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Abstract
In the host, pathogenic microorganisms have developed stress responses to cope with constantly changing environments. Stress
responses are directly related to changes in several metabolomic pathways, which could hamper microorganisms’ unequivocal
identification. We evaluated the effect of various in vitro stress conditions (acidic, basic, oxidative, ethanolic, and saline
conditions) on the metabolism of Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa, which are common
lung pathogens. The metabolite profiles of the bacteria were analyzed using liquid chromatography coupled to triple quadrupole
and quadrupole time-of-flight mass spectrometry. The advantages of targeted and untargeted analysis combined with univariate
and multivariate statistical analysis (principal component analysis, hierarchical cluster analysis, partial least square discriminant
analysis, random forest) were combined to unequivocally identify bacterial species. In normal in vitro conditions, the targeted
methodology, based on the analysis of primary metabolites, enabled the rapid and efficient discrimination of the three bacteria. In
changing in vitro conditions and specifically in presence of the various stressors, the untargeted methodology proved to be more
valuable for the global and accurate differentiation of the three bacteria, also considering the type of stress environment within
each species. In addition, species-specific metabolites (i.e., fatty acids, polysaccharides, peptides, and nucleotide bases deriva-
tives) were putatively identified. Good intra-day repeatability and inter-day repeatability (< 10% RSD and < 15% RSD, respec-
tively) were obtained for the targeted and the untargeted methods. This untargeted approach highlights its importance in unusual
(and less known) bacterial growth environments, being a powerful tool for infectious disease diagnosis, where the accurate
classification of microorganisms is sought.
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Introduction

The identification of microorganisms is of importance in nu-
merous clinical, biological, and food applications, such as
chronic infectious disease diagnosis, antimicrobial resistance,

and quality control in food industry [1]. The accurate diagno-
sis of infectious diseases, from human or foodborne patho-
gens, would enable to decrease their incidence and improve
human health. To survive in constantly changing environ-
ments, pathogenic microorganisms have developed adaptative
defense mechanisms, known as stress responses, that permit
their survival and play an important role in their evolution.
Responses to environmental stress, such as pH changes, salin-
ity, nutrient availability, or oxidation, are directly related to
changes in several cellular metabolic pathways, which could
hamper the unequivocal identification of microorganisms [2,
3]. Therefore, the development of methods enabling the dis-
crimination between various bacterial species, regardless of
the growth environment, is necessary and, in addition, the
understanding of stress responses would provide insights into
bacterial pathogenesis.
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Metabolomics has been considered as a promising ap-
proach for the characterization of metabolites in biological
samples [4]. Metabolomics approach enables the comprehen-
sive profiling and identification of cellular metabolites that are
able to reflect ongoing biological processes, and/or altered
states compared to normal conditions. Mass spectrometry
(MS)–based metabolomics hyphenated with gas chromatog-
raphy (GC-MS) or liquid chromatography (LC-MS) has been
successfully used for the fingerprinting of various bacteria
[5–7]. However, only few studies focused on the characteri-
zation of bacterial species under stress environments [8, 9].

LC enables the detection of a large set of metabolites, char-
acterized by various physicochemical properties, without the
need for extensive sample preparation. LC coupled to triple
quadrupole MS in multiple reaction monitoring (MRM) mode
enables sensitive and specific quantitative analysis of targeted
metabolites with high reproducibility [10]. Recently, the po-
tential of such LC-MS/MS approach has been demonstrated
for the simultaneous targeted analysis of 113 primary metab-
olites [7]. Since primary metabolites, such as amino acids,
organic acids, nucleotides, and nucleosides, are essential for
energy production, normal growth, and development of living
organisms, their analysis could provide valuable insights into
the metabolism of numerous bacterial species. However, the
use of a targeted methodology limits metabolite coverage. On
the other hand, LC hyphenated with high-resolution (HR) MS
enables the untargeted analysis of metabolites present in bio-
logical systems; therefore, it can increase metabolite detection
with no need of a priori knowledge [10, 11]. The accurate
mass measurement, together with MS/MS spectral acquisi-
tion, also enables the investigation of unknown metabolites.
Nevertheless, untargeted metabolomics often requires multi-
variate statistical analysis to reduce data complexity, and iden-
tification of metabolites remains a challenge [12].

In this work, the advantages of targeted and untargeted
analysis, respectively exploiting high-performance liquid
chromatography (HPLC) triple quadrupole (QqQ) MS and
ultra-high-performance liquid chromatography (UHPLC)
quadrupole time-of-flight (QToF) MS platforms, were evalu-
ated and combined to investigate the metabolism of three bac-
terial species (i.e., Staphylococcus aureus, Bacillus cereus,
and Pseudomonas aeruginosa). S. aureus and P. aeruginosa
are common pathogens that cause chronic lung infections.
P. aeruginosa is the most prevalent pathogen associated with
cystic fibrosis [3]. B. cereus bacteria are mainly responsible
for food poisoning, but they can also cause various systemic
infections, such as lung infections, pneumonia, and septicemia
[13].

