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Landslide Susceptibility Mapping of Urban Areas: Logistic Regression and Sensitivity Analysis 

applied to Quito, Ecuador 

Abstract 

Although the Andean region is one of the most landslide-susceptible areas in the world, limited attention has been 

devoted to the topic in terms of research, risk reduction practice, and urban policy. Based on the collection of 

early landslide data for the Andean city of Quito, Ecuador, this article aims to explore the predictive power of a 

binary logistic regression model (LOGIT) to test secondary data and an official multicriteria evaluation model for 

landslide susceptibility in this urban area. Cell size resampling scenarios were explored as a parameter, as the 

inclusion of new “urban” factors. Furthermore, two types of sensitivity analysis (SA), univariate and Monte Carlo 

methods, were applied to improve the calibration of the LOGIT model. A Kolmogorov–Smirnov (K-S) test was 

included to measure the classification power of the models. Charts of the three SA methods helped to visualize 

the sensitivity of factors in the models. The Area Under the Curve (AUC) was a common metric for validation in 

this research. Among the ten factors included in the model to help explain landslide susceptibility in the context 

of Quito, results showed that population and street/road density, as novel “urban factors”, have relevant predicting 

power for high landslide susceptibility in urban areas when adopting data standardization based on weights 

assigned by experts. The LOGIT was validated with an AUC of 0.79. Sensitivity analyses suggested that 

calibrations of the best-performance reference model would improve its AUC by up to 0.53%. Further 

experimentation regarding other methods of data pre-processing and a finer level of disaggregation of input data 

are suggested. In terms of policy design, the LOGIT model coefficient values suggest the need for deep analysis 

of the impacts of urban features, such as population, road density, building footprint, and floor area, at a household 

scale, on the generation of landslide susceptibility in Andean cities such as Quito. This would help improve the 

zoning for landslide risk reduction, considering the safety, social and economic impacts that this practice may 

produce. 
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1. Introduction 

1.1. Urban Landslides in the Andes 

The Andes is a sub-region located in western South America near the Pacific Ocean, named after the 

presence of the Andean mountains. The Andean mountain range is among the cordilleras with the highest 

elevations in the world and part of the Pacific Ring of Fire, a global mountain system characterized by frequent 

volcanic eruptions and earthquakes (Blanchard-Boehm, 2004). The range crosses the territories of Colombia, 

Ecuador, Perú, Bolivia, Chile, and—with less significance for human settlements—Argentina and Venezuela. The 

Andes orography is of particular concern in terms of sustainable urban development because it has been subject 

to significant urbanization processes in recent decades, at an average of 20 m2 per minute, particularly informal 

and diverse in typologies (Inostroza, 2017). This growth includes metropolises such as Bogotá, Santiago, and 

Lima. Other medium-size cities, such as Medellin, Quito, and Cali, and smaller cities, also must be considered in 

terms of urban population growth. This urbanization has been induced by country–city migration and natural 

growth, for which housing and urban development—mostly informal and contributing to urban poverty—is a 

challenge to planning and management at all governmental levels, which have had to shift their policy paradigm 

(Blanchard-Boehm, 2004; van Lindert, 2016). Furthermore, cities are subject to urban risk in the Andes, where 

one of the most frequent risks, with high accumulated impact, is landslides.  

Susceptibility analysis of landslide risk (LRisk) has been broadly studied in case studies at regional scales 

and mostly covering rural areas, often involving natural conditions and, to a lesser extent, considering anthropic 

factors, such as road network and urban areas. However, urbanization is often treated only as a generic land-use 

category, without further detail. Against this background, LRisk is one of the main concerns for urban 

development in the Andes in light of physical and social factors. The geodynamics of this region make it prone to 

landslides. This condition is aggravated by climate change, in addition to the extreme events produced by El Niño 

climatic phenomena, which affect diverse locations of the region with an irregular time cycle. In some of these 

areas, urbanization has expanded rapidly in recent decades, as mentioned above. Cities in the Andes account for 

70% of the population and the share of the urban population continues to grow rapidly. Unplanned urbanization 

is developing without any consideration of LRisks and governmental bodies have limited capacities to manage 

urban development (Comunidad Andina, 2017; D’Ercole, Hardy, Metzger, & Robert, 2009; UNISDR, 2018). 

Evidence regarding landslide-prone conditions in the region has been presented by Kirschbaum & Stanley (2018) 

and Sepúlveda & Petley (2015). These studies portray the concentration of landslide-susceptible areas in the 

irregular orography of Colombia, Ecuador, and Peru, with hundreds of fatalities. By comparison, fewer fatalities 
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have occurred in neighboring countries in South America, with the exception of Brazil. Accordingly, disaster risk 

management (DRM) should be better integrated with land-use planning (LUP) for appropriate diagnostics and 

effective prevention of risks related to landslides.  

1.2. Theoretical Background 

1.2.1.  Key definitions 

A landslide is defined as: “the downslope movement of soil, rock, and organic materials under the effects 

of gravity” (Highland & Bobrowsky, 2008, p. 4). Its types include slides, falls, topples, flows, and lateral spreads, 

and combinations of these, whose causes can be geological, morphological, or anthropic (shaping of built or 

natural landscapes), which can be triggered by water, seismic, and volcanic activities (GEMMA, 2007; USGS, 

2004). In complement, landslide disaster risk is the combination of natural hazard conditions, such as weak soil, 

intense precipitation, and earthquakes; vulnerability, such as soil cuts and fills, or structural weakness; and, 

exposure, such as construction LRisk-prone areas, as illustrated by Puente-Sotomayor, Egas, & Teller (2021).  

This understanding of LRisk is directly related to landslide susceptibility, which beyond the definition 

of disaster risk as a social product, aims to identify the interaction between natural and built components, which 

is susceptible to landslides. By comparison, vulnerability—due to a closer relationship to anthropic action on 

land—can lead to analysis at minor scales. Anthropic vulnerability factors have less been taken into account in 

LSM; such in the case of road networks, specific urban land uses, and other human settlement features. The latter 

is a particular focus of attention for this study because extensive landslide disasters are produced in cities. 

However, few case studies address LSM in urban areas, such as reported by Bathrellos, Kalivas, & Skilodimou 

(2009); Dragićević, Lai, & Balram (2014); Klimeš & Rios Escobar (2010); Lara, Sepúlveda, Celis, Rebolledo, & 

Ceballos (2018); Lee, Baek, Jung, & Lee (2020). Furthermore, of these, few consider vulnerability-related factors 

at a fine level, such as population, urban street networks, and urban structures (buildings), as noted in Table 1. 

Reichenbach, Rossi, Malamud, Mihir, & Guzzetti (2018) define landslide susceptibility as the probability 

of incidence in a determined terrain relying on specific factors, including climate. These authors distinguish 

susceptibility from threat/hazard or vulnerability analyses in that the former is analyzed at a large scale and the 

data is acquired and processed at an aggregate level. Reichenbach et al. (2018) conclude from a global review of 

LSM that the usual determinant factors are slope, geology, and aspect; of these, the first two have a higher 

influence on the prediction power of models. They also state that results may vary according to methodologies, 

model validation, landslide types, triggering factors, and researcher background. Other studies include 
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precipitation, population density, and land use as significant factors (Hemasinghe, Rangali, Deshapriya, & 

Samarakoon, 2018; Sepúlveda & Petley, 2015). 

1.2.2. A brief review on LSM 

 Reichenbach et al. (2018) classify landslide susceptibility assessment into five groups, namely: (i) 

geomorphological mapping; (ii) analysis of landslide inventories; (iii) heuristic or index-based approaches; (iv) 

process-based methods; and (v) statistical modelling methods. The present work combines the heuristic approach 

officially adopted by the municipality of Quito as a preliminary input.  

Modelling approaches 

A number of machine learning modelling techniques have been developed and applied in diverse locations 

globally to achieve the finest possible precision—each time with more sophistication—to provide better inputs 

into LRR policy and planning. Among the most used LSM techniques during the past two decades are multi-

criteria evaluation (MCE), analytical hierarchical process (AHP), weighted linear combination (WLC), logistic 

regression (LR), data-driven frequency ratio (FR), random forest (RF), support vector machines (SVM), and 

artificial neural networks (ANN) (see Table 1). Most of the applied techniques have been proven to provide 

accurate results and differentiated advantages, sufficient for LSM practices and, therefore, LRR zoning policies. 

For instance, a comparison between LR, SVM, and RF applied to the Sihjhong watershed, Taiwan, found RF 

performed best, whereas LR ran faster (Chang, Merghadi, Yunus, Pham, & Dou, 2019), which can be useful for 

large datasets, as in the present work. Regardless of the method adopted, research on LSM for Andean cities and 

regions is generally very limited and a few application cases have been recently published (Puente-Sotomayor et 

al., 2021). 

 Modelling for LSM has prompted a discussion on the impact of different parameters of the process have 

on the accuracy of the produced results. In addition to the modelling technique used, these parameters include 

data preprocessing, scale or cell/pixel size of input factors, and the type and number of factors used for the 

modelling. Table 1 shows a brief comparison of the described parameters among previous studies.  

