Streptomyces; TORK; common scab; lipopeptide; nonribosomal peptide; proteomics
Abstract :
[en] Streptomyces scabies is a phytopathogen associated with common scab disease. This is mainly attributed to its ability to produce the phytotoxin thaxtomin A, the biosynthesis of which is triggered by cellobiose. During a survey of other metabolites released in the presence of cellobiose, we discovered additional compounds in the thaxtomin-containing extract from Streptomyces scabies. Structural analysis by mass spectrometry (MS) and nuclear magnetic resonance (NMR) revealed that these compounds are amino acid sequence variants of the TOR (target of rapamycin) kinase (TORK) pathway inhibitory lipopeptide rotihibin A, and the main compounds were named rotihibins C and D. In contrast to thaxtomin, the production of rotihibins C and D was also elicited in the presence of glucose, indicating different regulation of their biosynthesis. Through a combination of shotgun and targeted proteomics, the putative rotihibin biosynthetic gene cluster rth was identified in the publicly available genome of S. scabies 87-22. This cluster spans 33 kbp and encodes 2 different nonribosomal peptide synthetases (NRPSs) and 12 additional enzymes. Homologous rth biosynthetic gene clusters were found in other publicly available and complete actinomycete genomes. Rotihibins C and D display herbicidal activity against Lemna minor and Arabidopsis thaliana at low concentrations, shown by monitoring the effects on growth and the maximal photochemistry efficiency of photosystem II.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège InBios - Integrative Biological Sciences - ULiège Laboratory for Microbiology - Department of Biochemistry and Microbiology - Ghent University NMR and Structure Analysis Group - Ghent University Laboratory of Applied Mycology and Phenomics - Department of Plants and Crops - Ghent University
Disciplines :
Microbiology
Author, co-author :
Planckaert, Sören
Deflandre, Benoit ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
de Vries, Anne-Mare
Ameye, Maarten
Martins, José
Audenaert, Kris
Rigali, Sébastien ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Devreese, Bart
Language :
English
Title :
Identification of Novel Rotihibin Analogues in Streptomyces scabies, Including Discovery of its Biosynthetic Gene Cluster
Alternative titles :
[fr] Identification de nouveaux analogues des rotihibines et de leur cluster de gènes de biosynthèse chez Streptomyces scabies
Publication date :
04 August 2021
Journal title :
Microbiology Spectrum
eISSN :
2165-0497
Publisher :
American Society for Microbiology, United States
Volume :
9
Issue :
1
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique UGent - Ghent University
1. Loria R, Kers J, Joshi M. 2006. Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469–487. https://doi.org/10.1146/annurev.phyto.44.032905.091147.
2. Lerat S, Simao-Beaunoir AM, Beaulieu C. 2009. Genetic and physiological determinants of Streptomyces scabies pathogenicity. Mol Plant Pathol 10:579–585. https://doi.org/10.1111/j.1364-3703.2009.00561.x.
3. Bouchek-Mechiche K, Gardan L, Normand P, Jouan B. 2000. DNA relatedness among strains of Streptomyces pathogenic to potato in France: description of three new species, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S. reticuliscabiei sp. nov. associated with netted scab. Int J Syst Evol Microbiol 50(Part 1):91–99. https://doi.org/10.1099/00207713-50-1-91.
4. Faucher E, Otrysko B, Paradis É, Hodge NC, Stall RE, Beaulieu C. 1993. Characterization of streptomycetes causing russet scab in Québec. Plant Dis 77:1217–1220. https://doi.org/10.1094/PD-77-1217.
5. Guan D, Grau BL, Clark CA, Taylor CM, Loria R, Pettis GS. 2012. Evidence that thaxtomin C is a pathogenicity determinant of Streptomyces ipomoeae, the causative agent of Streptomyces soil rot disease of sweet potato. Mol Plant Microbe Interact 25:393–401. https://doi.org/10.1094/MPMI-03-11-0073.
6. King RR, Lawrence CH, Clark MC, Calhoun LA. 1989. Isolation and characterization of phytotoxins associated with Streptomyces scabies. J Chem Soc Chem Commun (Camb) 1989:849–850. https://doi.org/10.1039/c39890000849.
7. Loria R, Bignell DR, Moll S, Huguet-Tapia JC, Joshi MV, Johnson EG, Seipke RF, Gibson DM. 2008. Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek 94:3–10. https://doi.org/10.1007/s10482-008-9240-4.