The three bacterial species were grown under various stress
conditions (i.e., acidic and basic pH, oxidative, ethanolic, and
saline conditions) to determine their effect on extracellular
metabolites present in the culture medium. Univariate and
multivariate statistical analyses were used to reduce data

complexity and identify species-specific metabolites. The per-
formances of the two MS detectors for the bacteria discrimi-
nation, and the complementarity of the approaches were
highlighted.

Experimental section

Chemical reagents and standards

A standard solution (1 ppm) used to evaluate the HPLC-QqQ
MSmethod performance was composed of the following stan-
dards: 2-aminoadipic acid, 2-ketoisovaleric acid, 4-
hydroxyphenyllactic acid, adenine, adenosine, adenosine
monophosphate, ascorbic acid, biotin, citrulline, cystathio-
nine, cytidine, cytidine monophosphate, ethylenediamine,
fumaric acid, glucosamine, glycyl-glutamine, guanine, guano-
sine, guanosine monophosphate, histamine, inosine, isocitric
acid, malic acid, n-acetylaspartic acid, nicotinic acid, o-
phosphoethanolamine, pipecolic acid, putrescine, pyridoxal,
succinic acid, thymine, uracil, uric acid, uridine, xanthine,
and xanthosine. A standard solution (1 ppm) used to evaluate
the UHPLC-QToF MS method performance was composed
of the following standards: 2-ketoisobvaleric acid, 4-
hydroxyphenyllactic acid, ascorbic acid, fumaric acid, gua-
nine, isocitric acid, malic acid, succinic acid, uric acid,
and xanthine. The internal standard used was 2-
isopropylmalic acid. The standards were purchased from
Alfa Aesar (Ward Hill, MA), Merck (Darmstadt, Germany),
Sigma-Aldrich (St. Louis,MO), Supelco (Bellefonte, PA), Tci
America (Portland, OR), and Thermo Fisher Scientific (Fair
Lawn, NJ) (see Table S1 in the Supplementary Information
(ESM)). As a mobile phase additive, formic acid was used
(Sigma-Aldrich). LC-MS grade water and acetonitrile were
purchased from Honeywell Burdick & Jackson (Muskegon,
MI).

Bacteria culture condition and stress assay

Three bacterial species were used in this study: Pseudomonas
aeruginosa (ATCC BAA-26), Bacillus cereus, and
Staphylococcus aureus. B. cereus and S. aureus were isolates
obtained from groundwater and identified using matrix-
assisted laser desorption ionization time-of-flight mass spec-
trometry and RNA sequencing [14]. All three species were
pre-cultured aerobically overnight at 37 °C and 200 rpm in
125-mL conical flasks with 50 mL of nutrient broth (NB,
Merck, Darmstadt, Germany) and then inoculated (1:1000)
under identical conditions into 50 mL of fresh NB. At the
log phase of the growth, the bacteria were transferred to
125-mL conical flasks containing either 50 mL of acidified
NB (HCl, pH = 2), 50 mL of basified NB (NaOH, pH = 9), or
NB supplemented with diluted H2O2 (1 mM), 4% v/v of
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ethanol, or 4% v/v of salt. As a positive control, bacteria were
grown in NB without stressors. Finally, fresh NB and NB
supplemented with the different stressors were used as nega-
tive controls. Flasks were incubated for 12 h at 37 °C and
200 rpm corresponding to the stationary phase of growth.
Optical density measurements were performed at 600 nm
using a BioSpec-mini™ spectrophotometer (Shimadzu
Scientific Instruments, Inc., Columbia, MD).

Sample preparation

At the stationary phase of growth, flasks were submerged on
ice to quench cellular metabolism and centrifuged at
15,000 rpm for 10 min. Then, 100 μL of supernatant was
transferred under sterile conditions in a 1.5-mL Eppendorf
tube containing 200 μL of acetonitrile. The sample was spiked
with the internal standard to a final concentration of 5 ppm.
Following the centrifugation at 15,000 rpm for 10 min, 100
μL of supernatant was transferred to an LC vial and diluted
(1:10) with ultrapure water prior to analysis. Six biological
replicates were prepared and analyzed for each stress condi-
tion. For each biological replicate, two technical replicates
were prepared for the analysis by HPLC-QqQ MS and by
UHPLC-QToF MS.