Relevant LSM parameters 

Among the most relevant parameters is the preprocessing of data. There are different techniques to make 

factors comparable. These include different methods of normalization or standardization. Terminology varies. 

This study adopted the source assignation of weights in a discrete scale, also called weight-encoding, and data 

discretization using a percentile scale. Although standardization of weighted data for landslide susceptibility 



 

Page 5 of 40 

 

mapping is still an open discussion (Ronchetti et al., 2013), it is considered a valid option whenever intervals 

between ordinal categories are considered equal, regardless of statistical limitations such as the limited number 

of categories and overestimation of statistical power (Norman, 2010; Pasta, 2009; Williams, 2019).  

Regarding the factor parameters for an urban LSM, it must be noted that only five of the twenty reviewed 

studies relate to urban areas. However, even in these cases, the factors are similar to those applied in the other 

works, often covering regional scales and rarely involving cities, which the current work aims to analyze. 

Therefore, few previous studies include human/urban related factors, such as the buildings (see factors column in 

Table 1), population, and urban road networks, as applied to this work. It is relevant to note that, unless an specific 

factor approach or restraints on the availability of data are stated, the most considered factors are 

topography/digital terrain model (DTM) derivatives (primarily slope angle, aspect, elevation, and curvature), 

annual precipitation, geology (primarily lithology and land use/vegetation coverage), distance to roads, hydrology 

(primarily distance to drainage, density, and topographic wetness index (TWI), which also relates to topography) 

and distance to faults in the seismicity. Furthermore, beyond the possibility of including a large number of factors, 

this does not necessarily mean better performance of a model and the optimal number of factors in a LSM is still 

debatable (Filippo Catani, Lagomarsino, Segoni, & Tofani, 2013). 

 Another discussed parameter in the literature is the resolution at which the input data is set. Table 1 also 

includes this parameter for each revised work. Resolutions vary from 1 to 500 m cell sizes. Regardless of the 

restraints based on the availability, reliability of data, and the context itself, some studies have tested the sensitivity 

of this parameter with diverse approaches and results. For instance, Chang et al., (2019) concluded that the finest 

resolution of topographic data does not necessarily result in the best performance of a model. Regarding DTM 

derivatives, Pawluszek et al. (2018) found in an example case that the optimal resolution was 30 m, classified by 

SVM. Another case proved that the 50 m resolution contributed best to the performance of an RF technique (F. 

Catani, Lagomarsino, Segoni, & Tofani, 2013a). Additional points of view state that different land-surface factors 

also have different optimal scales, and that the applied modelling technique may also influence this 

parameterization. Therefore, multiscale approaches are recommended for better performance in complex terrain 

settings (Filippo Catani et al., 2013; Sîrbu, Drăguț, Oguchi, Hayakawa, & Micu, 2019). This has also been 

corroborated by Dragićević et al. (2014), who examined these types of complex and multi-scalar contexts from 

regional to municipal and local scales. 

Once the data is pre-processed and made available for modelling, one common and simple theoretical 

model used is multi-criteria evaluation (MCE), which can be combined with sensitivity analysis, such as in 
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Feizizadeh & Blaschke (2014) and Orán Cáceres et al. (2010), and explained below. A complementary approach 

to MCE is binary logistic regression (LOGIT), which is among the most used statistical methods for landslide 

susceptibility mapping (Reichenbach et al., 2018). This type of model helps to test weighted models, which do 

not support the assessment of the probability of landslide occurrences (Lombardo & Mai, 2018). For this research, 

a LOGIT was applied, followed by an SA.
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Table 1. Review on landslide susceptibility modelling (LSM) modelling techniques, factors and inputs resolution used. 
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1 FR, 

MCE+AHP, 

OB 

10 2020 ✓ ✓ ✓      ✓    ✓ ✓ ✓    ✓  ✓     ✓      

2 AHP, WLC 

- LSI 

10 2020  ✓ ✓      ✓    ✓  ✓    ✓  ✓     ✓      

3+ DL 10 2020 ✓ ✓ ✓ ✓    ✓       ✓ ✓        ✓ ✓       

4 FR, IV, CF, 

LR 

30 2020  ✓ ✓ ✓     ✓    ✓  ✓ ✓ ✓    ✓ ✓    ✓      

5 LR, RF, 

SVM 

5-30 2019 ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓    ✓      ✓  ✓           

6 LR, RF 4-50 2019 ✓ ✓  ✓ ✓ ✓ ✓                         

7 AHP, FR, 

MCE 

30 2019 ✓ ✓ ✓      ✓    ✓  ✓    ✓  ✓     ✓      

8 JT, SI 15 2019  ✓ ✓ ✓        ✓      ✓  ✓  ✓       ✓   

9 SA – PBA, 

ML, FFNN, 

SVM 

1-30 2018 ✓ ✓ ✓ ✓ ✓  ✓ ✓                        

10+ WLC 9 2018  ✓ ✓     ✓     ✓  ✓       ✓ ✓      ✓ ✓  

11 IV, LG 30 2017 ✓ ✓ ✓          ✓  ✓    ✓  ✓     ✓      

12 AHP, WLC, 

MCQ 

10 2015  ✓ ✓      ✓    ✓  ✓ ✓ ✓  ✓  ✓     ✓      
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13 AHP, WLC, 

OWA 

20 2014 ✓ ✓ ✓      ✓    ✓  ✓    ✓  ✓     ✓      

14+ MCE, AHP, 

WLC 

1, 10, 50 2014 ✓ ✓ ✓                ✓  ✓   ✓ ✓       

15* SA – LCVs, 

MURs, 

LCVs, RF 

10-500 2013 ✓ ✓ ✓ ✓    ✓  ✓   ✓  ✓    ✓  ✓  ✓ ✓  ✓     ✓ 

16 ANN 20 2013 ✓ ✓ ✓ ✓         ✓  ✓         ✓        

17 RF, SA 10, 20, 

50, 100, 

250, 500 

2013 ✓ ✓ ✓ ✓                   ✓ ✓        

18 SA - ANN 50 2011  ✓     ✓ ✓  ✓   ✓ ✓ ✓ ✓   ✓   ✓    ✓ ✓     

19+ MCE, WLC 5 2010  ✓           ✓  ✓                 

20+ WeF, MuF 20 2009  ✓       ✓    ✓  ✓     ✓  ✓      ✓    

Total    12 20 16 9 3 2 3 6 8 2 0 1 14 2 14 4 2 1 10 2 10 5 3 5 2 9 1 1 2 1 1 

+  Correspond to LSM studies in urban areas 

*  This modelling presented 35 factors; a summarized version of 13 is presented in this table.  

**  For this classification, these factors have been grouped in the hydrology. However, they are also considered in the topography. 

***  Other DTM derivatives include: openness, side exposure index, hillshade, flow direction, and roughness. 

Notes:  

1. Diversity of factors for modelling have been classified by authors, criteria may vary. 

2. The selection of factors varies according to approaches. For instance, 7, 8, and 9 involve a wide range of topography-related factors. 

References: 

1. Gudiyangada Nachappa, Kienberger, Meena, Hölbling, & Blaschke (2020), 2. Psomiadis, Papazachariou, Soulis, Alexiou, & Charalampopoulos (2020), 3. Lee, Baek, Jung, & Lee (2020), 4. 

Wubalem (2020), 5. Chang et al. (2019), 6. Sîrbu, Drăguț, Oguchi, Hayakawa, & Micu (2019), 7. Meena, Ghorbanzadeh, & Blaschke (2019), 8. Ramos-Bernal, Vázquez-Jiménez, Sánchez Tizapa, 

& Arroyo Matus (2019), 9. Pawluszek, Borkowski, & Tarolli (2018), 10. Lara, Sepúlveda, Celis, Rebolledo, & Ceballos (2018), 11. G. liang Du, Zhang, Iqbal, Yang, & Yao (2017), 12. Shahabi 

& Hashim (2015), 13. Feizizadeh & Blaschke (2014), 14. Dragićević, Lai, & Balram (2014), 15. Catani, Lagomarsino, Segoni, & Tofani (2013b), 16. Pascale et al. (2013), 17. Catani, Lagomarsino, 

Segoni, & Tofani (2013a), 18. Melchiorre, Castellanos Abella, van Westen, & Matteucci (2011), 19. Klimeš & Rios Escobar (2010), 20. Bathrellos, Kalivas, & Skilodimou (2009). 

