[en] The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Tits, Alexandra ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Plougonven, Erwan ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Blouin, Stéphane; Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling > Ludwig Boltzmann Institute of Osteology
Hartmann, Markus A.; Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling > Ludwig Boltzmann Institute of Osteology
Kaux, Jean-François ; Université de Liège - ULiège > Département des sciences de la motricité > Médecine physique, réadaptation et traumatologie du sport
Drion, Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Méth. expér. des anim. de labo et éthique en expér. anim.
Fernandez, Justin; Auckland Bioengineering Institute - ABI > Faculty of Engineering > Musculoskeletal Modelling Group
van Lenthe, G. Harry; Katholieke Universiteit Leuven - KUL > Department of Mechanical Engineering > Biomechanics Section
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Language :
English
Title :
Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface
Lu, H. H. & Thomopoulos, S. Functional attachment of soft tissues to bone: Development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15, 201–226. 10.1146/annurev-bioeng-071910-124656 (2013). DOI: 10.1146/annurev-bioeng-071910-124656
Benjamin, M. & Ralphs, J. R. Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J. Anat. 193, 481–494. 10.1046/j.1469-7580.1998.19340481.x (1998). DOI: 10.1046/j.1469-7580.1998.19340481.x
Benjamin, M. et al. Where tendons and ligaments meet bone: Attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J. Anat. 208, 471–490. 10.1111/j.1469-7580.2006.00540.x (2006). DOI: 10.1111/j.1469-7580.2006.00540.x
Waggett, A. D., Ralphs, J. R., Kwan, A. P. L., Woodnutt, D. & Benjamin, M. Characterization of collagens and proteoglycans at the insertion of the human achilles tendon. Matrix Biol. 16, 457–470. 10.1016/S0945-053X(98)90017-8 (1998). DOI: 10.1016/S0945-053X(98)90017-8
Rossetti, L. et al. The microstructure and micromechanics of the tendon-bone insertion. Nat. Mater. 16, 664–670. 10.1038/nmat4863 (2017). DOI: 10.1038/nmat4863
Sartori, J. & Stark, H. Tracking tendon fibers to their insertion—a 3D analysis of the Achilles tendon enthesis in mice. Acta Biomater. 10.1016/j.actbio.2020.05.001 (2020). DOI: 10.1016/j.actbio.2020.05.001
Thomopoulos, S., Marquez, J. P., Weinberger, B., Birman, V. & Genin, G. M. Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J. Biomech. 39, 1842–1851. 10.1016/j.jbiomech.2005.05.021 (2006). DOI: 10.1016/j.jbiomech.2005.05.021
Spalazzi, J. P., Boskey, A. L., Pleshko, N. & Lu, H. H. Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS One 8, e74349. 10.1371/journal.pone.0074349 (2013). DOI: 10.1371/journal.pone.0074349
Hu, Y. Z. et al. Stochastic Interdigitation as a Toughening Mechanism at the Interface between Tendon and Bone. Biophys. J. 108, 431–437. 10.1016/j.bpj.2014.09.049 (2015). DOI: 10.1016/j.bpj.2014.09.049
Deymier-Black, A. C., Pasteris, J. D., Genin, G. M. & Thomopoulos, S. Allometry of the tendon enthesis: Mechanisms of load transfer between tendon and bone. J. Biomech. Eng. 137, 111005–111008. 10.1115/1.4031571 (2015). DOI: 10.1115/1.4031571
Abraham, A. C. & Haut Donahue, T. L. From meniscus to bone: A quantitative evaluation of structure and function of the human meniscal attachments. Acta Biomater. 9, 6322–6329. 10.1016/j.actbio.2013.01.031 (2013). DOI: 10.1016/j.actbio.2013.01.031