Targeted methodology (HPLC-QqQ MS)

A Shimadzu LCMS-8050 triple quadrupole instrument
(Shimadzu Scientific Instruments) equipped with LC-20AD
solvent delivery pumps, DGU-20A5 degassing unit, SIL-
20AC XR autosampler, CTO-20AC column oven, and
CBM-20A system controller was used for the targeted analy-
sis. Instrument control and data acquisition were performed
using LabSolutions software v.5.97 (Shimadzu Corp., Tokyo,
Japan). Injections of 1 μLwere used. Separation was achieved
in reversed phase mode using a Discovery HS F5-3 column
(150 mm × 2.1 mm × 3 μm) (Shimadzu), made of a
pentafluorophenylpropyl (PFPP) stationary phase. This col-
umn provides unique retention characterized by various inter-
actions such as electrostatic dipole-dipole interactions, pi-pi
interactions, and hydrophobic forces. The potential of such
approach has been reported for simultaneous analysis of a
broad range of metabolites [7].

Mobile phases consisted of water with 0.1% formic acid
(solvent A) and acetonitrile with 0.1% formic acid (solvent B).
Gradient elution was performed at a flow rate of 0.35 mL
min−1, as follows: 0–1.4 min: 0% B; 1.4–3.5 min: 25% B;
3.5–7.5 min: 35% B; 7.5–10.30 min: 95% B; 10.30–13.70
min: 95% B; 13.8–17 min: 0% B. The temperature of the
autosampler tray and the temperature of the oven were set at
5 °C and 40 °C, respectively. Electrospray ionization (ESI)
was performed in the negative and positive ionization mode.
The MS data was collected under the following ESI

conditions: nitrogen nebulizing gas and drying gas flows were
3 L min−1 and 10 L min−1, respectively; the desolvation line
temperature was 250 °C and the heat block temperature was
400 °C; the positive and negative interface voltages were
4.5 kV and −3.5 kV, respectively. Each analyte of interest
was monitored by optimized multiple reaction monitoring
(MRM). Representative precursor ions, product ions, collision
energies, and retention times for each compound are listed in
Table S1 of the ESM.

The acquired data were processed using LabSolutions soft-
ware and the obtained peak list containing the retention times
and relative peak areas of the targeted metabolites in each
sample was used for further statistical analysis.

Untargeted methodology (UHPLC-QToF MS)

A Shimadzu Nexera X2 ultra-high-performance liquid
chromatograph coupled to a LCMS-9030 quadrupole
time-of-flight (QToF) mass spectrometer (Shimadzu
Scientific Instruments, Inc., Columbia, MD) equipped
with LC-30AD solvent delivery pumps, DGU-20A5R
degassing unit, SIL-30AC autosampler, CTO-20AC col-
umn oven, and CBM-20A system controller was used
for the untargeted analysis. Instrument control and data
acquisition were performed using LabSolutions software
v.5.97 (Shimadzu Corp., Tokyo, Japan). Injections of 5
μL were used. Separation was achieved using a
Discovery HS F5-3 column (150 mm × 2.1 mm × 3
μm) (Shimadzu) using identical mobile phases and gra-
dient elution as for the analysis using the LCMS-8050
(see the “Targeted methodology (HPLC-QqQ MS)” sec-
tion). The temperature of the autosampler tray and the
temperature of the oven were set at 5 °C and 40 °C,
respectively. Electrospray ionization (ESI) was per-
formed in the negative ionization mode using data-
independent acquisition (DIA) mode, with a mass-to-
charge (m/z) range set to 50–1000 Da, and a collision
energy of 25 eV (with 17-eV CE spread). The MS data
was collected under the following ESI conditions:
Nitrogen nebulizing gas and drying gas flows were 2
L min−1 and 10 L min−1, respectively; the desolvation
line temperature was 250 °C and the heat block temper-
ature was 400 °C; the interface voltage was −3.5 kV.

The acquired data were exported from LabSolutions
as mzML files and imported into MS Dial (v. 4.00,
Yokohama City, Japan). Data pre-processing (noise set-
ting, baseline correction, peak picking and alignment)
was performed using MS Dial. The following parameter
settings were used: minimum peak height, 100 counts;
mass width, 0.1 Da; mass tolerance (MS1), 0.02 Da.
Results were further exported as a .txt file from MS
Dial for further statistical analysis.
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Data processing and statistical analysis

Prior to statistical analysis, the data were normalized using the
internal standard signal and auto-scaled (mean-centered and
divided by the standard deviation of each variable). No further
data transformation was performed.

Two-tailed equal variance t-test, one-way analysis of
variance (ANOVA), and fold-change were used to deter-
mine significant features characterized by a p value < 0.05
and a fold-change > 1.5. The p values obtained from the
one-way ANOVA were corrected for multiple testing
using false discovery rate adjustment. For the untargeted
analysis, multivariate statistical approaches (i.e., partial
least square discriminant analysis (PLS-DA) and random
forest (RF)) were used to highlight the most influential
metabolites, in addition to t-test and fold-change.
Thresholds of 1.5 for variable importance in projection
(VIP) scores and 0.001 for mean decrease accuracy
(MDA) were defined. Metabolites characterized by a p
value < 0.05, a fold-change > 1.5, VIP scores > 1.5,
and MDA > 0.01 were selected as the most influential
metabolites.

