AlMasoud N, Muhamadali H, Chisanga M, Alrabiah H, Lima CA, Goodacre R. Discrimination of bacteria using whole organism fingerprinting: the utility of modern physicochemical techniques for bacterial typing. Analyst. 2021;146(3):770–88. DOI: 10.1039/D0AN01482F
Fang FC, Frawley ER, Tapscott T, Vazquez-Torres A. Bacterial stress responses during host infection. Cell Host Microbe. 2016;20(10):133–43. DOI: 10.1016/j.chom.2016.07.009
Cullen L, McClean S. Bacterial adaptation during chronic respiratory infections. Pathogens. 2015;4(1):66–89. DOI: 10.3390/pathogens4010066
Klassen A, Faccio AT, Canuto GAB, da Cruz PLR, Ribeiro HC, Tavares MFM, et al. Metabolomics: definitions and significance in systems biology. In: Sussulini A, editor. Metabolomics: from fundamentals to clinical applications. Cham: Springer International Publishing; 2017. p. 3–17. DOI: 10.1007/978-3-319-47656-8_1
Franchina FA, Purcaro G, Burklund A, Beccaria M, Hill JE. Evaluation of different adsorbent materials for the untargeted and targeted bacterial VOC analysis using GC×GC-MS. Anal Chim Acta. 2019;1066:146–53. DOI: 10.1016/j.aca.2019.03.027
Davis TJ, Karanjia AV, Bhebhe CN, West SB, Richardson M, Bean HD. Pseudomonas aeruginosa volatilome characteristics and adaptations in chronic cystic fibrosis lung infections. mSphere. 2020;5(5):1–19. DOI: 10.1128/mSphere.00843-20
Takenaka M, Yoshida T, Hori Y, Bamba T, Mochizuki M, Vavricka CJ, et al. An ion-pair free LC-MS/MS method for quantitative metabolite profiling of microbial bioproduction systems. Talanta. 2021;222(September 2020):121625. DOI: 10.1016/j.talanta.2020.121625
Santos IC, Chaumette A, Smuts J, Hildenbrand ZL, Schug KA. Analysis of bacteria stress responses to contaminants derived from shale energy extraction. Environ Sci Process Impacts. 2019;21(2):269–78. DOI: 10.1039/C8EM00338F
Favre L, Ortalo-Magné A, Greff S, Pérez T, Thomas OP, Martin JC, et al. Discrimination of four marine biofilm-forming bacteria by LC-MS metabolomics and influence of culture parameters. J Proteome Res. 2017;16(5):1962–75. DOI: 10.1021/acs.jproteome.6b01027
Madji Hounoum B, Blasco H, Emond P, Mavel S. Liquid chromatography-high-resolution mass spectrometry-based cell metabolomics: experimental design, recommendations, and applications. TrAC Trends Anal Chem. 2016;75:118–28. DOI: 10.1016/j.trac.2015.08.003
Guo J, Huan T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem. 2020;92(12):8072–80. DOI: 10.1021/acs.analchem.9b05135
Didelot X, Barker M, Falush D, Priest FG. Evolution of pathogenicity in the Bacillus cereus group. Syst Appl Microbiol. 2009;32(2):81–90. DOI: 10.1016/j.syapm.2009.01.001
Martin MS, Santos IC, Carlton DD, Stigler-Granados P, Hildenbrand ZL, Schug KA. Characterization of bacterial diversity in contaminated groundwater using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Sci Total Environ. 2018;622–623:1562–71. DOI: 10.1016/j.scitotenv.2017.10.027
Willey J, Ka S, Wood D. Prescott’s microbiology. 11th ed: McGraw-Hill Education; 2020.
Hanko VP, Rohrer JS. Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection. Anal Biochem. 2004;324(1):29–38. DOI: 10.1016/j.ab.2003.09.028
Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics. 2014;10(3):361–74. DOI: 10.1007/s11306-013-0598-6
Lan L, Murray TS, Kazmierczak BI, He C. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Mol Microbiol. 2010;75(1):76–91. DOI: 10.1111/j.1365-2958.2009.06955.x
Lewis KA, Baker AE, Chen AI, Harty CE, Kuchma SL, Hogan DA. Ethanol decreases Pseudomonas aeruginosa flagellar motility through the regulation of flagellar stators. J Bacteriol. 2019;201(18):1–17. DOI: 10.1128/JB.00285-19
Sévin DC, Stählin JN, Pollak GR, Kuehne A, Sauer U. Global metabolic responses to salt stress in fifteen species. PLoS One. 2016;11(2):1–21. DOI: 10.1371/journal.pone.0148888
Okanlawon BM, Ogunbanwo ST, Okunlola AO. Growth of Bacillus cereus isolated from some traditional condiments under different regimens. Afr J Biotechnol. 2010;9(14):2129–35.
Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8(2):31. 10.3390/metabo8020031.
Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol. 2015;6(AUG):1–20.
Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 2007;10(6):644–8. DOI: 10.1016/j.mib.2007.09.010
Mielko KA, Jabłoński SJ, Milczewska J, Sands D, Łukaszewicz M, Młynarz P. Metabolomic studies of Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2019;35(11):1–11. DOI: 10.1007/s11274-019-2739-1
Alreshidi MM. Selected metabolites profiling of Staphylococcus aureus following exposure to low temperature and elevated sodium chloride. Front Microbiol. 2020;11(May):1–13.