Abbreviations: 

AHP = Analytical Hierarchical Process, ANN = Artificial Neural Networks, CF = Certainty Factor, DL = Deep Learning, DTM = Digital Terrain Model, FFNN = Feed-Forward Neural Network, 

FR = Data-Driven Frequency Ratio, IV = Information Value, JT = Jackknife Test, LCVs = Landslide Conditioning Factors, LR = Logistic Regression, LSI = Landslide Susceptibility Index, MCE 

= Multi-Criteria Evaluation, ML = Maximum Likelihood, MuF = Multiple Factor Model, MURs = Mapping Unit Resolutions, NDVI = Normalized Difference Vegetation Index, OWA = Ordered 

Weighted Average, PBA = Pixel Based Approaches, RF = Random Forest, SA = Sensitivity Analysis, SI = Susceptibility Index, SVM = Support Vector Machine, WeF = Weight Factor Model, 

WLC = Weighted Linear Combination.
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1.2.3. Sensitivity Analysis  

A further step in evaluating LOGIT models is to apply a sensitivity analysis (SA) (Reichenbach et al., 2018). SA 

is applied to determine the contribution of input parameters to the accuracy of the model prediction appraised in 

its outputs (Abbaszadeh Shahri, Spross, Johansson, & Larsson, 2019; Poelmans & Van Rompaey, 2010). The 

objective of sensitivity analysis is to help adjust the calibration of the studied parameters involved in the LSM 

model to improve its predicting/classification power. Among different methodologies, two stand out: the simple, 

univariate, or “one-at-a-time” (OAT) method, and the stochastic/random-selection method, also called “Monte 

Carlo”, whose applications vary according to the needs of the field of practice (Bouyer, 2009). Details of both 

methods are explained in sections 2.7, 2.9, 3.3 and 5.4. 

 

2. Methods 

2.1. Study area and its landslide risk-reduction policy background 

Quito, the capital of Ecuador, is the most populated of two existing metropolitan districts (regions) in the 

country, with 2,781,641 inhabitants projected for 2020 (INEC, 2016). The jurisdiction of the Metropolitan District 

of Quito (DMQ) covers 4235.2 km2, of which 10% is urban land with 286,412 housing units (MDMQ, 2015). As 

one of the Andean mountain cities, Quito has suffered from multiple natural threats, including landslides, volcano 

eruptions, floods, and earthquakes. Hence, exposure to risks has been further exacerbated, given the fast 

population growth and the uncontrolled urbanization process. Accordingly, Quito has collected geodata relating 

to landslide disaster events during the past two decades. This has strengthened the city’s management capacities 

and its approach to preventive policies and actions (Rebotier, 2016), in addition to preparedness and response. 

Most recently, resiliency has been adopted as an urban policy, to the point of being institutionalized, with the 

creation of a Resiliency Department and the design of the city’s resiliency strategy (Alcaldia del Distrito 

Metropolitano de Quito, 2018; MDMQ, 2017) 

Landslide risk reduction (LRR) policies in Quito have a history of approximately one decade. They began 

with landslide-related land-use zoning as part of the local plan, in 2011 (Puente-Sotomayor, Villamarin, & 

Cevallos, 2018). Previously, building regulations included generic risk prevention measures, such as setbacks 

from ravines, slope borders, and rivers (Concejo del Distrito Metropolitano de Quito, 2003). For lahar-prone areas, 

a transfer of responsibility from government to users was used, applying a notarized responsibility to the owner 

for building on high-risk areas, prior to city approval (Concejo del Distrito Metropolitano de Quito, 2011). Since 

2014, this has no longer been allowed in national laws, which assign criminal liability of the generated risks to 
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any official that approves subdivisions or projects in risk zones (Asamblea Nacional del Ecuador, 2014). During 

the past decade, the landslide preventive/reductive approach was materialized by establishing the LRisk zone (ZR) 

category in the local LUP. Construction was strictly banned in ZR areas. This zoning policy intuitively and 

imprecisely combined slopes (at the 1:5000 scale), soil stability (at the 1:25,000 scale), and field inspections as 

the only inputs in 2011. The application of this regulation triggered around 40 complaints per year from users, 

who claimed they were affected socially, through the violation of their housing rights; and, economically, due to 

previous investments and rent expectations related to the property labeled at-risk. In 2013, a reform to this 

ordinance relaxed the policy by returning to owners the right to build on ZRs, who provided geotechnical studies 

that justified their projects. This revealed limitations of the technical capacity of users and officials, and the 

problem with defining “mitigation”, which subsequently evidenced the poor accessibility to geotechnical risk 

relief for low socio-economic strata. A new reform in 2015 cancelled the ZR land-use category and converted it 

to an overlay map, which, in practice, did not change the policy (Puente-Sotomayor et al., 2018). By 2015, the 

first landslide susceptibility studies were produced. The outputs of these studies were expected to improve the ZR 

policy. However, they have not yet been articulated with the LUP. These studies’ outputs have been labeled as 

official data and were used as part of the input data for this research.  

 A brief comparison between the ZR layer, for which the limits have not yet changed, the existing 

landslide susceptibility study (FUNEPSA et al., 2015), and a landslide events database from 2005 to 2017 (see 

Error! Reference source not found.), provided by the Metropolitan Emergency Operations Committee of Quito 

(COE-M), reveals inconsistencies between the policy, research, and facts. Only 8% of recorded landslide events 

are contained in ZR polygons, 25% of ZR do not match with the high and very-high susceptibility areas, and 81% 

of high and very-high susceptibility areas are not covered by the ZR polygons. This presumably means that vast 

areas should be considered as landslide-prone, while other areas, although smaller in proportion, probably do not 

need a protection policy (Puente-Sotomayor et al., 2018).  

2.2. Purpose, objectives and scope 

The main purpose of this study was to construct a reliable Landslide Susceptibility Mapping (LSM) 

production that can support LRR policies for urban Quito (see study area section 2.1). This represents an advance 

from previous actions regarding landslide preventive/reductive zoning in this city. For this purpose, specific 

objectives included examining the incidence of urban-related factors in LRisk susceptibility; providing quality 

inputs for better ZR delimitation, considering the implications for safety, housing rights, and the economy; and 
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generating improvements and further discussion and action in the local LSM processes, by exploring different 

parameters such as modelling approaches, scale, data generation, and factor identification.  

The practical scope of this study was to derive a landslide susceptibility map based on a binary logistic 

regression model combined with a sensitivity analysis (SA) to provide optimal calibration options for factor 

coefficients used in the model. Developing an evidence-based LSM that considers SA is an indispensable input 

for developing an urban policy backed by a socio-political consensus (Orán Cáceres, Gómez Delgado, & Bosque 

Sendra, 2010). The context of application will be the urban core of the DMQ, including its surrounding peri-

urbanized areas, as described below. 

 
Figure 1. Study Area in the Metropolitan District of Quito, displaying the 2005-2017 period landslide events. Data Source: 

MDMQ, IGM Ecuador. Legend: Study Area (red line), Urban Class (gray polygon), Landslide Events during the 2005-2017 

period (yellow dots), Arterial Streets network (black continuous lines) and the Metropolitan District of Quito jurisdictional 

limit (dashed blue line). 



 

Page 12 of 40 

 

 

This research builds on data collected during a LRisk analysis produced by the municipality in 2015. This study 

delivered a theoretical weighted multi-criteria theoretical model including six factors that were surveyed and 

processed. These are slope, intense precipitations, soil stability after former large landslides, lithology, land 

use/vegetation coverage, and seismic intensity. Each factor had partial weights/susceptibilities proposed by local 

experts in the fields of geotechnics, meteorology, geography, disaster management, and seismology. The results 

of this model portrayed a landslide susceptibility map for Quito and its satellite “conurbated” areas (an 

approximate total area of 610 km2) using the map algebra GIS tool to sum the partial weights as shown in Figure 

2 (FUNEPSA et al., 2015).  
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Figure 2. Landslide susceptibility map for Quito including 2005–2017 event spots. Data Source: Quito Municipality 

MDMQ. Legend: Study Area (red line), Urban Class (gray polygon), Landslide Events during the 2005-2017 period (black 

dots), Arterial Streets network (black continuous lines), the Metropolitan District of Quito jurisdictional limit (dashed blue 

line) and eight to 21 landslide susceptibility levels (blue-yellow-red color spectrum). 

 

2.3. Inputs and Preprocessing 

Initially, our study proposed to develop a binary logistic regression model on the basis of six factors 

identified by these experts, plus other related to the Quito urban settings, which we aimed to experiment with. A 

dataset of landslide events that occurred from 2005 to 2017 was therefore collected from the COE-M of Quito. 

This database includes around 1400 events, including rotational and translational landslides, flows, and topples, 
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all considered generically as landslides (USGS, 2004). A minor limitation is that the dataset suffers from some 

underreporting, and unbalanced and unstructured elements. 

From the data of the six initial factors, the first LOGIT was applied. Then, four additional factors were 

included in two steps to test the model. As a first addition, population, provided by the National Institute of 

Statistics and Census (INEC), and floor area, provided by the Quito municipality (MDMQ), were included to 

construct a second LOGIT. Then, road density and building footprint area, also provided by the MDMQ, were 

added to run the final LOGIT. All four additional factors were pre-processed and adapted for this research work. 

As explained in section 1.2.2, considering the urban context of Quito, where all of the landslide events were 

registered, this research aimed to determine the incidence of these factors on the results, whose content was more 

relevant to the urban context, i.e., buildings, streets, and population. Details of all of the ten factors included in 

this study are provided in Table 2. 

