Assessment of anti-inflammatory-like, antioxidant activities and molecular docking of three alkynyl-substituted 3-ylidene-dihydrobenzo[d]isothiazole 1,1-dioxide derivatives.
[en] The presence of enyne and benzoisothiazole functions in the molecular architecture of compounds 1, 2 and 3 were expected to provide biochemical activities. In the present work, we first examined the molecular surface contact of three alkynyl-substituted 3-ylidenedihydrobenzo[d] isothiazole 1,1-dioxides. The analysis of the Hirshfeld surfaces reveals that only compound 3 exhibited a well-defined red spots, indicating intermolecular interactions identified as S-O⋯H, C-H⋯O and C-O⋯H contacts. Comparative fingerprint histograms of the three compounds show that close pair interactions are dominated by C-H⋯H-C contact. By UV-visible analysis, compound 1 showed the most intense absorbances at 407 and 441 nm, respectively. The radical scavenging activity explored in the DPPH test, shows that only 1 exhibited low anti-radical activity. Furthermore, cellular antioxidant capacity of benzoisothiazoles 1-3 was investigated with PMA-activated HL-60 cells using chemiluminescence and fluorescence techniques in the presence of L-012 and Amplex Red probe, respectively. Results highlight that compound 1 exhibited moderate anti-ROS capacity while compounds 2 and 3 enhanced ROS production. The cytotoxicity test performed on HL-60 cells, using the MTS assay, confirmed the lack of toxicity of the tested benzoisothiazole 1 compared to 2 and 3 which show low cytotoxicity (≤30%). Anti-catalytic activity was evaluated by following the inhibitory potential of the benzoisothiazoles on MPO activity and depicted benzoisothiazoles-MPO interactions by docking. Both SIEFED and docking studies demonstrated an anti-catalytic activity of the tested benzoisothiazoles towards MPO with the best activity for compound 2.
Disciplines :
Chemistry
Author, co-author :
Etse, Koffi Senam ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Etsè, Kodjo Djidjolé; Université de Lomé > Faculté des Sciences (FDS) > Laboratoire de Physiologie et Biotechnologie Végétales
Nyssen, Pauline ; Université de Liège - ULiège > Département de physique > Spectroscopie biomédicale
Mouithys-Mickalad, Ange ; Université de Liège - ULiège > Centre de l'oxygène : Recherche et développement (C.O.R.D.)
Language :
English
Title :
Assessment of anti-inflammatory-like, antioxidant activities and molecular docking of three alkynyl-substituted 3-ylidene-dihydrobenzo[d]isothiazole 1,1-dioxide derivatives.
Fabricant, D.S., Farnsworth, N.R., The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 109 (2001), 69–75 https://doi:10.1289/ehp.01109s169.
Minto, R.E., Blacklock, B.J., Biosynthesis and function of polyacetylenes and allied natural products. Prog. Lipid Res. 47 (2008), 233–306 https://doi:10.1016/j.plipres.2008.02.002.
Wanke, T., Philippus, A.C., Zatelli, G.A., Vieira, L.F.O., Lhullier, C., Falkenberg, M., C15 acetogenins from the Laurencia complex: 50 years of research??? An overview. Brazilian J. Pharmacogn. 25 (2015), 569–587 https://doi:10.1016/j.bjp.2015.07.027.
Zampella, A., Valeria D'Auria, M., Minale, L., Debitus, C., Roussakis, C., Callipeltoside, A., A cytotoxic aminodeoxy sugar-containing macrolide of a new type from the marine lithistida sponge callipelta sp. J. Am. Chem. Soc. 118 (1996), 11085–11088, 10.1021/ja9621004.
Burghart, J., Brückner, R., Total synthesis of naturally configured Pyrrhoxanthin, a carotenoid butenolide from plankton. Angew. Chem. Int. Ed. 48 (2008), 7664–7668, 10.1002/anie.200801638.
Daly, J.W., Alkaloids of neotropical poison frogs (Dendrobatidae). Progress in the Chemistry of Organic Natural Products, vol. 41, 1982, Springer, Vienna, 205–340, 10.1007/978-3-7091-8656-5_6.
Leet, J.E., Schroeder, D.R., Langley, D.R., Colson, K.L., Huang, S., Klohr, S.E., Lee, M.S., Golik, J., Hofstead, S.J., Doyle, T.W., Matson, J.A., Chemistry and structure elucidation of the kedarcidin chromophore. J. Am. Chem. Soc. 115 (1993), 8432–8443, 10.1021/ja00071a062.