Deymier, A. C. et al. Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomater. 10.1016/j.actbio.2017.01.037 (2017). DOI: 10.1016/j.actbio.2017.01.037
Moffat, K. L. et al. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl. Acad. Sci. USA 105, 7947–7952. 10.1073/pnas.0712150105 (2008). DOI: 10.1073/pnas.0712150105
Genin, G. M. et al. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97, 976–985. 10.1016/j.bpj.2009.05.043 (2009). DOI: 10.1016/j.bpj.2009.05.043
Sevick, J. L. et al. Fibril deformation under load of the rabbit Achilles tendon and medial collateral ligament femoral entheses. J. Orthop. Res. 36, 2506–2515. 10.1002/jor.23912 (2018). DOI: 10.1002/jor.23912
Aghaei, A., Bochud, N., Rosi, G. & Naili, S. Assessing the effective elastic properties of the tendon-to-bone insertion: A multiscale modeling approach. Biomech. Model. Mech. 10.1007/s10237-020-01392-7 (2020). DOI: 10.1007/s10237-020-01392-7
Tits, A. & Ruffoni, D. Joining soft tissues to bone: Insights from modeling and simulations. Bone Rep. 14, 100742. 10.1016/j.bonr.2020.100742 (2021). DOI: 10.1016/j.bonr.2020.100742
Shaw, H. & Benjamin, M. Structure–function relationships of entheses in relation to mechanical load and exercise. Scand. J. Med. Sci. Sports 17, 303–315 (2007). DOI: 10.1111/j.1600-0838.2007.00689.x
Benjamin, M. & McGonagle, D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J. Anat. 199, 503–526. 10.1046/j.1469-7580.2001.19950503.x (2001). DOI: 10.1046/j.1469-7580.2001.19950503.x
Benjamin, M. & McGonagle, D. Histopathologic changes at “synovio–entheseal complexes” suggesting a novel mechanism for synovitis in osteoarthritis and spondylarthritis. Arthritis Rheum. 56, 3601–3609. 10.1002/art.23078 (2007). DOI: 10.1002/art.23078
Weiss, P. F. Diagnosis and treatment of enthesitis-related arthritis. Adolesc. Health Med. Ther. 2012, 67–74. 10.2147/AHMT.S25872 (2012). DOI: 10.2147/AHMT.S25872
Benjamin, M., Tyers, R. N. & Ralphs, J. R. Age-related changes in tendon fibrocartilage. J. Anat. 179, 127–136 (1991).
Villotte, S. & Knüsel, C. J. Understanding entheseal changes: Definition and life course changes. Int. J. Osteoarchaeol. 23, 135–146. 10.1002/oa.2289 (2013). DOI: 10.1002/oa.2289
Maganaris, C. N., Narici, M. V., Almekinders, L. C. & Maffulli, N. Biomechanics and pathophysiology of overuse tendon injuries. Sports Med. 34, 1005–1017. 10.2165/00007256-200434140-00005 (2004). DOI: 10.2165/00007256-200434140-00005
Apostolakos, J. et al. The enthesis: A review of the tendon-to-bone insertion. Muscles Ligaments Tendons J. 4, 333–342 (2014). DOI: 10.32098/mltj.03.2014.12
Bunker, D. L. J., Ilie, V., Ilie, V. & Nicklin, S. Tendon to bone healing and its implications for surgery. Muscles Ligaments Tendons J. 4, 343–350 (2014). DOI: 10.32098/mltj.03.2014.13
Derwin, K. A., Galatz, L. M., Ratcliffe, A. & Thomopoulos, S. Enthesis repair: Challenges and opportunities for effective tendon-to-bone healing. J. Bone Jt. Surg. 100, e109–e109. 10.2106/JBJS.18.00200 (2018). DOI: 10.2106/JBJS.18.00200
Harryman, D. et al. Repairs of the rotator cuff. Correlation of functional results with. J. Bone Jt. Surg. Am. 73, 982–989 (1991). DOI: 10.2106/00004623-199173070-00004
Galatz, L. M., Ball, C. M., Teefey, S. A., Middleton, W. D. & Yamaguchi, K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J. Bone Jt. Surg. Am. 86a, 219–224 (2004). DOI: 10.2106/00004623-200402000-00002
Keene, G. Arthroscopic reconstruction of the anterior cruciate ligament. A comparison of patellar tendon autograft and four-strand hamstring tendon autograft. Am. J. Sports Med. 28, 438 (2000).