Table 2. Input data for landslide susceptibility mapping in Quito 
Code Content Disaggreg

ation 

level 

Specifications, type Data Source Year 

bin Landslide Events Point Binary COE-M Quito 2005-

2017 

1geo Lithology 50 m Pre-discretized from categorical to 

weights (weighted classes)  

FUNEPSA et 

al., 2015 

2015 

2cov Land Use / Vegetation 

Cover 

50 m Pre-discretized from categorical to 

weights 

FUNEPSA et 

al., 2015 

2015 

3sei Seismicity 50 m Pre-discretized from categorical to 

weights 

FUNEPSA et 

al., 2015 

2015 

4pre Intense Precipitations 

(in 24 hours) 

50 m Pre-discretized from continuous to 

weights 

FUNEPSA et 

al., 2015 

2015 

5sta Soil Stability (from 

former landslides) 

50 m Pre-discretized from categorical to 

weights 

FUNEPSA et 

al., 2015 

2015 

6slo Slope 50 m Pre-discretized from continuous to 

weights  

FUNEPSA et 

al., 2015 

2015 

7pop Population  Block 

Scale 

Continuous, discretized by natural 

breaks to weights 

INEC 2010 

8roa Streets (Roads) Density Street 

segment 

Continuous, discretized by natural 

breaks to weights 

STHV – 

MDMQ 

2016 

9bui Floor Area Building 

Scale 

Continuous, discretized by natural 

breaks to weights 

STHV – 

MDMQ 

2017 

10gro Building Footprint Area Building 

Scale 

Continuous, discretized by natural 

breaks to weights 

STHV – 

MDMQ 

2017 

NOTE: COE-M=Metropolitan Emergency Operations Committee of Quito, FUNEPSA et al., (2015) is the report containing 

the official surveyed data for Quito Municipality - Disaster Risk Management Division, INEC=Ecuadorian National Institute 

of Statistics and Census, STHV-MDMQ=Secretariat of Territory, Habitat and Housing of Quito Municipality. 

 

2.4. Resolution  

The dependent factor, landslide events (binary), and the ten independent, explanatory factors were pre-

processed in raster files, with a cell size (disaggregation level) of 50 m. This was the resolution at which the 
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lithology, land coverage, seismicity, precipitations, soil stability, and slope were previously provided by the 

municipality surveyors. Complementarily, the additional four “urban” factors were converted from a scale at 

which the detail of buildings, blocks, and streets was legible (1:1000 approximately), which was logically 

consistent with the 50 m cell size of the other six factors. Therefore, all of the datasets were standardized to this 

resolution. In this regard, the theoretical background review implied that, although scale may determine the 

modelling performance, performance is also dependent on the context and complexity of the process. For this 

study, although the secondary source input data was pre-processed at a 50 m cell size, an aggregation process 

through resampling GIS techniques (nearest neighbor mode) were applied to suit the complete datasets at 

resolutions of 100, 200, and 500 m before the application of the LR modelling for each resolution. Subsequently, 

the results provide a rationale to retain the original scale. 

2.5. Standardization 

 To manage a standard scale of factor values before applying the LOGIT, the following process was 

undertaken. The binary layer of landslide events records one of two categories for each area unit or cell: true (or 

one), when one or more landslide events occurred in it; or, false (or zero), when no landslides occurred in it. Two 

standardization types proceeded. The first six factors provided by the municipality were previously converted 

from either classified continuous data or categorical data to weights in a discrete 1-to-4 scale. The additional four 

factors, all continuous, were classified using natural breaks in four classes, to correspond to the 1-to-4 scale. The 

details of this conversion are shown in Table 3. The complementary data, i.e., the additional four factors that were 

collected in vector format, were then converted into raster TIFFs to fit with the remainder of the dataset (initial 

six factors). 

 By looking at the data categories and their assigned weights, the contribution from the local experts in 

generating the datasets is notable. This can be seen, in particular, for factors such as lithology, land-use/vegetation 

coverage, and stability, whose information is specifically related to the Quito context. Furthermore, It is important 

to mention that, for the case of the slope factor, the class “greater than 50°” is weighted as 3 and not 4, as one 

would suppose. This is due to the fact that most of the local geology type, the “cangahua”, found at this slope 

range and in most of the study area, is less susceptible to landslides than flatter slope ranges and has reported 

much less events, according to the local data mining experts. Regarding the rainfall, the meteorology surveyors 

stated that the Quito region is not affected by long-term persistent rainfall, which triggers landslides in other parts 

of the world, such as Central America or Southeast Asia, or in territories affected by El Niño phenomena extreme 

events, which are not regular in terms of time cycles and occur every 25 or 30 years. Instead, in Quito, landslides 
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are more likely triggered by intense precipitation, which is why this variable was included instead of other climate-

related factors, such as annual precipitation rates. Inclusive, long precipitation was not considered in the reviewed 

scientific articles, as shown in Table 1. 

A second standardization process for the ten explanatory factors was applied and tested. It was based on 

a percentile discretization. The aim of applying percentile discretization was to have a finer value than the 1-to-4 

scale. This also helped to correct a distortion existing in the provided data, produced by a marginal portion of 

outliers that widened the absolute value range of the dataset, which is an advantage of this discretization method 

(Grzenda, 2020). This distortion occurred particularly with the data of the floor area and building footprint area. 

Table 4 shows how the ten factors were discretized through percentiles. The categorical data weights were 

assigned to their corresponding percentile of the 1-to-100 scale, considering in it three equal segments (assuming 

intervals between weights as equal units in a discrete scale). For the remaining continuous data factors, the new 

values were simply the corresponding percentile.  
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Table 3. Conversion of factor classes or categories to weights (weights encoding) of input factors for LSM for Quito. Source: MDMQ, INEC, adapted by authors. 

Code Weights (Partial 

Susceptibilities): 

1 2 3 4 

1geo Slope (degrees): • 0° - 10° • 10.1° - 25° • 25.1° - 35° 

• > 50° 

• 35.1° - 50° 

2cov Lithology (categories): • Cotopaxi Lahars: steep ledges 

and slopes. Slopes and canyons 

or deep throats of ravines and 

rivers 

• Pululahua Domes: fractured 

dacites from the volcano, but 

they appear compact and with 

resistant weathering 

• Quito Lake Deposits 

• Colluvial Mass Movements 

• Colluvial Conglomerates 

• Colluvials 

• Casitagua Volcanics 

• Undifferenced Volcanic Lahars 

• Pichincha Volcanics 

• Cangahua formations: compacted 

ashes, pyroclastic, lava 

• Cangahua formations: 

undifferenced ashes-

lapillistone with destroyed 

surfaces, strongly bisected 

in hills with rounded tips  

• Alluvial terraces 

• Pululahua pyroclastic flows 

• Guayllabamba, San Miguel and 

Pisque Formations: sequences of 

volcanic sands, pyroclastic flows, 

silts, lahars; at the base: fluvial-

lake sequence, occasionally very 

crumbly  

3sei Land Use / Vegetation Cover 

(categories): 
• North Andes mountain bushes 

• Always-green North Andean 

high-mountain forests 

• Mountain pasture 

• High-mountain and mountain-

moor grassland  

• Reservoirs 

• Inter-Andean dry bushes 

• Inter-Andean dry forest 

• Eucalyptus forests 

• River vegetation from xerophytic 

mountain floor 

• Inter-Andean mountain Saxicola 

Vegetation 

• Airport 

• Short-cycle crops 

• Cropped grass 

• Natural grass 

• Quarries 

• Buildings 

• Eroded soils 

4pre Soil Stability (categories): • Stabilized • Latent • Reactivated 

• Colluvial 

• Active 

5sta Intense Precipitations in 24 

hours (stations types: a. 

Maximum (mm) / n>10 Rt=100 

years, b. Average rain (mm) / 

n<10 years): 

• < 75.4 (a) 

• < 50 (b) 

 

• 76.4–91.88 (a) 

• 51–90 (b) 

• 91.88–107.34 (a) 

• 91–130 (b) 

• 107.34–122.79 (a) 

• 137–175 (b) 

6slo Seismic Intensity (European 

Macro-seismic Scale, ordinal): 

Not applicable • EMS VII • EMS VIII Not applicable 

7pop Population (Inhabitants): • 0–1.81 • 1.82–5.56 • 5.57–12.47 • 12.48–31.86 

8roa Road Density (m/Ha): • 0–7.50 • 7.51–18.16 • 18.17–31.99 • 32–100.70 

9bui Floor Area (m2): • 0–4180.33 • 4180.34 – 35,950.76 • 35,950.77 – 104,508.01 • 104,508.02–213,196.34 

10gro Building Footprint Area (m2): • 0–3344.26 • 3344.27–34,278.63 • 34,278.64 – 104,508.01 • 104,508.02–213,196.34 
NOTE: The data collected for intense precipitations was standardized by assigning partial susceptibilities (weights) to data provided by two types of meteorological stations: a. those with records of more than 10 years; 
and, b. those with records of less than 10 years. For the meteorology notation consider: n = period in years; Rt = return time. Further details on the calculation to complete the intense precipitations dataset are available 

in the FUNEPSA et al. report (2015)  
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Table 4. Conversion table of categorical data from weights to percentile normalization, and continuous data to 

percentiles. 
Categorical 

Data Factors: 

 

• Lithology 

• Land Use/Vegetation Coverage 

• Seismic intensities 

• Intense Precipitations 

• Soil Stability after former landslide events 

Weights (Partial 

Susceptibilities) *: 

1 2 3 4 

Percentile Values: 1 33 67 100 

Continuous 

Data Factors: 

 

• Slope 

• Population 

• Road Density 

• Floor Area 

• Building Footprint Area 

Weights (Partial 

Susceptibilities) **: 

1 2 3 4 

Percentile Values: Corresponding percentile 

(from 1 to 100) 

* Assigned according to FUNEPSA et al. (2015) 

** Classified by natural breaks, except for slope, classified according to FUNEPSA et al. (2015). 

 

 

2.6. Logistic regression 

Following the preparation of the data, the LOGIT proceeded. In regard to the sampling method, two sets 

of elements (the binary sample of cells) with equal number of items were then selected to test the LOGIT. The 

first set had cells that registered the occurrence of landslides (an average of 1.29 events per cell), in total, 1139 

cells with a true/one value. The second set had cells that did not register landslides, i.e., false/zero value. 