8. Bischoff V, Cookson SJ, Wu S, Scheible WR. 2009. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J Exp Bot 60:955–965. https://doi.org/10.1093/jxb/ern344.
9. Scheible WR, Fry B, Kochevenko A, Schindelasch D, Zimmerli L, Somerville S, Loria R, Somerville CR. 2003. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 15:1781–1794. https://doi.org/10.1105/tpc.013342.
10. Wach MJ, Krasnoff SB, Loria R, Gibson DM. 2007. Effect of carbohydrates on the production of thaxtomin A by Streptomyces acidiscabies. Arch Microbiol 188:81–88. https://doi.org/10.1007/s00203-007-0225-x.
11. Jourdan S, Francis IM, Kim MJ, Salazar JJ, Planckaert S, Frere JM, Matagne A, Kerff F, Devreese B, Loria R, Rigali S. 2016. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci Rep 6:27144. https://doi.org/10.1038/srep27144.
12. Joshi MV, Bignell DR, Johnson EG, Sparks JP, Gibson DM, Loria R. 2007. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol Microbiol 66:633-642. https://doi.org/10.1111/j.1365-2958.2007.05942.x.
13. Francis IM, Jourdan S, Fanara S, Loria R, Rigali S. 2015. The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. mBio 6:e02018–14. https://doi.org/10.1128/mBio.02018-14.
14. Bignell DR, Francis IM, Fyans JK, Loria R. 2014. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. Mol Plant Microbe Interact 27:875–885. https://doi.org/10.1094/MPMI-02-14-0037-R.
15. Planckaert S, Jourdan S, Francis IM, Deflandre B, Rigali S, Devreese B. 2018. Proteomic response to thaxtomin phytotoxin elicitor cellobiose and to deletion of cellulose utilization regulator CebR in Streptomyces scabies. J Proteome Res 17:3837–3852. https://doi.org/10.1021/acs.jproteome.8b00528.
16. Natsume M, Ryu R, Abe H. 1996. Production of phytotoxins, concanamycins A and B by Streptomyces spp. causing potato [Solanum tuberosum] scab. Ann Phytopathol Soc Jpn 62:411–413. https://doi.org/10.3186/jjphytopath.62.411.
17. Natsume M, Tashiro N, Doi A, Nishi Y, Kawaide H. 2017. Effects of concanamycins produced by Streptomyces scabies on lesion type of common scab of potato. J Gen Plant Pathol 83:78–82. https://doi.org/10.1007/s10327-017-0696-9.
18. Bignell DR, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, Loria R. 2010. Streptomyces scabies 87–22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant Microbe Interact 23:161–175. https://doi.org/10.1094/MPMI-23-2-0161.
19. Natsume M, Komiya M, Koyanagi F, Tashiro N, Kawaide H, Abe H. 2005. Phytotoxin produced by Streptomyces sp. causing potato russet scab in Japan. J Gen Plant Pathol 71:364–369. https://doi.org/10.1007/s10327-005-0211-6.
20. Cao Z, Khodakaramian G, Arakawa K, Kinashi H. 2012. Isolation of borrelidin as a phytotoxic compound from a potato pathogenic streptomyces strain. Biosci Biotechnol Biochem 76:353–357. https://doi.org/10.1271/bbb.110799.
21. Park DH, Kim JS, Kwon SW, Wilson C, Yu YM, Hur JH, Lim CK. 2003. Streptomyces luridiscabiei sp. nov., Streptomyces puniciscabiei sp. nov. and Streptomyces niveiscabiei sp. nov., which cause potato common scab disease in Korea. Int J Syst Evol Microbiol 53:2049–2054. https://doi.org/10.1099/ijs.0.02629-0.
22. Natsume M, Nagagata A, Aittamaa M, Okaniwa N, Somervuo P, Fiedler HP, Kreuze JF, Rokka V-M, Bång H, Kawaide H, Valkonen JPT. 2018. Phytotoxin produced by the netted scab pathogen, Streptomyces turgidiscabies strain 65, isolated in Sweden. J Gen Plant Pathol 84:108–117. https://doi.org/10.1007/s10327-018-0765-8.
23. Fukuchi N, Furihata K, Takayama S, Isogai A, Suzuki A. 1992. Rotihibin A, a novel plant growth regulator, from Streptomyces sp. Biosci Biotechnol Biochem 56:840–841. https://doi.org/10.1271/bbb.56.840.