Simon, D. et al. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv. Orthop. 2015, 928301–928301. 10.1155/2015/928301 (2015). DOI: 10.1155/2015/928301
Griffith, J. F., Antonio, G. E., Tong, C. W. C. & Ming, C. K. Cruciate ligament avulsion fractures. Arthrosc. J. Arthrosc. Relat. Surg. 20, 803–812. 10.1016/j.arthro.2004.06.007 (2004). DOI: 10.1016/j.arthro.2004.06.007
Beavis, R. C., Rourke, K. & Court-Brown, C. Avulsion fracture of the calcaneal tuberosity: A case report and literature review. Foot Ankle Int. 29, 863–866. 10.3113/FAI.2008.0000 (2008). DOI: 10.3113/FAI.2008.0000
Hamilton, S. W. & Gibson, P. H. Simultaneous bilateral avulsion fractures of the tibial tuberosity in adolescence: A case report and review of over 50 years of literature. Knee 13, 404–407. 10.1016/j.knee.2006.04.008 (2006). DOI: 10.1016/j.knee.2006.04.008
Porr, J., Lucaciu, C. & Birkett, S. Avulsion fractures of the pelvis - a qualitative systematic review of the literature. J. Can. Chiropr. Assoc. 55, 247–255 (2011).
Weinkamer, R. & Fratzl, P. Mechanical adaptation of biological materials—the examples of bone and wood. Mater. Sci. Eng. C 31, 1164–1173. 10.1016/j.msec.2010.12.002 (2011). DOI: 10.1016/j.msec.2010.12.002
Lukas, C. et al. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 56, 55–60. 10.1016/j.bone.2013.05.005 (2013). DOI: 10.1016/j.bone.2013.05.005
Schulte, F. A. et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS One 8, e62172. 10.1371/journal.pone.0062172 (2013). DOI: 10.1371/journal.pone.0062172
Christen, P. et al. Bone remodelling in humans is load-driven but not lazy. Nat. Commun. 5, 4855. 10.1038/ncomms5855 (2014). DOI: 10.1038/ncomms5855
Lambers, F. M. et al. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone 55, 325–334. 10.1016/j.bone.2013.04.016 (2013). DOI: 10.1016/j.bone.2013.04.016
Cheong, V. S., Roberts, B. C., Kadirkamanathan, V. & Dall’Ara, E. Bone remodelling in the mouse tibia is spatio-temporally modulated by oestrogen deficiency and external mechanical loading: A combined in vivo/in silico study. Acta Biomater. 116, 302–317. 10.1016/j.actbio.2020.09.011 (2020). DOI: 10.1016/j.actbio.2020.09.011
Li, Z., Müller, R. & Ruffoni, D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J. Orthop. Res. 36, 584–593. 10.1002/jor.23758 (2018). DOI: 10.1002/jor.23758
Razi, H. et al. Aging leads to a dysregulation in mechanically driven bone formation and resorption. J. Bone Miner. Res. 30, 1864–1873. 10.1002/jbmr.2528 (2015). DOI: 10.1002/jbmr.2528
Li, Z. et al. Mechanical regulation of bone formation and resorption around implants in a mouse model of osteopenic bone. J. R. Soc. Interface 16, 667. 10.1098/rsif.2018.0667 (2019). DOI: 10.1098/rsif.2018.0667
Pratt, I. V. & Cooper, D. M. L. A method for measuring the three-dimensional orientation of cortical canals with implications for comparative analysis of bone microstructure in vertebrates. Micron 92, 32–38. 10.1016/j.micron.2016.10.006 (2017). DOI: 10.1016/j.micron.2016.10.006
Britz, H. M., Jokihaara, J., Leppänen, O. V., Järvinen, T. L. N. & Cooper, D. M. L. The effects of immobilization on vascular canal orientation in rat cortical bone. J. Anat. 220, 67–76. 10.1111/j.1469-7580.2011.01450.x (2012). DOI: 10.1111/j.1469-7580.2011.01450.x