Considering the 1139 true values, an equal number of false value cells were randomly chosen from more than 

222,000 remaining equivalent value cells in the study area. 

A generalized linear model regression function in the programming platform (MATLAB_R2018b) was 

then applied to obtain the values of the coefficients for all ten factors and the intercept of the function. With these 

values, the logistic regression (Equation 1) was applied to obtain the landslide susceptibility values for all cells 

for the study area. These values provide the probability of occurrence of a landslide, varying from 0 (null 

probability) to 1 (absolute occurrence). These values helped generate the reference landslide susceptibility map. 

This process was first undertaken for the six initial factors; second, with the addition of population and floor area 

as new factors; and finally, with the addition of road density and building footprint area. The area under the 

receiving operating characteristic (ROC) curve (AUC) was the performance indicator chosen for the LOGIT 

model, considering it is common in evaluation of the prediction accuracy of models for natural hazards 

(Abbaszadeh Shahri et al., 2019; Wang, Feng, Li, Ren, & Du, 2020). 

 

Equation 1. Logistic regression function for landslide susceptibility mapping 

𝑙𝑠 =
1

1 + 𝑒−(𝑏0+𝑏1𝑥1+𝑏2𝑥2+.....+𝑏𝑛𝑥𝑛)
 

 

where:  
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ls = landslide susceptibility: the probability of occurrence of a landslide (between 0 and 1) 

e = the mathematical constant e (2.71828) 

b0 = the intercept of the logistic function 

bn = the coefficient of factor xn 

xn = the factor number n 

2.7. Sensitivity Analysis – univariate method 

After the generation of a referential susceptibility map and the validation of the LOGIT model that generated 

it using the AUC/ROC value, SA was performed to test the sensitivity of the model outputs to changes in one, 

many, or all selected parameters. For this research, the selected referential metric was the AUC value as the output 

for all of the generated simulations, as applied to SA by Poelmans & Van Rompaey (2010). Sensitivity analyses 

were performed using two methods.  

The first was the simple, univariate, or OAT method, which is simple to apply and assess. It consisted in 

changing one “free” parameter of the model at a time to generate variations of the model, within a defined range 

and with a defined interval for the changes. In this case, while one factor changes its coefficient, the others remain 

unaffected (fixed parameters) and remain as the references. For the model used in this research, the parameters 

changed were each of the ten coefficients generated by the LOGIT model. A set of multipliers ranging from 0.1 

to 20 with an interval of 0.1 modified each of the coefficients of the ten factors, one at a time, to generate a total 

of 2000 susceptibility maps, from which AUC values (outputs) were generated and plotted. The AUC values 

higher than the reference AUC value (the first generated) indicates that their corresponding models are better 

calibrated than the reference. This was reproduced for the weights-encoded and the percentile-discretized models. 

2.8. Kolmogorov–Smirnov test for sensitivity 

A two-sample Kolmogorov–Smirnov (K-S) test was applied to the univariate test results for both weights 

and percentile-based discretization methods as another means to determine the sensitivity of the factors. As a 

metric, the D-statistic (also called the KS-statistic) values are provided, indicating the D-critical value, as 

calculated using Equation 2. These provide a more insightful picture than the p-values of the same test, which 

considered an alpha value of 0.05 and were also calculated. The K-S tests were tabulated using the empirical 

distribution functions of two samples—ones and zeros—from each resulting map derived from the changes of the 

simple/univariate method, i.e., the distribution of the cell values corresponding to event occurrence cells (1139 

observations/elements) compared to a distribution of a randomly selected similar number of non-occurrence cells. 
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Equation 2. Calculation of the D-critical value for a two-sample K-S test. 

𝐷𝛼 = 𝑐(α)√
𝑛1 + 𝑛2
𝑛1𝑛2

 

where:  

D = D-critical value of the K-S test at an alpha value  

 = Alpha value determined for the K-S test (0.05 for this case) 

c() = constant based on  (1.36 for this case) 

n1 = first sample size (1139 for this case) 

n2 = second sample size (1139 for this case) 

 

2.9.  Sensitivity Analysis—Monte Carlo method 

A second method to test the sensitivity based on factors used random variations for all of the factors, 

from one to all at a time, also within a defined range and with a defined interval. This is also called the Monte 

Carlo or stochastic method. For this research, multipliers of one or more coefficients at a time ranged from 0.1 to 

5 with an interval of 0.1. The number of simulations for this random selection of possibilities was set to 8000, 

which may vary in replications of this study, according to the computer’s processing capacities. Once again, AUC 

values (outputs) were generated and those higher than the reference AUC value indicated that their corresponding 

models with their modified coefficients’ values had a better performance calibration than the reference itself 

(Bouyer, 2009). To better illustrate this, a table of random simulation calibrations is provided in the results, plus 

a chart showing the two best predictor factors. 

 This test was applied only to the results of the simple sensitivity analysis due to limitations in computer 

processing capacities and simplicity of visualization in charts, which provided for better communication of results. 

2.10. Methodology summary and software used 

 To summarize, Table 5 shows all of the methodology and specific tools applied for this research. 
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Table 5. Methodology summary and applied tools 

 6-Factor 

Model 

8-Factor 

Model 

10-Factor Model 

Weights-

encoding 

Weights-

encoding 

Weights-

encoding 

Percentile-

discretization 

LOGIT and referential landslide susceptibility map 

and AUC value 

✓ ✓ ✓ ✓ 

Resolution tests of 50, 100, 200 and 500 m cell size, 

through LOGIT and AUC value 

  ✓  

Sensitivity Analysis – Univariate method, variations 

plot and AUC values higher than reference 

  ✓ ✓ 

K-S test   ✓ ✓ 

Sensitivity Analysis – Monte Carlo Method, 

visualization of 2 best predictors and AUC values 

higher than reference 

  ✓ ✓ 

 

Regarding the software packages used to process data for this research work, GIS software (ArcMap 10.3) was 

applied to produce all maps using the integration, transformation, and geoprocessing tools, and conversion of 

shapefiles into raster TIFF files to make them suitable for calculation for the LOGIT model and the SA. A 

programming platform for matrix analysis (MATLAB_R2018b) was used for the SA, for which, particularly the 

generalized linear model regression, (glmfit function) and the AUC value computation (perfcurve function), were 

applied. For the two-sample K-S test, the function used was kstest2. The subsequent outputs were TIFF files for 

mapping and CSV datasets to produce graphs and charts in a spreadsheet package (Microsoft Excel) and a 

presentation/illustration package (PowerPoint). Tables were adjusted to a word processing package (Microsoft 

Word) format. The input TIFF files and the programming platform (MATLAB_R2018b) code are provided as 

Supplementary Material to this research work. 

3. Results 

4.1. LOGIT results by adding urban factors and a standardization variant 

The first results portray the changes regarding the addition of factors, departing from the six-factor initial 

LOGIT model, which corresponds to the map shown in Figure 2, which delivered weight scores from eight 

(lowest landslide susceptibility) to 21 (highest landslide susceptibility). This considered six factors: lithology, 

land use/vegetation coverage, seismic intensities, intense precipitations, soil stability after large events, and slope. 