RStudio (v.3.3.2) and MetaboAnalyst 5.0 online (Quebec,
CA) were used to perform statistical analysis. The R packages
tidyverse, pheatmap, and caret were used to generate principal
component analysis (PCA), hierarchical cluster analysis
(HCA), and random forest (RF). MetaboAnalyst was used to
perform partial least square discriminant analysis (PLS-DA).

MS Finder (v.3.20, Yokohama City, Japan) was used to
predict the formula of the most influential metabolites as well
as to predict chemical ontologies. Molecular formulas were
predicted from the precursor ion using the accurate mass, iso-
tope ratio, and product ion information. Atoms included for
the molecular formula search were C, H, O, N, P, and S. In
addition, a 20% isotopic tolerance was defined. The experi-
mental MS/MS spectra were then compared to theoretical
fragments calculated on known metabolites retrieved from
structure databases. Searched databases included the
Chemical Entities of Biological Interest (ChEBI), the
Human Metabolome Database (HMDB), and the Metabolic
In Silico Network Expansion (MINE) databases.

Results and discussion

Targeted analysis of primary metabolites to
discriminate bacterial species

The profile of the three bacteria, resulting from the analysis of
the targeted 96 primary metabolites using HPLC-QqQ MS, is
displayed in the overlaid multiple reaction monitoring (MRM)
chromatograms in Fig. 1. The analysis resulted in the detec-
tion of 78 metabolites, 86 metabolites, and 71 metabolites in

P. aeruginosa, S. aureus, and B. cereus, respectively.
Considering the six biological replicates analyzed for each
species, a satisfactory average repeatability (21 %RSD for
S. aureus, 13 %RSD for B. cereus, and 18 %RSD for
P. aeruginosa) was obtained for the targeted metabolites
detected.

Principal component analysis (PCA) and hierarchical clus-
ter analysis (HCA) were used to evaluate the potential of the
primary metabolites to distinguish between the bacterial spe-
cies. To ensure that the observed metabolic changes were
specific to the bacterial species, bacteria-free nutrient broth
was considered as negative control (see the “Bacteria culture
condition and stress assay” section). The PCA of Fig. 2a dis-
plays the discrimination between the negative control and the
three bacterial species, as well as the clear clustering between
the species, using the two first principal components (PCs)
expressing 61.2% of the total variance within the dataset.
The first PC, accounting for 39.5% of the variance, enabled
the discrimination of the bacteria from the nutrient broth (neg-
ative control), while the second PC, accounting for 21.7% of
the variance, enabled the discrimination of S. aureus from
B. cereus and P. aeruginosa.

Discrimination between the three species was expected
since they present distinct cell wall structures and shapes.
Indeed, P. aeruginosa is a Gram-negative rod-shaped species,
while S. aureus and B. cereus are Gram-positive round- and
rod-shaped species, respectively. In addition, B. cereus has the
potential to produce endospores [15]. Nevertheless, the clus-
tering of the bacterial species observed in the PCA of Fig. 2a
demonstrated the potential of the selected primary metabolites
(listed in ESM Table S1) to reflect the unique metabolism of
bacterial species.

The heatmap of Fig. 2b shows the qualitative distribu-
tion of the metabolites among the samples. The consump-
tion of 11 nutrients from the growth media by the bacteria
can be observed (Fig. 2b, top left). These nutrients were
mainly amino acids (alanine, arginine, asparagine, aspartic
acid, glutamic acid, glycine, serine, and threonine), togeth-
er with adenosine, cystathionine, and cysteine, and their
consumption suggest the importance of these metabolites
for normal in vitro bacterial growth. Previous studies
highlighted the importance of these amino acids for opti-
mal yeast, bacterial, and mammalian cell growth [16]. In
addition, the analysis of S. aureus, B. cereus, and
P. aeruginosa revealed metabolic differences and higher
amounts of some metabolites for each species were iden-
t i f i e d . Reg a r d i ng P . a e r ug i no sa , a d eno s i n e
monophosphate, pantothenic acid, and ornithine were spe-
cifically more abundant than in the other species. For
S. aureus, 4-hydroxyproline, guanine, histamine, and hy-
poxanthine were specifically abundant. B. cereus was char-
acterized by a low amount of all targeted metabolites
compared to the two other bacteria. Indeed, among the
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96 targeted metabolites, uric acid was the only metabolite
detected in higher amounts in B. cereus.