van Oers, R. F. M., Wang, H. & Bacabac, R. G. Osteocyte shape and mechanical loading. Curr. Osteoporos. Rep. 13, 61–66. 10.1007/s11914-015-0256-1 (2015). DOI: 10.1007/s11914-015-0256-1
Hemmatian, H. et al. Mechanical loading differentially affects osteocytes in fibulae from lactating mice compared to osteocytes in virgin mice: Possible role for lacuna size. Calcified Tissue Int. 103, 675–685. 10.1007/s00223-018-0463-8 (2018). DOI: 10.1007/s00223-018-0463-8
Milovanovic, P. & Busse, B. Inter-site variability of the human osteocyte lacunar network: Implications for bone quality. Curr. Osteoporos. Rep. 17, 105–115. 10.1007/s11914-019-00508-y (2019). DOI: 10.1007/s11914-019-00508-y
van Tol, A. F. et al. The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc. Natl. Acad. Sci. USA 117, 32251. 10.1073/pnas.2011504117 (2020). DOI: 10.1073/pnas.2011504117
Rufai, A., Benjamin, M. & Ralphs, J. Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat. Embryol. 186, 611–618 (1992). DOI: 10.1007/BF00186984
Rufai, A., Ralphs, J. & Benjamin, M. Structure and histopathology of the insertional region of the human Achilles tendon. J. Orthop. Res. 13, 585–593 (1995). DOI: 10.1002/jor.1100130414
Feldkamp, L. A., Davis, L. C. & Kress, J. W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1, 612–619. 10.1364/JOSAA.1.000612 (1984). DOI: 10.1364/JOSAA.1.000612
Doube, M. et al. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079. 10.1016/j.bone.2010.08.023 (2010). DOI: 10.1016/j.bone.2010.08.023
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. 10.1038/nmeth.2089 (2012). DOI: 10.1038/nmeth.2089
Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468–1486. 10.1002/jbmr.141 (2010). DOI: 10.1002/jbmr.141
Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9, 62–66. 10.1109/TSMC.1979.4310076 (1979). DOI: 10.1109/TSMC.1979.4310076
Kittler, J. & Illingworth, J. On threshold selection using clustering criteria. IEEE Trans. Syst. Man Cybern. 20, 652–655 (1985). DOI: 10.1109/TSMC.1985.6313443
Bruker. Bruker MicroCT method note: Automated trabecular and cortical bone selection.
Saparin, P., Scherf, H., Hublin, J.-J., Fratzl, P. & Weinkamer, R. Structural adaptation of trabecular bone revealed by position resolved analysis of proximal femora of different primates. Anat. Rec. 294, 55–67. 10.1002/ar.21285 (2011). DOI: 10.1002/ar.21285
Bruker. Bruker MicroCT method note: Anisotropy, Mean Intercept Length (MIL) and stereology calculation in CT Analyser (MN031_1).
Whitehouse, W. J. The quantitative morphology of anisotropic trabecular bone. J. Microsc. 101, 153–168. 10.1111/j.1365-2818.1974.tb03878.x (1974). DOI: 10.1111/j.1365-2818.1974.tb03878.x
Harrigan, T. P. & Mann, R. W. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19, 761–767. 10.1007/BF00540446 (1984). DOI: 10.1007/BF00540446
Kauppinen, S. et al. 3D morphometric analysis of calcified cartilage properties using micro-computed tomography. Osteoarthr. Cartil. 27, 172–180 (2019). DOI: 10.1016/j.joca.2018.09.009
Clark, J. M. The structure of vascular channels in the subchondral plate. J. Anat. 171, 105 (1990).