24. Fukuchi N, Nakayama J, Takayama S, Isogai A, Suzuki A. 1992. Structural elucidation of rotihibin B by tandem mass spectrometry. Biosci Biotechnol Biochem 56:1152–1153. https://doi.org/10.1271/bbb.56.1152.
25. Fukuchi N, Furihata K, Nakayama J, Goudo T, Takayama S, Isogai A, Suzuki A. 1995. Rotihibins, novel plant growth regulators from Streptomyces graminofaciens. J Antibiot (Tokyo) 48:1004–1010. https://doi.org/10.7164/antibiotics.48.1004.
26. Halder V, Oeljeklaus J, Heilmann G, Krahn JH, Liu Y, Xiong Y, Schlicht M, Schillinger J, Kracher B, Ehrmann M, Kombrink E, Kaschani F, Kaiser M. 2018. Identification of the natural product rotihibin A as a TOR kinase signaling inhibitor by unbiased transcriptional profiling. Chemistry 24:12500–12504. https://doi.org/10.1002/chem.201802647.
27. Mohimani H, Gurevich A, Mikheenko A, Garg N, Nothias LF, Ninomiya A, Takada K, Dorrestein PC, Pevzner PA. 2017. Dereplication of peptidic natural products through database search of mass spectra. Nat Chem Biol 13:30–37. https://doi.org/10.1038/nchembio.2219.
28. el-Sayed ES. 2000. Production of thaxtomin A by two species of Streptomyces causing potato scab. Folia Microbiol (Praha) 45:415–422. https://doi.org/10.1007/BF02817614.
29. Jourdan S, Francis IM, Deflandre B, Tenconi E, Riley J, Planckaert S, Tocquin P, Martinet L, Devreese B, Loria R, Rigali S. 2018. Contribution of the beta-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies. Mol Plant Pathol 19:1480–1490. https://doi.org/10.1111/mpp.12631.
30. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH. 2015. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. https://doi.org/10.1093/nar/gkv437.
31. Wattam AR, Brettin T, Davis JJ, Gerdes S, Kenyon R, Machi D, Mao C, Olson R, Overbeek R, Pusch GD, Shukla MP, Stevens R, Vonstein V, Warren A, Xia F, Yoo H. 2018. Assembly, annotation, and comparative genomics in PATRIC, the All Bacterial Bioinformatics Resource Center. Methods Mol Biol 1704:79–101. https://doi.org/10.1007/978-1-4939-7463-4_4.
32. Yin X, Zabriskie TM. 2006. The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology (Reading) 152:2969–2983. https://doi.org/10.1099/mic.0.29043-0.
33. Kim M-S, Bae M, Jung Y-E, Kim JM, Hwang S, Song MC, Ban YH, Bae ES, Hong S, Lee SK, Cha S-S, Oh D-C, Yoon YJ. 7 May 2021. Unprecedented noncanonical features of the nonlinear nonribosomal peptide synthetase assembly line for WS9326A biosynthesis. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.202103872.
34. Manavalan B, Murugapiran SK, Lee G, Choi S. 2010. Molecular modeling of the reductase domain to elucidate the reaction mechanism of reduction of peptidyl thioester into its corresponding alcohol in non-ribosomal peptide synthetases. BMC Struct Biol 10:1. https://doi.org/10.1186/1472-6807-10-1.
35. Thomas MG, Chan YA, Ozanick SG. 2003. Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin bio-synthetic gene cluster. Antimicrob Agents Chemother 47:2823–2830. https://doi.org/10.1128/AAC.47.9.2823-2830.2003.
36. Felnagle EA, Rondon MR, Berti AD, Crosby HA, Thomas MG. 2007. Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin. Appl Environ Microbiol 73:4162–4170. https://doi.org/10.1128/AEM.00485-07.
37. Drake EJ, Cao J, Qu J, Shah MB, Straubinger RM, Gulick AM. 2007. The 1.8 A crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of Pseudomonas aeruginosa. J Biol Chem 282:20425–20434. https://doi.org/10.1074/jbc.M611833200.
38. Lee KS, Lee BM, Ryu JH, Kim DH, Kim YH, Lim SK. 2016. Increased vancomycin production by overexpression of MbtH-like protein in Amycolatopsis orientalis KFCC10990P. Lett Appl Microbiol 63:222–228. https://doi.org/10.1111/lam.12617.