Ultimately, among the 96 targeted primary metabolites, 45
metabolites were statistically significant, i.e., characterized by
a p value < 0.05 using one-way ANOVA, to distinguish the
bacterial species. These metabolites were not initially present
in the bacteria-free nutrient broth. The discrimination between
the bacterial species was further improved when considering
only the significant metabolites, as can be visualized on the
PCA of Fig. S1 (see ESM), where the two first PCs account
for 79.8% of the variance.

Effect of stress conditions on primary metabolite
profiles

Adaptative response to stress environments, including chang-
es in pH, salinity, nutrient scarcity, and oxidation, allows path-
ogenic bacteria to resist host defense and plays an important
role in their evolution [2]. It is important to evaluate the po-
tential of primary metabolites to discriminate between bacte-
rial strains even under stress conditions. Therefore, the
targeted LC-MS/MS method was evaluated to discriminate
S. aureus, B. cereus, and P. aeruginosa under five different
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Fig. 1 Multiple reaction
monitoring (MRM) chromato-
grams of S. aureus, B. cereus, and
P. aeruginosa grown under nor-
mal in vitro conditions. The black
trace is the TIC; the colored traces
represent the different MRM
transitions for each target analyte.
For the details of the MRMs, refer
to Table S1 in the ESM
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stress conditions: acidic, basic, oxidative, saline, and ethanolic
environments.

Bacteria growth rates were altered according to the type of
stress. Values of optical density measurements at 600 nm
(OD600) are reported in Table 1. Acidic and oxidative stress
decreased the growth rate of S. aureus and B. cereus, while the
growth rate of P. aeruginosa was decreased by acidic and
ethanolic stress. Indeed, the measurements of OD600 resulted
in values lower than 0.5, corresponding to the early logarith-
mic phase of growth, while the measurement of OD600 of the
non-stressed bacterial culture resulted in an average value of
1.63, corresponding to the stationary phase of growth.

Metabolic changes associated with the stress responses
hampered the discrimination of the three bacterial species
using the targeted primary metabolites, as can be seen on the
PCA of Fig. 3. Only the acidic and oxidative stress for
S. aureus and B. cereus, and the acidic and ethanolic stresses
for P. aeruginosa could be clearly distinguished from the

Fig. 2 a Principal component analysis of the 3 bacterial species grown
under normal in vitro conditions and the nutrient broth (negative control)
evaluated by HPLC-QqQ MS using the 96 targeted metabolites, and b

heatmap generated using hierarchical cluster analysis of the samples and
the targeted metabolites

Table 1 Values of optical density measurements at 600 nm of
P. aeruginosa, S. aureus, and B. cereus grown in normal (positive
control) and in five different stress conditions

S. aureus B. cereus P. aeruginosa

Stress types Optical density (600 nm)

None
(positive control)

1.73 1.77 1.39

Oxidative 0.10 0.11 1.09

Acidic 0.39 0.27 0.14

Basic 1.79a 1.64a 1.06

Ethanolic 1.27 1.30 0.24

Saline 1.81a 2.05a 1.89

a OD values not statistically different from the positive control

Fig. 3 Principal component analysis of the three bacterial samples grown
in normal in vitro conditions and in five different stress conditions using
the 96 targeted primarymetabolites (HPLC-QqQMS) (NB, nutrient broth
used as negative control)
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other conditions (Fig. 3, dotted line). This clustering most
likely corresponds to the altered growth rate of the bacteria
strains, as observed by the OD600 measurements. It has been
shown that in acidic environments, a decrease in intracellular
pH is observed which alters the structure of the bacterial mem-
brane, decreases the activity of several pH-dependent en-
zymes, and therefore alters bacterial growth and the metabo-
lites [15]. In addition, when plotting in the PCA the negative
control samples (bacteria-free nutrient broth with and without
the stressors), they cluster closely with the acidic and oxida-
tive conditions, as can be seen in Fig. 3. The nutrient broth
samples (negative controls) and the bacteria grown under
acidic and oxidative conditions were both characterized by a
higher amount of alanine, arginine, asparagine, aspartic acid,
glutamic acid, glycine, serine, and threonine. These amino
acids, as previously mentioned, are present specifically in
the nutrient broth and further consumed by the three bacterial
species for their normal growth. Therefore, these metabolites
are not bacterial stress response markers of acidic and/or ox-
idative conditions but rather, their presence represents altered
bacterial growth rate.

The targeted analysis of the selected primary metabolites
was very valuable for identification of and discrimination be-
tween the growth metabolism of the different bacterial spe-
cies, and as a reflection of variations/alterations in the normal
bacterial growth in vitro. However, the distinction between
bacterial species using the primary metabolites was more
complicated in the simulated situations in which a stress re-
sponse was induced.