Palacio-Mancheno, P. E., Larriera, A. I., Doty, S. B., Cardoso, L. & Fritton, S. P. 3D assessment of cortical bone porosity and tissue mineral density using high-resolution µCT: Effects of resolution and threshold method. J. Bone Miner. Res. 29, 142–150 (2014). DOI: 10.1002/jbmr.2012
Ciani, C., Doty, S. B. & Fritton, S. P. An effective histological staining process to visualize bone interstitial fluid space using confocal microscopy. Bone 44, 1015–1017 (2009). DOI: 10.1016/j.bone.2009.01.376
Bush, P. G., Parisinos, C. A. & Hall, A. C. The osmotic sensitivity of rat growth plate chondrocytes in situ; clarifying the mechanisms of hypertrophy. J. Cell. Physiol. 214, 621–629 (2008). DOI: 10.1002/jcp.21249
Hall, A. C. The role of chondrocyte morphology and volume in controlling phenotype—implications for osteoarthritis, cartilage repair, and cartilage engineering. Curr. Rheumatol. Rep. 21, 38 (2019). DOI: 10.1007/s11926-019-0837-6
Chaumel, J. et al. Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage. Bone 20, 115264 (2020). DOI: 10.1016/j.bone.2020.115264
Rufai, A., Ralphs, J. R. & Benjamin, M. Ultrastructure of fibrocartilages at the insertion of the rat Achilles tendon. J. Anat. 189, 185–191 (1996).
Cooper, D. M., Turinsky, A. L., Sensen, C. W. & Hallgrímsson, B. Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat. Record Part B N. Anat. 274, 169–179 (2003).
Pudney, C. Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72, 404–413. 10.1006/cviu.1998.0680 (1998). DOI: 10.1006/cviu.1998.0680
Malandain, G., Bertrand, G. & Ayache, N. Topological segmentation of discrete surfaces. Int. J. Comput. Vis. 10, 183–197. 10.1007/BF01420736 (1993). DOI: 10.1007/BF01420736
Plougonven, E. 3D image analysis and visualisation modules for Avizo. chemeng.uliege.be/ep-avizo.
Wadell, H. Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932). DOI: 10.1086/623964
Rajczakowska, M., Stefaniuk, D. Sobótka, M. Roughness analysis of the “invisible” surface by means of X-ray micro-CT.
Kerckhofs, G. et al. High-resolution microfocus X-ray computed tomography for 3D surface roughness measurements of additive manufactured porous materials. Adv. Eng. Mater 15, 153–158 (2013). DOI: 10.1002/adem.201200156
Gupta, H. et al. Two different correlations between nanoindentation modulus and mineral content in the bone–cartilage interface. J. Struct. Biol. 149, 138–148 (2005). DOI: 10.1016/j.jsb.2004.10.010
Peacock, J. A. Two-dimensional goodness-of-fit testing in astronomy. Mon. Not. R. Astron. Soc. 202, 615–627 (1983). DOI: 10.1093/mnras/202.3.615
Muir, D. kstest_2s_2d(x1, x2, alpha). MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/38617-kstest_2s_2d-x1-x2-alpha (2020).