Tokiwa, Y., Miyoshi-Saitoh, M., Kobayashi, H., Sunaga, R., Konishi, M., Oki, T., Iwasaki, S., Biosynthesis of dynemicin A, a 3-ene-1,5-diyne antitumor antibiotic. J. Am. Chem. Soc. 114 (1992), 4107–4110, 10.1021/ja00037a011.
Drewes, S.E., Scogings, U.J., Wenteler, G.L., Structure determination of aphenolic pent-1-en-4-yne derivative from Hypoxis rooperi. Phytochemistry 28 (1989), 153–156, 10.1016/S0031-9422(00)80449-5.
Sontag, B., Rüth, M., Spiteller, P., Arnold, N., Steglich, W., Reichert, M., Bringmann, G., Chromogenic meroterpenoids from the mushrooms russula ochroleuca and R. Viscida. Eur. J. Org Chem., 2006, 1023–1033, 10.1002/ejoc.200500714 2006.
Ayyad, S.-E.N., Al-Footy, K.O., Alarif, W.M., Sobahi, T.R., Bassaif, S.A., Makki, M.S., Asiri, A.M., Al Halawani, A.Y., Badria, A.F., Badria, F.A.A., Bioactive C15 acetogenins from the red alga laurencia obtusa. Chem. Pharm. Bull. 59 (2011), 1294–1298, 10.1248/cpb.59.1294.
Mori, M., Recent progress on enyne metathesis: its application to syntheses of natural products and related compounds. Materials 3 (2010), 2087–2140, 10.3390/ma3032087.
Etse, K.S., Ngendera, A., Tshibalonza Ntumba, N., Demonceau, A., Delaude, L., Dragutan, I., Dragutan, V., Microwave-assisted olefin metathesis as pivotal step in the synthesis of bioactive compounds. Curr. Med. Chem. 24 (2017), 4538–4578, 10.2174/0929867324666170314122820.
Smit, B.J., Albrecht, C.F., Liebenberg, R.W., Kruger, P.B., Freestone, M., Gouws, L., Theron, E., Bouic, P.J., Etsebeth, S., van Jaarsveld, P.P., A phase I trial of hypoxoside as an oral prodrug for cancer therapy–absence of toxicity. S. Afr. Med. J. 85 (1995), 865–870 http://www.ncbi.nlm.nih.gov/pubmed/8545745.
Li, J., Kaoud, T.S., LeVieux, J., Gilbreath, B., Moharana, S., Dalby, K.N., Kerwin, S.M., A fluorescence-based assay for p38α recruitment site binders: identification of rooperol as a novel p38α kinase inhibitor. Chembiochem 14 (2013), 66–71, 10.1002/cbic.201200529.
Guzdek, A., Turyna, B., Allison, A.C., Sladek, K., Koj, A., Rooperol, an inhibitor of cytokine synthesis, decreases the respiratory burst in human and rat leukocytes and macrophages. Mediat. Inflamm. 6 (1997), 53–57, 10.1080/09629359791938.
Bereta, J., Bereta, M., Allison, A.C., Kruger, P.B., Koj, A., Inhibitory effect of di-catechol rooperol on VCAM-1 and iNOS expression in cytokine-stimulated endothelium. Life Sci. 60 (1997), 325–334, 10.1016/s0024-3205(96)00633-9.
Laporta, O., Funes, L., Garzón, M.T., Villalaín, J., Micol, V., Role of membranes on the antibacterial and anti-inflammatory activities of the bioactive compounds from Hypoxis rooperi corm extract. Arch. Biochem. Biophys. 467 (2007), 119–131, 10.1016/J.ABB.2007.08.013.
Boukes, G.J., van de Venter, M., Rooperol as an antioxidant and its role in the innate immune system: an in vitro study. J. Ethnopharmacol. 144 (2012), 692–699, 10.1016/j.jep.2012.10.014.
Kabanda, M.M., Antioxidant activity of rooperol investigated through Cu (I and II) chelation ability and the hydrogen transfer mechanism: a dft study. Chem. Res. Toxicol. 25 (2012), 2153–2166, 10.1021/tx300244z.
Laporta, O., Perez-Fons, L., Mallavia, R., Caturla, N., Micol, V., Isolation, characterization and antioxidant capacity assessment of the bioactive compounds derived from Hypoxis rooperi corm extract (African potato). Food Chem. 101 (2007), 1425–1437, 10.1016/j.foodchem.2006.03.051.