Subsequently, the LOGIT was tested with eight factors and finally with 10 factors. The eight-factor model 

included two more factors: population and floor area, while retaining the weights encoding (continuous factors 

classified by natural breaks). The 10-factor model included two more factors: road density and building footprint 

area, also weights-encoded. As new factors were added, the coefficients with the highest values changed their 

relative descending order (from highest to lowest value). For the 10-factor model, a variation by percentile-
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discretization of factor values was applied, which delivered a fourth set of results. The four models’ results, 

including their corresponding AUC value, can be seen in Table 6. The initial MCE official map and the 6, 8, and 

10-factor reference maps (weights and percentile standardizations), can be seen in Figure 3. The last two maps 

(d and e) in this figure were used for SA. 
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Table 6. Output values from LOGIT modelling for landslide susceptibility in Quito 

Code Factor 6-Factor Model 8-Factor Model 10-Factor Model 

Weights-encoding Weights-encoding Percentile-discretization 

Coefficient 

( value) 

Descending 

Order 
Coefficient ( 

value) 

Descending 

Order 

Coefficient 

( value) 

Descending 

Order 

Coefficient 

( value) 

Descending 

Order 

0int Intercept −0.5281  −10.7830  −4.1375  −2.4317  

1geo Lithology 0.3756 3 0.2550 5 0.1905 5 0.0160 2 

2cov Land use / vegetation coverage 0.8483 1 0.4250 4 0.0125 7 0.0122 3 

3sei Seismic Intensity −0.1628 6 −0.0910 7 −0.2004 9 −0.0110 10 

4pre Intense Precipitations 0.6528 2 0.4500 2 0.3943 3 0.0238 1 

5sta Stability after large events 0.0247 5 0.1160 6 −0.1526 8 0.0047 5 

6slo Slope 0.3756 4 0.4450 3 0.3896 4 −0.00045 7 

7pop Population - - 0.6840 1 0.5348 2 0.0034 6 

8roa Road Density - - - - 0.6101 1 0.0052 4 

9bui Floor Area - - −0.1280 8 0.0566 6 −0.0040 9 

10gro Building Footprint Area - - - - −0.2364 10 −0.0038 8 

 AUC value 0.755 0.784 0.7928 0.7417 

 NOTE: Descending Order columns refer to the relative order position that explanatory factor coefficients have among their group in the model by sorting them from the highest to the lowest 

value. 
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Figure 3. Landslide susceptibility maps for Quito: (a) MCE official map. From LOGIT modelling results: (b) 6-factor 

with weights encoding (c) 8-factor with weights encoding (d) 10-factor with weights encoding (e) 10-factor with percentile 

discretization. Legend: All maps have been classified in 5 categories by geometrical interval method in GIS (ArcMap 10.3). 

Other features: Study Area (black line), Landslide Events during the 2005-2017 period (black dots), and five classes of 

susceptibility levels (blue-yellow-red color spectrum). 
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4.2. Results based on resolution inputs 

A previous approach in addition to testing SA based on factors, was to consider the impact of the variation 

in the input data cell size on the final result, using the AUC value as a metric of validation. To test this sensitivity, 

the minimum resolution (50 m) provided by the sources as input data was resampled to 100, 200, and 500 m. The 

selected standardization method for this test was the weighed-encoding approach because it performed with a 

higher AUC value than the percentile-discretized model (see Table 6). To illustrate changes based on resolution 

inputs, Table 7 shows the descriptive statistics of AUC values after simulating 100 LSM units for each of the cited 

cell sizes. It can be noted that the highest average AUC value corresponds to the 500 m cell case. Nonetheless, 

the model corresponding to this cell size is the least stable, as indicated by its standard deviation and range, which 

are higher than the cases of the other cell sizes. In contrast, the original 50 m cell size provided more stable 

behavior while maintaining a reasonable and reliable AUC value before testing other parameters for SA. 

Table 7. Descriptive statistics of AUC values of LSM with LR for Quito for 100 simulations for cell sizes of 50, 100, 200, and 

500 m. 

Cell size (m) 50 100 200 500 

Average AUC value  0.7909 0.7833 0.8012 0.8277 

Maximum AUC value 0.7965 0.7892 0.8133 0.9155 

Minimum AUC value 0.7740 0.7699 0.7795 0.6034 

Standard deviation 0.0052 0.0057 0.0062 0.0578 

Range in 100 simulations 0.0226 0.0194 0.0338 0.3121 

 

3.3. Univariate SA results 

With the 10-factor model, executed by both standardization methods (weights and percentiles), an SA 

based on factors was performed. For the weights-encoding method, the univariate method produced susceptibility 

maps whose AUC values (the metric of the sensitivity) were plotted, as seen in Figure 4. From this analysis, and 

from the range and interval set to produce the coefficient variations, there were 241 AUC values higher than the 

reference AUC value (0.7928) out of 2000 simulations. When observing this chart, the AUC improvement is 

slightly higher than the reference. From the 2000 simulations, the highest AUC value was 0.7943, which is almost 

0.2% higher than the reference. The coefficients that have the stronger impacts on results, when the variations 

were applied, belong to the population, slope, and road density factors. 
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Figure 4. Univariate sensitivity analysis for LOGIT model (weights-encoding) showing AUC values as a metric of the 

impact of coefficient variations on the model performance. Legend: Lines represent factors: 1geo=lithology (mid-blue), 

2cov=land use/vegetation coverage (orange), 3sei=seismicity (light gray), 4pre=precipitations (yellow), 5sta=soil stability 

(light blue), 6slo=slope (green), 7pop=population (dark blue), 8roa=road density (brown), 9bui=floor area (dark gray) and, 

10gro=building footprint area (ochre). X-axis show the Multipliers of each factor’s coefficient and Y-axis show the AUC/ROC 

Values. The referential AUC value is shown in the dashed red line. 

 

The same test was applied to the percentile-discretized case. The results delivered 34 AUC values higher 

than the reference AUC value (0.7417) out of 2000 programmed simulations. The maximum improvement reached 

an AUC value of 0.7419 with a marginal improvement of 0.03%. The plotting of all AUC values derived from 

this univariate method variations’ susceptibility maps/datasets can be seen in Figure 5. Precipitations, land-use 

cover, and road density stand out as the most sensitive factors within the defined range of variations. It must be 

noted that road density is among the most sensitive factors for both standardization methods, although it is not the 

most sensitive in either of them. 
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4.  
5. Figure 5. Univariate sensitivity analysis for LOGIT model (percentile discretization) showing AUC values as a 

metric of the impact of coefficient variations on the model performance. Legend: Lines represent factors: 

1geo=lithology (mid-blue), 2cov=land use/vegetation coverage (orange), 3sei=seismicity (light gray), 

4pre=precipitations (yellow), 5sta=soil stability (light blue), 6slo=slope (green), 7pop=population (dark blue), 

8roa=road density (brown), 9bui=floor area (dark gray) and, 10gro=building footprint area (ochre). X-axis show 

the Multipliers of each factor’s coefficient and Y-axis show the AUC/ROC Values. The referential AUC value is 

shown in the dashed red line. 

 

5.3. K-S test results  

As an alternative means to measure sensitivity, the K-S test was applied to the same simulations 

undertaken for the univariate SA, including range and interval variations. Regarding the K-S test applied to the 

weights-encoding method, the p-value (at an alpha value of 0.05) showed that 13 resulting landslide susceptibility 

map samples, out of the 2000 simulated, were not significant. These 13 cases corresponded to variations in the 

coefficients of three factors: road density, intense precipitations, and population (see Figure 6). For the percentile-

discretized case, with the same alpha value, number of simulations, and range of variation, the resulting p-values 

showed that the results of their samples were non-significant only for two maps, with both samples corresponding 

to the intense precipitations factor coefficient variations. These results are illustrated in Figure 7. 
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Figure 6. This shows the p-values of the K-S test (two-sample) applied to 2000 landslide susceptibility datasets resulting 

from the univariate susceptibility analysis of the LOGIT model by weights discretization. Legend: The alpha value to 

determine the significance level was 0.05, which is marked with the dashed red line. The values (dots) above this level 

(precipitations, population, and road density) represent the non-significant samples from 13 simulations, whereas the 

remaining 1987 are considered to be at significance levels. The building footprint factor dots (ochre color) cover most of the 

dots representing these remaining simulations, which are very close to a p-value of zero. Lines with dots represent factors: 

1geo=lithology (mid-blue), 2cov=land use/vegetation coverage (orange), 3sei=seismicity (light gray), 4pre=precipitations 

(yellow), 5sta=soil stability (light blue), 6slo=slope (green), 7pop=population (dark blue), 8roa=road density (brown), 

9bui=floor area (dark gray) and, 10gro=building footprint area (ochre). X-axis show the Multipliers of each factor’s 

coefficient and Y-axis show the p-values. 

 

 
Figure 7. This shows the p-values of the K-S test (two-sample) applied to 2000 landslide susceptibility datasets resulting 

from the univariate susceptibility analysis of the LOGIT model by percentile discretization. Legend: The alpha value to 

determine the significance level was 0.05, which is marked with the dashed red line. The values (dots) above this level 

(precipitations) represent the non-significant samples from two simulations, whereas the remaining 1998 are considered to be 

at significance levels. The building footprint factor dots (ochre color) cover most of the dots representing these remaining 



 

Page 29 of 40 

 

simulations, which are very close to a p-value of zero. Lines with dots represent factors: 1geo=lithology (mid-blue), 2cov=land 

use/vegetation coverage (orange), 3sei=seismicity (light gray), 4pre=precipitations (yellow), 5sta=soil stability (light blue), 

6slo=slope (green), 7pop=population (dark blue), 8roa=road density (brown), 9bui=floor area (dark gray) and, 

10gro=building footprint area (ochre). X-axis show the Multipliers of each factor’s coefficient and Y-axis show the p-values. 