Shipov, A. et al. Unremodeled endochondral bone is a major architectural component of the cortical bone of the rat (Rattus norvegicus). J. Struct. Biol. 183, 132–140 (2013). DOI: 10.1016/j.jsb.2013.04.010
Hsu, P.-Y. et al. Cortical bone morphological and trabecular bone microarchitectural changes in the mandible and femoral neck of ovariectomized rats. PLoS One 11, e0154367–e0154367. 10.1371/journal.pone.0154367 (2016). DOI: 10.1371/journal.pone.0154367
Britz, H., Jokihaara, J., Leppänen, O., Järvinen, T. & Cooper, D. 3D visualization and quantification of rat cortical bone porosity using a desktop micro-CT system: A case study in the tibia. J. Microsc. 240, 32–37 (2010). DOI: 10.1111/j.1365-2818.2010.03381.x
Willie, B. M., Zimmermann, E. A., Vitienes, I., Main, R. P. & Komarova, S. V. Bone adaptation: Safety factors and load predictability in shaping skeletal form. Bone 131, 115114. 10.1016/j.bone.2019.115114 (2020). DOI: 10.1016/j.bone.2019.115114
Skedros, J. G., Su, S. C., Knight, A. N., Bloebaum, R. D. & Bachus, K. N. Advancing the deer calcaneus model for bone adaptation studies: Ex vivo strains obtained after transecting the tension members suggest an unrecognized important role for shear strains. J. Anat. 234, 66–82. 10.1111/joa.12905 (2019). DOI: 10.1111/joa.12905
Skedros, J. G., Su, S. C. & Bloebaum, R. D. Biomechanical implications of mineral content and microstructural variations in cortical bone of horse, elk, and sheep calcanei. Anat. Rec. 249, 297–316. 10.1002/(SICI)1097-0185(199711)249:3%3c297::AID-AR1%3e3.0.CO;2-S (1997). DOI: 10.1002/(SICI)1097-0185(199711)249:3<297::AID-AR1>3.0.CO;2-S
Su, S. C., Skedros, J. G., Bachus, K. N. & Bloebaum, R. D. Loading conditions and cortical bone construction of an artiodactyl calcaneus. J. Exp. Biol. 202, 3239 (1999). DOI: 10.1242/jeb.202.22.3239
Biewener, A. A., Fazzalari, N. L., Konieczynski, D. D. & Baudinette, R. V. Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse. Bone 19, 1–8. 10.1016/8756-3282(96)00116-0 (1996). DOI: 10.1016/8756-3282(96)00116-0
Benjamin, M. et al. The skeletal attachment of tendons—tendon ‘entheses’. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 931–945. 10.1016/S1095-6433(02)00138-1 (2002). DOI: 10.1016/S1095-6433(02)00138-1
Djukić, K., Milovanović, P., Milenković, P. & Djurić, M. A microarchitectural assessment of the gluteal tuberosity suggests two possible patterns in entheseal changes. Am. J. Phys. Anthropol. 172, 291–299. 10.1002/ajpa.24038 (2020). DOI: 10.1002/ajpa.24038
Dunlop, J. W. C., Weinkamer, R. & Fratzl, P. Artful interfaces within biological materials. Mater Today 14, 70–78 (2011). DOI: 10.1016/S1369-7021(11)70056-6
Gabet, Y. et al. Trabecular bone gradient in rat long bone metaphyses: Mathematical modeling and application to morphometric measurements and correction of implant positioning. J. Bone Miner. Res. 23, 48–57 (2008). DOI: 10.1359/jbmr.070901
Ruffoni, D. & van Lenthe, G. H. Comprehensive Biomaterials (Elsevier Science, 2010).
Ruffoni, D. et al. High-throughput quantification of the mechanical competence of murine femora—a highly automated approach for large-scale genetic studies. Bone 55, 216–221. 10.1016/j.bone.2013.02.015 (2013). DOI: 10.1016/j.bone.2013.02.015
Locke, R. C. et al. Strain distribution of intact rat rotator cuff tendon-to-bone attachments and attachments with defects. J. Biomech. Eng. 10.1115/1.4038111 (2017).