Untargeted analysis of bacterial metabolites under
stress conditions

Untargeted MS-based metabolomics enable a more compre-
hensive analysis of the metabolome and therefore is a more
suitable tool/technique to identify bacterial species regardless
of the growth environments. The analysis of S. aureus,
B. cereus, and P. aeruginosa stress responses resulted in the
detection of a total of 24,000 features using UHPLC-QToF
MS (see data processing information in the “Untargeted meth-
odology (UHPLC-QToFMS)” section). To elucidate bacterial
stress responses, while identifying potential markers of the
different bacterial species, data reduction was performed.
Features identified in the blanks (mobile phase and extraction
solvents) together with features characterized by RSD > 30%
were removed from the dataset, reducing the number of fea-
tures to 1832.

PCA and HCA were performed to evaluate the discrimina-
tion between the three bacterial species grown in normal
in vitro conditions. Similar clustering as for the 96 primary
target metabolites (see the “Targeted analysis of primary me-
tabolites to discriminate bacterial species” section) was ob-
served when using these 1832 features, and biological

replicates clustered within the 95% confidence interval (see
ESM Fig. S2).

To further extract meaningful information, univariate and
multivariate statistical approaches were applied, as displayed
in Fig. 4. Bacteria were investigated in a “one versus all”
classi f icat ion method (i .e . , S. aureus vs others ,
P. aeruginosa vs others, and B. cereus vs others using volcano
plot (i.e., t-test and fold-change), partial least square discrim-
inant analysis (PLS-DA), and random forest (RF)). The fea-
tures shared by the three statistical approaches were further
investigated manually to ensure a Gaussian peak profile.
Combining univariate (volcano plot) and multivariate (PLS-
DA and RF) statistical approaches aimed at eliminating po-
tential bias in the feature selection process [17]. These data
reduction and feature selection approaches led to a final
dataset of 129 features, characterized by unique retention
times and accurate masses.

The combination of these 129 features enabled the com-
plete separation of the three bacterial species, as can be visu-
alized on the PCA score plot of Fig. 5a. Clear clustering of the
three species, regardless of the stress environment, can be
observed using only the two first PCs accounting for 88.8%
of the total variance within the dataset, indicating clear differ-
ences between the bacterial species. To further illustrate met-
abolic differences between the three bacteria, the 108 samples
were subjected to HCA. As can be observed in the resulting
heatmap of Fig. 5a (on the right), the metabolites were clus-
tered in three main groups. The first cluster (i) includes 66
metabolites among which 46 are more abundant in
P. aeruginosa. The second cluster (ii) contains 22 metabolites
that are more abundant in B. cereus. The third cluster (iii)
counts 41 metabolites among which 32 are more abundant
in S. aureus. Although the three microorganisms are clearly
separated on the PCA, P. aeruginosa in ethanolic environ-
ment shares a more similar profile with S. aureus, dictating
the misclassification of 2 replicates in the HCA (Fig. 5a).

In addition, as can be seen in Fig. 5b, for each bacterial
species, most replicates were well clustered into their respec-
tive growth environments. This highlights the potential of the
129 features to identify the bacteria species together with their
growth conditions. Groups further away from the positive
control (the bacteria grown in normal in vitro environment)
revealed significant alterations in the expression of the metab-
olites compared to the groups closer to the control group.

As observed with the analysis of the primary metabolites
(Fig. 3), the acidic and oxidative environments created distinc-
tive bacterial profiles. Better visible in Fig. 5b, the growth of
P. aeruginosa in acidic and ethanolic environments yielded
the most distinct profiles, separated on PC1 from the other
stress conditions. Unlike S. aureus and B. cereus,
P. aeruginosa exhibits an oxidative stress response and pig-
ment production Regulator (ospR) gene that senses oxidative
stress and regulates multiple pathways to enable its survival in
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oxidative environments [18]. However, it has been previously
shown that P. aeruginosa’s resistance to ethanol is lower than
S. aureus and B. cereus. Indeed, reduced growth rate and
motility have been observed when P. aeruginosa was grown
in ethanolic environments, even at low concentration [19].
This explains the clustering of P. aeruginosa under oxidative
stress with the control, while the ethanolic stress clusters clos-
er to the acidic stress.

For the three bacterial species, the saline growth condition
significantly impacted the metabolite profile and the saline
stress was distinguished from the other conditions by the sec-
ond PC. This could be explained by the fact that most of the
bacterial species present a strong response to hyperosmotic
salt conditions and can rapidly adapt to such environments.
Recently, it has been shown on a broad range of species that
salt stress alters hundreds of metabolites associated with the
central carbon metabolism and heme biosynthesis [20].