39. Lautru S, Oves-Costales D, Pernodet JL, Challis GL. 2007. MbtH-like protein-mediated cross-talk between non-ribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. Microbiology (Reading) 153:1405–1412. https://doi.org/10.1099/mic0.2006/003145-0.
40. Li Y, Liu J, Adekunle D, Bown L, Tahlan K, Bignell DRD. 2019. TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies. Mol Plant Pathol 20:1379–1393. https://doi.org/10.1111/mpp.12843.
41. Neary JM, Powell A, Gordon L, Milne C, Flett F, Wilkinson B, Smith CP, Micklefield J. 2007. An asparagine oxygenase (AsnO) and a 3-hydroxyasparaginyl phosphotransferase (HasP) are involved in the biosynthesis of calcium-dependent lipopeptide antibiotics. Microbiology (Reading) 153:768–776. https://doi.org/10.1099/mic0.2006/002725-0.
42. Miao V, Brost R, Chapple J, She K, Gal MF, Baltz RH. 2006. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol 33:129–140. https://doi.org/10.1007/s10295-005-0028-5.
43. Saum SH, Muller V. 2008. Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10:716–726. https://doi.org/10.1111/j.1462-2920.2007.01494.x.
44. Vandenende CS, Vlasschaert M, Seah SY. 2004. Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 186:5596–5602. https://doi.org/10.1128/JB.186.17.5596-5602.2004.
45. Ho ati Z, Milne C, Harvey B, Gordon L, Borg M, Flett F, Wilkinson B, Sidebottom PJ, Rudd BA, Hayes MA, Smith CP, Micklefield J. 2002. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9:1175–1187. https://doi.org/10.1016/s1074-5521(02)00252-1.
46. Miao V, Coeffet-Legal MF, Brian P, Brost R, Penn J, Whiting A, Martin S, Ford R, Parr I, Bouchard M, Silva CJ, Wrigley SK, Baltz RH. 2005. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology (Reading) 151:1507–1523. https://doi.org/10.1099/mic0.27757-0.
47. Galica T, Hrouzek P, Mares J. 2017. Genome mining reveals high incidence of putative lipopeptide biosynthesis NRPS/PKS clusters containing fatty acyl-AMP ligase genes in biofilm-forming cyanobacteria. J Phycol 53:985–998. https://doi.org/10.1111/jpy.12555.
48. Hoertz AJ, Hamburger JB, Gooden DM, Bednar MM, McCafferty DG. 2012. Studies on the biosynthesis of the lipodepsipeptide antibiotic ramoplanin A2. Bioorg Med Chem 20:859–865. https://doi.org/10.1016/j.bmc.2011.11.062.
49. Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R. 2013. Interspecies interactions stimulate diversification of the Streptomyces coeli-color secreted metabolome. mBio 4:e00459–13. https://doi.org/10.1128/mBio.00459-13.
50. Li W, Sharma M, Kaur P. 2014. The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J Biol Chem 289:12633–12646. https://doi.org/10.1074/jbc.M113.536136.
51. Bown L, Altowairish MS, Fyans JK, Bignell DR. 2016. Production of the Streptomyces scabies coronafacoyl phytotoxins involves a novel biosynthetic pathway with an F420-dependent oxidoreductase and a short-chain dehydrogenase/reductase. Mol Microbiol 101:122–135. https://doi.org/10.1111/mmi.13378.
52. Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759.
53. Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, Xu L, Liu H, Xu T, Xiong Y. 2017. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc Natl Acad Sci USA 114:2765–2770. https://doi.org/10.1073/pnas.1618782114.
54. Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H. 2006. Disease resistance induced by nonantagonistic endophytic Streptomyces spp. on tissue-cultured seedlings of rhododendron. J Gen Plant Pathol 72:351–354. https://doi.org/10.1007/s10327-006-0305-9.
55. Mingma R, Pathom-Aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K. 2014. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30:271–280. https://doi.org/10.1007/s11274-013-1451-9.
56. Li X, Lai X, Gan L, Long X, Hou Y, Zhang Y, Tian Y. 2018. Streptomyces geranii sp. nov., a novel endophytic actinobacterium isolated from root of Geranium carolinianum L. Int J Syst Evol Microbiol 68:2562–2567. https://doi.org/10.1099/ijsem.0.002876.