Zhang, H.J., Sydara, K., Tan, G.T., Ma, C., Southavong, B., Soejarto, D.D., Pezzuto, J.M., Fong, H.H.S., Bioactive constituents from Asparagus cochinchinensis. J. Nat. Prod. 67 (2004), 194–200, 10.1021/np030370b.
Chen, J.J., Lin, W.J., Liao, C.H., Shieh, P.C., Anti-inflammatory benzenoids from antrodia camphorata. J. Nat. Prod. 70 (2007), 989–992, 10.1021/np070045e.
Lee, C.-L., Huang, C.-H., Wang, H.-C., Chuang, D.-W., Wu, M.-J., Wang, S.-Y., Hwang, T.-L., Wu, C.-C., Chen, Y.-L., Chang, F.-R., Wu, Y.-C., First total synthesis of antrocamphin A and its analogs as anti-inflammatory and anti-platelet aggregation agents. Org. Biomol. Chem. 9 (2011), 70–73, 10.1039/c0ob00616e.
Fiandanese, V., Bottalico, D., Marchese, G., Punzi, A., New stereoselective methodology for the synthesis of dihydroxerulin and xerulin, potent inhibitors of the biosynthesis of cholesterol. Tetrahedron 60 (2004), 11421–11425, 10.1016/J.TET.2004.09.085.
Evans, D.A., Burch, J.D., Asymmetric synthesis of the chlorocyclopropane-containing callipeltoside A side chain. Org. Lett. 3 (2001), 503–505, 10.1021/ol0155182.
Zein, N., Sinha, A.M., McGahren, W.J., Ellestad, G.A., Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240 (1988), 1198–1201, 10.1126/science.3240341.
Etsè, K.S., Dassonneville, B., Zaragoza, G., Demonceau, A., One-pot, Pd/Cu-catalysed synthesis of alkynyl-substituted 3-ylidene-dihydrobenzo[d] isothiazole 1,1-dioxides. Tetrahedron Lett. 58 (2017), 789–793, 10.1016/j.tetlet.2017.01.041.
Janssen, G.V., van den Heuvel, J.A.C., Megens, R.P., Benningshof, J.C.J., Ovaa, H., Microwave-assisted diastereoselective two-step three-component synthesis for rapid access to drug-like libraries of substituted 3-amino-β-lactams. Bioorg. Med. Chem. 26 (2018), 41–49, 10.1016/J.BMC.2017.11.014.
Han, L., Wang, L., Hou, X., Fu, H., Song, W., Tang, W., Fang, H., Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorg. Med. Chem. 22 (2014), 1529–1538, 10.1016/J.BMC.2014.01.045.
Patil, R., Fells, J.I., Szabó, E., Lim, K.G., Norman, D.D., Balogh, A., Patil, S., Strobos, J., Miller, D.D., Tigyi, G.J., Design and synthesis of sulfamoyl benzoic acid analogues with subnanomolar agonist activity specific to the LPA2 receptor. J. Med. Chem. 57 (2014), 7136–7140, 10.1021/jm5007116.
Ferreira, L.G., Dos Santos, R.N., Oliva, G., Andricopulo, A.D., Molecular docking and structure-based drug design strategies. Molecules 20 (2015), 13384–13421, 10.3390/molecules200713384.
Soubhye, J., Alard, I.C., Aldib, I., Prevost, M., Gelbcke, M., Carvalho, A. De, Furtmüller, P.G., Obinger, C., Flemmig, J., Tadrent, S., Meyer, F., Rousseau, A., Neve, J., Mathieu, V., Boudjeltia, K.Z., Dufrasne, F., Van Antwerpen, Pierre, Discovery of novel potent reversible and irreversible myeloperoxidase inhibitors using virtual screening procedure. J. Med. Chem. 60 (2017), 6563–6586, 10.1021/acs.jmedchem.7b00285.
Mohapatra, R.K., Sarangi, A.K., Azam, M., El-ajaily, M.M., Kudrat-E-Zahan, Md, Patjoshi, S.B., Dashe, Dhruba C., Synthesis, structural investigations, DFT, molecular docking and antifungal studies of transition metal complexes with benzothiazole based Schiff base ligands. J. Mol. Struct. 1179 (2019), 65–75, 10.1016/j.molstruc.2018.10.070.