Finally, the basic environment (pH=9) yielded a similar
profile as the positive controls (i.e., the bacteria grownwithout
stressor), indicating rapid adaptations to higher alkalinity.
Recent studies reported normal growth rate of S. aureus and
P. aeruginosa until pH 9, while the optimal growth of
B. cereus was observed at pH 9 [21].

Tentative identification of bacterial species-specific
metabolites

From the untargeted analysis of bacterial metabolites, species-
specific features were detected. Such features present in one
bacteria type, regardless of the environment, and absent in
others are of interest as potential bacterial markers, which could

be used to diagnose their presence/occurrence in infections. For
S. aureus, 5 specific features were detected, while for B. cereus
and P. aeruginosa, 8 species-specific features were detected.

Although the use of data-independent acquisition (DIA)
enabled the generation of MS/MS spectra for almost all met-
abolic features, only 5% of MS/MS spectra are available in
databases, which makes the identification of metabolites in
untargeted analysis challenging [11]. Since no reference mass
spectra were available for the species-specific features
highlighted, molecular formulas were predicted from the pre-
cursor ion using the accurate mass, isotope ratio, and product
ion information. Molecular formulae presenting the highest
score and the lowest mass error (< 2 mDa) were selected
and are reported in Table 2. In addition, theoretical fragmen-
tation was generated for all predicted molecular formulas,
supporting the structure elucidation process, and therefore en-
abling the structure-based classification of the species-specific
features. Practically, each experimental MS/MS spectrumwas
compared to theoretical fragments calculated on known com-
pounds retrieved from structure databases. This approach is
often used for the annotation of metabolites with unknown
MS/MS spectra, i.e., that are not available in mass-spectral
databases and enables the interpretation and identification of
biochemically relevant pathways [12, 22].

The production of fatty acids (FAs) by B. cereus could be
explained by their major role in growth, adaptation, and sur-
vival. Unlike other Gram-positive bacteria, Bacillus species
are known to produce mainly branched-chain FAs, increasing
fluidity, and to display unusual FAs (cyclic or hydroxy), char-
acterized by antimicrobial properties [23]. In addition, it has
been shown that, in response to environmental changes, the

Fig. 4 Feature selection workflow, using volcano plot, PLS-DA, and RF, to identify influential features able to discriminate the bacterial species
regardless of the growth environment
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FA composition of Bacillus species is regulated to ensure
survival by maintaining cell membrane homeostasis.
Regarding P. aeruginosa, this species has the ability to form
biofilms, which requires polysaccharides, proteins, and
nucleic acids [24, 25]. Therefore, the identification of poly-
saccharides and peptides that are specific to P. aeruginosa
might be explained by its capacity to form biofilms. Finally,
it has been highlighted that under stress conditions, the purine
metabolism of S. aureus is altered. Specifically, under osmotic
stress, an increase of purine and glutamine has been highlight-
ed, which might reflect survival mechanisms [26].

Method performances

The intra-day repeatability of the targeted HPLC-QqQ MS
method, in both ESI+ and ESI− mode, was evaluated using
the area response of the 1 ppm standard solution containing 36
standards, while the intra-day repeatability of the untargeted

UHPLC-QToF MS method in ESI− mode was evaluated
using the area response of the 1 ppm standard solution con-
taining 10 standards. The intra-day repeatability was evaluat-
ed on the analysis of four replicates of the standard solution in
water and in the nutrient broth. The standard solution spiked in
water was used to assess initially the repeatability of the
targeted and untargeted methodologies prior to their use on
the bacterial cultures. In addition, the same standard solution
was spiked in the growth media (nutrient broth) and it was
used to monitor the repeatability during the analysis of the
three bacterial cultures.

Good intra-day repeatability was obtained for both the
targeted and untargeted methods. The targeted method gave
average RSD of 7.2% and 7.9% from the analysis of the stan-
dard solution, in water and in nutrient broth, respectively.
Concerning the untargeted method, average RSD of 5.6%
and 5.0% were obtained from the analysis of the standard
solution, in water and in nutrient broth, respectively. The

Fig. 5 a Principal component analysis of the 3 bacterial species grown
under normal in vitro conditions and in five different stress conditions
evaluated by UHPLC-QToF MS using 129 features (left) and heatmap
generated using hierarchical cluster analysis of the samples and the 129
features, from which 3 clusters were highlighted. b Principal component

analysis of S. aureus (left), B. cereus (middle), and P. aeruginosa (right)
grown under different environments: control (spring green), oxidative
(black), acidic (light blue), basic (pink), ethanolic (gray), and saline
(yellow)
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obtained average areas and %RSD for all the single standards
used in the mix are listed in the ESM Table S2 (for the HPLC-
QqQ MS method) and Table S3 (for the UHPLC-QToF MS
method). The higher response of the spiked standards in the
nutrient broth compared to water is due to their presence in the
original composition of the growth media. The investigation
of a possible contribution of the matrix was not within the
scope of the present study and can be assessed in a future
validation study. In any case, the presence of a matrix effect
would not affect the observations and conclusions of the pres-
ent study.