Cordisco, F. A., Zavattieri, P. D., Hector, L. G. Jr. & Bower, A. F. Toughness of a patterned interface between two elastically dissimilar solids. Eng. Fract. Mech. 96, 192–208 (2012). DOI: 10.1016/j.engfracmech.2012.07.018
Caimmi, F. & Pavan, A. An experimental evaluation of glass–polymer interfacial toughness. Eng. Fract. Mech. 76, 2731–2747. 10.1016/j.engfracmech.2009.06.014 (2009). DOI: 10.1016/j.engfracmech.2009.06.014
Zhao, L., Thambyah, A. & Broom, N. D. A multi-scale structural study of the porcine anterior cruciate ligament tibial enthesis. J. Anat. 224, 624–633 (2014). DOI: 10.1111/joa.12174
Milz, S. et al. Three-dimensional reconstructions of the Achilles tendon insertion in man. J. Anat. 200, 145–152 (2002). DOI: 10.1046/j.0021-8782.2001.00016.x
Ferguson, V. L., Bushby, A. J. & Boyde, A. Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203, 191–202. 10.1046/j.1469-7580.2003.00193.x (2003). DOI: 10.1046/j.1469-7580.2003.00193.x
Donaldson, F. et al. Modeling microdamage behavior of cortical bone. Biomech. Model. Mech. 13, 1227–1242. 10.1007/s10237-014-0568-6 (2014). DOI: 10.1007/s10237-014-0568-6
Kerschnitzki, M. et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J. Struct. Biol. 173, 303–311. 10.1016/j.jsb.2010.11.014 (2011). DOI: 10.1016/j.jsb.2010.11.014
Vatsa, A. et al. Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing?. Bone 43, 452–458 (2008). DOI: 10.1016/j.bone.2008.01.030
Carter, Y. et al. Variation in osteocyte lacunar morphology and density in the human femur—a synchrotron radiation micro-CT study. Bone 52, 126–132. 10.1016/j.bone.2012.09.010 (2013). DOI: 10.1016/j.bone.2012.09.010
Hemmatian, H. et al. Age-related changes in female mouse cortical bone microporosity. Bone 113, 1–8 (2018). DOI: 10.1016/j.bone.2018.05.003
Tommasini, S. M. et al. Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT. Bone 50, 596–604. 10.1016/j.bone.2011.12.012 (2012). DOI: 10.1016/j.bone.2011.12.012
Thomopoulos, S. et al. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J. Orthop. Res. 25, 1154–1163 (2007). DOI: 10.1002/jor.20418
Thomopoulos, S. The role of mechanobiology in the attachment of tendon to bone. IBMS BoneKEy 8 (2011).
Schwartz, A. G., Long, F. & Thomopoulos, S. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment. Development 142, 196. 10.1242/dev.112714 (2015). DOI: 10.1242/dev.112714
Schwartz, A. G., Pasteris, J. D., Genin, G. M., Daulton, T. L. & Thomopoulos, S. Mineral distributions at the developing tendon enthesis. PLoS One 7, e48630 (2012). DOI: 10.1371/journal.pone.0048630
Cury, D. P., Dias, F. J., Miglino, M. A. & Watanabe, I.-S. Structural and ultrastructural characteristics of bone-tendon junction of the calcaneal tendon of adult and elderly wistar rats. PLoS One 11, e0153568. 10.1371/journal.pone.0153568 (2016). DOI: 10.1371/journal.pone.0153568
Vidal, B. D. C., dos Anjos, E. H. M. & Mello, M. L. S. Optical anisotropy reveals molecular order in a mouse enthesis. Cell Tissue Res. 362, 177–185. 10.1007/s00441-015-2173-0 (2015). DOI: 10.1007/s00441-015-2173-0
McCoy, M. G. et al. Collagen fiber orientation regulates 3D vascular network formation and alignment. ACS Biomater. Sci. Eng. 4, 2967–2976. 10.1021/acsbiomaterials.8b00384 (2018). DOI: 10.1021/acsbiomaterials.8b00384
Repp, F. et al. Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons. Bone Rep. 6, 101–108. 10.1016/j.bonr.2017.03.001 (2017). DOI: 10.1016/j.bonr.2017.03.001
Voleti, P. B., Buckley, M. R. & Soslowsky, L. J. Tendon healing: Repair and regeneration. Annu. Rev. Biomed. Eng. 14, 47–71 (2012). DOI: 10.1146/annurev-bioeng-071811-150122