57. Yu Y, Bai L, Minagawa K, Jian X, Li L, Li J, Chen S, Cao E, Mahmud T, Floss HG, Zhou X, Deng Z. 2005. Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol 71:5066–5076. https://doi.org/10.1128/AEM.7L9.5066-5076.2005.
58. Franco CM, Borde UP, Vijayakumar EK, Chatterjee S, Blumbach J, Ganguli BN. 1991. Butalactin, a new butanolide antibiotic. Taxonomy, fermentation, isolation and biological activity. J Antibiot (Tokyo) 44:225–231. https://doi.org/10.7164/antibiotics.44.225.
59. Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U. 2016. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270. https://doi.org/10.1016/j.micres.2016.08.005.
60. Nettleton DE, Doyle TW, Krishnan B, Matsumoto GK, Clardy J. 1985. Isolation and structure of rebeccamycin—a new antitumor antibiotic from Nocardia aerocoligenes. Tetrahedron Lett 26:4011–4014. https://doi.org/10.1016/S0040-4039(00)89280-1.
61. Cryle MJ, Meinhart A, Schlichting I. 2010. Structural characterization of OxyD, a cytochrome P450 involved in beta-hydroxytyrosine formation in vancomycin biosynthesis. J Biol Chem 285:24562–24574. https://doi.org/10.1074/jbc.M110.131904.
62. Healy FG, Krasnoff SB, Wach M, Gibson DM, Loria R. 2002. Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies. J Bacteriol 184:2019–2029. https://doi.org/10.1128/JB.184.7.2019-2029.2002.
63. Gust B, Challis GL, Fowler K, Kieser T, Chater KF. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546. https://doi.org/10.1073/pnas.0337542100.
64. Bignell DR, Tahlan K, Colvin KR, Jensen SE, Leskiw BK. 2005. Expression of ccaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on bldG. Antimicrob Agents Chemother 49:1529–1541. https://doi.org/10.1128/AAC.49.4.1529-1541.2005.
66. UniProt Consortium. 2018. UniProt: the universal protein knowledgebase. Nucleic Acids Res 46:2699. https://doi.org/10.1093/nar/gky092.
67. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054.
68. Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL, Wyatt MA, Magarvey NA. 2015. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res 43:9645–9662. https://doi.org/10.1093/nar/gkv1012.
69. Skinnider MA, Johnston CW, Edgar RE, Dejong CA, Merwin NJ, Rees PN, Magarvey NA. 2016. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc Natl Acad Sci USA 113:E6343–E6351. https://doi.org/10.1073/pnas.1609014113.
70. Baranasic D, Zucko J, Diminic J, Gacesa R, Long PF, Cullum J, Hranueli D, Starcevic A. 2014. Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing. J Ind Microbiol Biotechnol 41:461-467. https://doi.org/10.1007/s10295-013-1322-2.
71. Prieto C. 2016. Characterization of nonribosomal peptide synthetases with NRPSsp. Methods Mol Biol 1401:273–278. https://doi.org/10.1007/978-1-4939-3375-4_17.
72. Bachmann BO, Ravel J. 2009. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 458:181–217. https://doi.org/10.1016/S0076-6879(09)04808-3.
73. Knudsen M, Sondergaard D, Tofting-Olesen C, Hansen FT, Brodersen DE, Pedersen CN. 2016. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases. Bioinformatics 32:325–329. https://doi.org/10.1093/bioinformatics/btv600.
74. Megateli S, Dosnon-Olette R, Trotel-Aziz P, Geffard A, Semsari S, Couderchet M. 2013. Simultaneous effects of two fungicides (copper and dimethomorph) on their phytoremediation using Lemna minor. Ecotoxicology 22:683–692. https://doi.org/10.1007/s10646-013-1060-2.
75. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
76. RStudio Team. 2020. RStudio: integrated development for R. RStudio, PBC, Boston, MA.
77. R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
78. Wickham H. 2011. ggplot2. WIREs Comp Stat 3:180-185. https://doi.org/10.1002/wics.147.
79. Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, Eddes J, Loevenich SN, Aebersold R. 2006. The PeptideAtlas project. Nucleic Acids Res 34:D655–D658. https://doi.org/10.1093/nar/gkj040.
80. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. John Innes Foundation, Norwich, United Kingdom.