The inter-day repeatability was assessed using the area re-
sponse of the internal standard (2-isopropylmalic acid). It was
evaluated in four consecutive days using the 126 analyses
consisting of the three bacteria types grown under six environ-
ments and analyzed in six replicates and the six nutrient broth
samples analyzed in triplicates. Similar inter-day repeatability
for the internal standard was obtained in the targeted and
untargeted methods with an average RSD of 12% for the
targeted method, and of 13% for the untargeted method.

Conclusion

The combination of targeted and untargeted metabolomics
proved to be highly valuable for the differentiation of bacterial

species under normal and under stress conditions. The
targeted analysis of primary metabolites, using HPLC-QqQ
MS, was efficient to rapidly identify and discriminate between
the P. aeruginosa, S. aureus, and B. cereus microorganisms
under normal in vitro growth conditions. However, in altered
environments, the distinction between the bacterial species,
based on the initial target primary metabolites using HPLC-
QqQ MS, was no longer achievable.

In various stress environments (acidic, basic, oxidative,
saline, ethanolic), the untargeted UHPLC-QToF MS method
combined with univariate (t-test, fold-change) and multivari-
ate statistical analyses (PCA, PLS-DA, HCA, RF) proved to
be highly valuable for the global and accurate differentiation
of the bacterial species together with the various stress re-
sponses within each species. With this approach, 21 species-
specific metabolites were highlighted (Table 2), regardless of
the growth environment. The use of high-resolution MS, with
data-independent acquisition, enabled the prediction of mo-
lecular formulas and the structure-based classification of the
metabolites, belonging to fatty acids, polysaccharides, pep-
tides, and nucleotide base derivatives. Good intra-day repeat-
ability and inter-day repeatability (<10% RSD and <15%
RSD, respectively) were obtained for both the targeted and
the untargeted methods.

Further studies would require the validation of the identifi-
cation of the species-specific metabolites with standards, as

Table 2 Tentative identification of bacterial specific features detected by UHPLC-QToF MS

Bacterial species RT (min) Accurate mass Assigned adduct Molecular formula Error (mDa) Chemical ontology/structural classification

B. cereus 3.52 227.1146 [M-H]− C9H16N4O3 0.4 Arginine and derivatives

5.36 313.0738 [M-H]− C14H18O6S 1.3 Benzopyrans

5.45 215.0923 [M-H]− C10H16O5 0.2 Fatty acid esters

5.65 173.0811 [M-H]− C8H14O4 0.8 Fatty acid esters

6.18 252.1459 [M-H]− C11H19N5O2 0.7 Amino acids and derivatives

7.39 201.1113 [M-H]− C10H18O4 1.9 Fatty acid esters

8.02 279.9172 [M-H]− C5H3N3O5S3 −1.0 Unknown

10.63 387.2864 [M-H]− C20H40N2O5 0.0 Amino acids and derivatives

P. aeruginosa 5.34 437.1664 [M-H]− C23H26N4O3S −1.1 Amino acids and derivatives

5.93 279.0980 [M-H]− C13H16N2O5 0.6 Dipeptides

6.12 548.2118 [M-H]− C27H35NO11 1.9 Polysaccharides

6.15 412.2199 [M-H]− C18H31N5O6 0.3 Peptides

6.21 270.1455 [M-H]− C12H21N3O4 0.4 Alpha amino acid esters

8.10 490.1933 [M-H]− C26H29N5O3S −1.5 Phenylpyridines

8.70 537.3045 [M-H]− C25H42N6O7 −0.3 Dipeptides

9.31 470.2594 [M-H]− C25H37N5O2S 0.1 Phenylpyrazoles

S. aureus 2.12 159.0762 [M-H]− C6H12N2O3 1.3 Glutamine and derivatives

3.08 133.0148 [M-H]− C5H2N4O 0.8 Purine and derivatives

3.12 150.0409 [M-H]− C5H5N5O 1.2 Purine and derivatives

3.16 286.0168 [M-H]− C14H9NO4S 1.2 Benzothiazoles

5.25 547.1398 [M-H]− C33H24O8 0.0 Arylbenzofuran derivatives
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well as with a correlation of the metabolomic pathways lead-
ing to their production. The chemical validation of these me-
tabolites would also enable the development of a targeted
method, using MRM transitions, allowing a faster and easier
profiling of microorganisms under the various growth envi-
ronments. Such an approach could be then applied in numer-
ous matrices, from medical to environmental, and food appli-
cations, where the accurate classification and differentiation of
microorganisms is sought.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00216-021-03505-2.
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