 

As mentioned in the methodology, the presentation of the values and charts of the D-statistic of the K-S 

test, also called the KS statistic, is more insightful as a measure of sensitivity. To illustrate these values and its 

correspondence with the p-values described above, the D-critical value (D) was calculated, which for both 

discretization methods was 0.057. The 13 non-significant samples, according to their p-values from the weights-

discretization method cases, and the two non-significant samples, according to the p-values from the percentile-

discretization method cases, can be identified in Figure 8, corresponding to variations in the coefficients of the 

factors: road density, intense precipitations, and population. The high sensitivity of these factors is notable within 

the studied range of variation. The same can be appreciated in Figure 9 for the percentile-discretized method 

cases. In this figure, two simulations, which are the non-significant samples, both corresponding to the intense 

precipitations factor coefficient variation, present D-statistic values below the critical D = 0.057. Similarly, in 

addition to this factor, road density and building footprint can also be appreciated as highly sensitive in Figure 9. 

 
Figure 8. This shows the D-statistic values of the two-sample K-S test for univariate sensitivity analysis of 2000 simulations, 

by weights discretization. Legend: The critical value (D), related to an alpha value of 0.05, is marked with the dashed red 

line. The values below this level (precipitations, population, and road density) represent the non-significant samples from 13 

simulations, whereas the remaining 1987, represented above the line, are considered to be at significance levels. Lines 

represent factors: 1geo=lithology (mid-blue), 2cov=land use/vegetation coverage (orange), 3sei=seismicity (light gray), 

4pre=precipitations (yellow), 5sta=soil stability (light blue), 6slo=slope (green), 7pop=population (dark blue), 8roa=road 

density (brown), 9bui=floor area (dark gray) and, 10gro=building footprint area (ochre). X-axis show the Multipliers of each 

factor’s coefficient and Y-axis show the D/KS values. 
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Figure 9. This shows the D-statistic values of the two-sample K-S test for univariate sensitivity analysis of 2000 simulations, 

by percentile discretization. Legend: The critical value (D), related to an alpha value of 0.05, is marked with the dashed red 

line. The values below this level (precipitations) represent the non-significant samples from two simulations, whereas the 

remaining 1998, represented above the line, are considered to be at significance levels. Lines represent factors: 

1geo=lithology (mid-blue), 2cov=land use/vegetation coverage (orange), 3sei=seismicity (light gray), 4pre=precipitations 

(yellow), 5sta=soil stability (light blue), 6slo=slope (green), 7pop=population (dark blue), 8roa=road density (brown), 

9bui=floor area (dark gray) and, 10gro=building footprint area (ochre). X-axis show the Multipliers of each factor’s 

coefficient and Y-axis show the D/KS values. 

 

5.4. Monte Carlo SA results 

The second SA method was the random/stochastic method, also called Monte Carlo. The AUC value 

was, as previously discussed, used as a metric to test the sensitivity for both weights and percentiles 

standardization methods. For each, 8000 simulations were produced. A difference can be seen between the weights 

and the percentile standardization methods’ results. The weights-encoding model generated 350 AUC values (out 

of the 8000) that were higher than the reference of 0.7928, with the highest AUC = 0.7970, an improvement of 

0.53% compared to the reference; whereas the percentile-discretized model generated 4440 values (out of the 

8000) that were higher than the referential 0.7417, with a maximum AUC = 0.7968, an improvement of 7.43% 

compared to the reference. For the percentile-discretization case, a set of the highest 17, out of the 4440 possible 

combinations to change the reference coefficients, are presented in Table 8. 
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Table 8. Randomly selected combination of multipliers of coefficients of the LOGIT model (percentile-discretized) 

to calibrate it for optimal results in defining the landslide susceptibility map. 
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0.79682 1 1 1 1.3 1 1 1 1 1 1 

0.79682 1 1 1 1.3 1 1 1 1 1 1 

0.79676 1 1 1 1.4 1 1 1 1 1 1 

0.79676 1 1 1 1.4 1 1 1 1 1 1 

0.79676 1 1 1 1.4 1 1 1 1 1 1 

0.79671 1 1.5 1.4 1.3 1 1 1 1 1.9 1 

0.79667 1 1 1 1.2 1 1 1 1 1 1 

0.79667 1 1 1 1.2 1 1 1 1 1 1 

0.79662 1 1 1 1.4 3.9 1 1 1 1 1 

0.79655 1 1 1 1.5 3.1 1 1 1 0.3 1 

0.79653 1 1 1 1.1 1 1 1 1 1 1 

0.79653 1 1 1 1.1 1 1 1 1 1 1 

0.79651 3.4 4.2 1.6 3.9 0.1 4.1 3.1 3.7 2.9 1.1 

0.79651 1 1 1 1.1 1.8 1 1 1 1 1 

0.79651 1 1 1 1.1 1.8 1 1 1 1 1 

0.79646 0.9 1 1 1 1 1 1 1 1 1 

0.79646 0.9 1 1 1 1 1 1 1 1 1 

* The reference coefficients for each factor provided from the former LOGIT model application (percentile-discretization) 

** The reference AUC values provided after the former LOGIT model application (percentile-

discretization) 

  

 

To provide a graphic example, the two factors with the highest values of coefficients (see Table 6) were 

selected to compare their AUC values with combinations from the variations of both coefficients, while the other 

eight coefficients maintained the reference values (ceteris paribus). They are illustrated in charts to support the 

identification of the coordinates (combination) that performs with the highest AUC value. For the weights-

encoding model these factors were population and road density, and the random outputs selected 12 combinations; 

however, none of these were higher than the reference (see Figure 10). For the percentile-discretization model, the factors 

were lithology and precipitations, and the random outputs presented 18 combinations. In this last case, all combinations 

achieved higher AUC values than the reference (0.7417), as shown in  

Figure 11. 
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Figure 10. AUC values resulting from random combinations of population and road density coefficient variations of the 

reference outputs of the weights-encoding LOGIT model. Legend: Blue bubble sizes represent the AUC values, whose area 

has been magnified according to the artifice (ROC*10)^200. X-axis show the multipliers of the population factor’s reference 

coefficients and Y-axis show the multipliers of the road density factor’s reference coefficients. 

 

 
 

Figure 11. AUC values resulting from random combinations of lithology and precipitations coefficient variations of the 

reference outputs from the percentile-discretization LOGIT model. Legend: Green bubble sizes represent the AUC values, 

whose area has been magnified according to the artifice (ROC*100)^100. X-axis show the multipliers of the lithology factor’s 

reference coefficients and Y-axis show the multipliers of the precipitations factor’s reference coefficients. 

 

6. Discussion 

Prior to discussion of the particular component results and outcome of this study, consideration should 

be given to the broad set of possible combinations of methodologies that a global LSM process, such as that 

presented, may adopt. Regardless of the modelling technique, it is relevant to consider the manner in which the 

data is generated and preprocessed as a parameter. In this regard, Van Dessel, van Rompaey, & Szilassi (2011) 

stress the impact of the quality of the input datasets on the resulting coefficients of logistic regression models 
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applied to landslide susceptibility analysis. In this regard, when revising the quality of the data corresponding to 

soil stability and seismic intensities, it is notable that the level of detail is poor. This might limit the accuracy and 

performance of the models used in this study. Currently, micro-zoning seismicity studies are being surveyed as 

part of a long-term project. In the future, this could help obtain precise results in LSM studies, in addition to better 

quality and newer data, which appears to be a promising development for Quito. 

This research implemented a pseudo-quantitative method, which considered weights-encoded 

categorical data and discretized continuous data as inputs, previously assigned by official local experts. Data 

encoding is driven by needs and expertise (Saltelli et al., 2019) of local DRM professionals and scholars. In this 

experiment, local knowledge was useful in gathering reliable data, regardless of potential distortions in the results, 

which can be enhanced and complemented by the statistical analysis of the empirical data itself (Grzenda, 2020). 

In this regard, other studies have encoded data based on the frequency ratio of events of a specific class (Bui, 

Tsangaratos, Nguyen, Liem, & Trinh, 2020). For Quito, problems of unbalanced, unstructured, and underreported 

landslide events data are expected to be overcome in the future, thus improving weights encoding. Nevertheless, 

the encoded data was processed using a theorical multicriteria assessment for LSM, as undertaken in other research 

(Leoni et al., 2009; Lombardo & Mai, 2018), which this study tested with a LOGIT model and SA, as described 

above. 

For the current research, complementary data preparation was performed by scaling the factors’ values based 

on both weight and percentile methods. In this regard, there are differences that should not be overlooked when 

running the LOGIT. For the first method (weights), the discretization scaling to the additional four “urban” factors 

enhanced the ROC/AUC value progressively, from 0.7550 to 0.7840, by adding population and floor area; and 

then to 0.7928 by adding road density and building footprint area. Nonetheless, when discretizing all ten factors 

to a percentile scale, the ROC/AUC value dropped to 0.7417, which is still acceptable in terms of the classification 

power of the model, but is not as reliable as the higher former value. Therefore, the discretization from a 1-to-4 

weights scale to percentiles of the nominal factors did not provide accuracy. This may be because, for the 1-to-4 

discreet weights scale, the only possible percentile values assigned were 1, 33, 67, and 100, which affected the 

performance results of the model. In contrast, a broader scale, such as that of the percentiles, normally provides 

better parameterization possibilities and, therefore, global performance, than the cost-sensitive LOGIT model 

(Zhang, Ray, Priestley, & Tan, 2020).  

