu/~rwilliam/xsoc73994/OrdinalIndependent.pdf, Accessed 21 Nov 2019
Wubalem, A., Modeling of landslide susceptibility in a part of Abay Basin, northwestern Ethiopia (2020) Open Geosciences, 12 (1), pp. 1440-1467
Zhang, L., Ray, H., Priestley, J., Tan, S., A descriptive study of variable discretization and cost-sensitive logistic regression on imbalanced credit data (2020) J Appl Stat, 47 (3), pp. 568-581