In addition to using data provided by the municipality of Quito, this research included more factors than 

the official landslide susceptibility study. These factors were population, road density, floor area, and building 
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footprint area, which we consider helped to characterize the urban category from the land use/vegetation coverage 

factor of the former study. This can be seen by observing the progressive change in the order of coefficients and 

AUC values in Table 6. 

In relation to the urban variables, it can be expected that population, which appeared as an important 

predictor after the LOGIT application, may be related to building footprint area and floor area. Nonetheless, the 

latter factors were not found to be relevant predictors. This might be related to the fact that the largest floor area 

volumes are concentrated on the center-north of the city, an area where self-built and informal construction is low, 

and buildings are often medium-rise with appropriate construction techniques, soil management, and artificial 

drainage. A further step of this study could include factors to assess LSM at building scales, using a vulnerability 

and uncertainty quantification approach, and considering the heterogeneity of urban fabrics, such as those 

undertaken by Kaynia et al. (2008) and Du et al. (2013). This research addition may enhance the data quality in 

surveying building conditions and soil management, and data collection at a large urban scale, as for the case of 

Quito. 

Another complementary remark regarding the results in terms of policy implications is that the relevance 

of the road density factor as a predictor does not necessarily mean that streets and roads per se increase LRisk. In 

fact, heterogeneity can have an important effect on the model (Wang et al., 2020). Because roads are potential 

boosters of urban development, it is necessary to examine in detail how vulnerability is produced at the household 

scale, as mentioned above. 

7. Conclusions 

This article presented the application of a binary logistic regression model with the objective of deriving 

a landslide susceptibility map for the urban area of Quito, Ecuador. A landslide events database covering the 

2005–2017 period was used as the dependent binary factor. Ten explanatory factors were tested: lithology, land 

use / vegetation coverage, seismic intensities, intense precipitations, soil stability based on previous events, slope, 

population, road density, floor area, and building footprint area. Adding the last four factors—considered 

“urban”—was found to result in better performance of the model (AUC = 0.7928) compared to the model 

operating only with the first six factors (AUC = 0.7550).  

Two data standardization methods were applied: weights encoding and percentile discretization. After 

operating the LOGIT model, the weighted-encoding method delivered an AUC of 0.7928, whereas the percentile-

discretized model obtained 0.7417. Regarding the resulting coefficients of the explanatory factors, the weights-

encoding method provided more stable values than the percentile-discretized approach, whose performance 
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delivered greater oscillation in the coefficient values, after several simulations. The instability in the second 

method may be due to large differences in the percentiles’ classification, particularly for the categorical data. 

According to the results of the weights-encoding method, which was the most stable model, the factors of road 

density, population, intense precipitations, and slope, in that order, improved the prediction/classification power. 

The percentiles-discretization method (least stable model) showed that intense precipitations, lithology, land 

use/vegetation coverage, and road density, in that order, provided the best prediction improvement. 

Concerns about the resolution were addressed by testing changes of this parameter for cell sizes of 50 

(the originally generated input), 100, 200, and 500 m. Results showed that, even when the highest values are 

achieved with smaller resolutions, this behavior is not stable when producing several simulations. In contrast, the 

50 m cell size model remains stable, whereas its performance according to the AUC value (0.7928) demonstrates 

a high classification power. Hence, this resolution was chosen for the sensitivity analysis. 

Univariate, Monte Carlo and K-S tests were applied to measure the sensitivity of factors (both 

standardization methods). AUC was used to measure the performance for the first two tests and the K-statistic for 

the final test. From the univariate SA results, it can be observed that the slope, road density, intense precipitations, 

and population factor curves resulted in the widest variations. This was the case for the weights-encoded method 

(see Figure 4). In the case of the percentile-discretized method (see Figure 5), the most sensitive factor curves 

were those of intense precipitations, land use/vegetation coverage, lithology, and road density, within the studied 

simulation range. Moreover, 241 out of 2000 simulations provided better calibration of the weights-encoded 

model, with a 0.2% improvement of the AUC value; and 34 out of 2000 simulations provided better calibration 

of the percentile-discretization model, but with only a marginal 0.03% improvement of the AUC value.  

Regarding the Monte Carlo SA for the weights-encoding model, 350 out of 8000 simulations showed 

higher AUC values than the reference value, improving on it by up to 0.53%. This differs substantially from the 

weights-normalized model, which in the Monte Carlo application only resulted in 4440 AUC values that were 

higher than the reference, improving on it by up to 7.4%. This means that the calibration of the percentile-

normalized model’s coefficients can still be adjusted to improve predictability. Nonetheless, it does not achieve 

better performance than the weights-encoding model. 

Finally, a two-sample K-S test was used to measure sensitivity, using the D-statistic as a metric, and 

using the same univariate SA simulations. In contrast to the univariate and Monte Carlo SAs, the K-S test indicated 

that, for the weights’ method, 13 simulations in the weights-encoded cases were not significant in classification 

power at alpha = 0.05, with the variations of road density, precipitations, and population coefficients being 
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sensitive beyond the D-critical value. For the percentile-discretization cases, only two simulations were not 

significant, with precipitations the sensitive factor, using the same alpha value. 

This research aimed to contribute to the study of LSM, not only with the inclusion of Quito as an Andean 

city in an LRisk context, but also by observing LR modelling behavior when incorporating novel “urban” factors, 

which is rarely found in the LSM literature. In this regard, results highlight the importance of the street/road 

network and population factors on the overall classification power of the model. In contrast, the building-related 

factors (i.e., floor area and building footprint) do not appear to have the same influence and their inverse effect 

remains to be explored. Other factors, such as slope and rainfall, appeared to be relatively relevant in the LOGIT-

LSM in this urban context, although the quality of the local geology, for the most part, helps to reduce the 

incidence of LRisk, according to local experts. 

It is expected that further research for the case of Quito and similar Andean cities will benefit from the 

generation of better quality and more detailed official data, particularly regarding factors addressing the urban 

form and physical and social vulnerability. Ultimately, improved performance of LSM may support LRR policy 

design, considering the diverse implications that accurate delimitation of risk zones has for LRisk generation, in 

addition to making land suitable for LRR, the construction of safe housing, and urban development. 
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ANNEX: Abbreviations 

AHP  Analytical Hierarchical Process  

ANN Artificial Neural Networks 

AUC Area Under the Curve (ROC value) 

CF Certainty Factor 

COE-M Metropolitan Emergency Operations Committee of Quito 

DL Deep Learning 

DMQ Metropolitan District of Quito 

DRM Disaster Risk Management 

DRR Disaster Risk Reduction 

DTM Digital Terrain Model  

EMS European Macroseismic Scale 

EPMMOP Empresa Pública Metropolitana de Movilidad y Obras Públicas (Metropolitan Public Enterprise 

of Mobility and Public Works) 

FFNN Feed-Forward Neural Network 

FR Data-Driven Frequency Ratio  

GIS Geographic Information Systems 

INEC Instituto Nacional de Estadísticas y Censos de Ecuador (National Institute of Statistics and 

Census of Ecuador) 

IV Information Value 

JT Jackknife Test 

K-S Kolmogorov-Smirnov test 

LCVs Landslide Conditioning Factors 

LOGIT Binary Logistic Regression Model 

LR Logistic Regression 

LRisk Landslide Risk 

LRR Landslide Risk Reduction 

LS Landslide Susceptibility 
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LSI Landslide Susceptibility Index 

LSM Landslide Susceptibility Mapping or Landslide Susceptibility Map 

LUP Land-Use Planning 

MCE Multi-Criteria Evaluation 

MDMQ Municipio del Distrito Metropolitano de Quito (Government of the Metropolitan District of 

Quito) 

ML Maximum Likelihood 

MuF Multiple Factor Model 

MURs Mapping Unit Resolutions 

NDVI Normalized Difference Vegetation Index  

OAT One-At-a-Time 

OWA Ordered Weighted Average 

PBA Pixel Based Approaches  

PIX Potential Erosion Index 

PRE Potential Rain Effect 

RF Random Forest 

ROC Receiving Operator Characteristic 

SA Sensitivity Analysis 

SGP Secretaría General de Planificación (General Planning Secretariat of the MDMQ) 

SI Susceptibility Index 

SPI Stream Power Index 

SSG Secretaría de Seguridad y Gobernabilidad (Security and Governability Secretariat of the 

MDMQ) 

STHV Secretaría de Territorio, Hábitat y Vivienda (Territory, Habitat and Housing Secretariat of the 

MDMQ) 

SVM Support Vector Machine 

TPI Topographic Position Index 

TRI Topographic Roughness Index 

TWI Topographic Wetness Index 

WeF Weight Factor Model 

WLC  Weighted Linear Combination 

ZR  Landslide Risk Zone or “Zona de Riesgo” (a LUP category in Quito) 