D'Ascenzio, M., Secci, D., Carradori, S., Zara, S., Guglielmi, P., Cirilli, R., Pierini, M., Poli, G., Tuccinardi, T., Angeli, A., Supuran, C.T., 1,3-Dipolar cycloaddition, HPLC enantioseparation, and docking studies of saccharin/isoxazole and saccharin/isoxazoline derivatives as selective carbonic anhydrase IX and XII inhibitors. J. Med. Chem. 63 (2020), 2470–2488, 10.1021/acs.jmedchem.9b01434.
Goel, P., Jumpertz, T., Mikles, D.C., Ticha ̌, A., Nguyen, M.T.N., Verhelst, S., Hubalek, M., Johnson, D.C., Bachovchin, D.A., Ogorek, I., Pietrzik, C.U., Strisovsky, K., Schmidt, B., Weggen, S., Discovery and biological evaluation of potent and selective N-methylene saccharin-derived inhibitors for rhomboid intramembrane proteases. Biochemistry 56 (2017), 6713–6725, 10.1021/acs.biochem.7b01066.
Hallingbäck, H.R., Gabdoulline, R.R., Wade, R.C., Comparison of the binding and reactivity of plant and mammalian peroxidases to indole derivatives by computational docking. Biochemistry 45 (2006), 2940–2950, 10.1021/bi051510e.
Morkūnaitė, V., Baranauskienė, L., Zubrienė, A., Kairys, V., Ivanova, J., Trapencieris, P., Matulis, D., Saccharin sulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII. BioMed Res. Int., 2014, 2014, 638902, 10.1155/2014/638902.
Shang, E., Wu, Y., Liu, P., Liu, Y., Zhu, W., Deng, X., He, C., He, S., Li, C., Lai, L., Benzo[d]isothiazole 1,1-dioxide derivatives as dual functional inhibitors of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1. Bioorg. Med. Chem. Lett 24 (2014), 2764–2767, 10.1016/j.bmcl.2014.04.006.
Grivennikov, S.I., Greten, F.R., Karin, M., Immunity, inflammation, and cancer. Cell 140 (2010), 883–899, 10.1016/j.cell.2010.01.025.
Kinkade, J.M., Pember, S.O., Barnes, K.C., Shapira, R., Spitznagel, J.K., Martin, L.E., Differential distribution of distinct forms of myeloperoxidase in different azurophilic granule subpopulations from human neutrophils. Biochem. Biophys. Res. Commun. 114 (1983), 296–303, 10.1016/0006-291X(83)91627-3.
Serteyn, D.D., Grulke, S., Franck, T.Y., Mouithys-Mickalad, A., Deby-dupont, G., La myéloperoxydase des neutrophiles, une enzyme de défense aux capacités oxydantes. Ann. Med. Vet. 147 (2003), 79–93.
Hampton, M.B., Kettle, A.J., Winterbourn, C.C., Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92 (1998), 3007–3017, 10.1182/blood.V92.9.3007.
Gaut, J.P., Yeh, G.C., Tran, H.D., Byun, J., Henderson, J.P., Richter, G.M., Brennan, M.L., Lusis, A.J., Belaaouaj, A., Hotchkiss, R.S., Heinecke, J.W., Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 11961–11966, 10.1073/pnas.211190298.
Lau, D., Baldus, S., Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol. Ther. 111 (2006), 16–26, 10.1016/j.pharmthera.2005.06.023.
Malle, E., Furtmüller, P.G., Sattler, W., Obinger, C., Myeloperoxidase: a target for new drug development?. Br. J. Pharmacol., 152, 2007, 838, 10.1038/SJ.BJP.0707358.
Soubhye, J., Aldib, I., Delporte, C., Prévost, M., Dufrasne, F., Antwerpen, P., Myeloperoxidase as a target for the treatment of inflammatory syndromes: mechanisms and structure activity relationships of inhibitors. Curr. Med. Chem. 23 (2016), 3975–4008, 10.2174/0929867323666160607111806.
Van Antwerpen, P., Prévost, M., Zouaoui-Boudjeltia, K., Babar, S., Legssyer, I., Moreau, P., Moguilevsky, N., Vanhaeverbeek, M., Ducobu, J., Nève, J., Dufrasne, F., Conception of myeloperoxidase inhibitors derived from flufenamic acid by computational docking and structure modification. Bioorg. Med. Chem. 16 (2008), 1702–1720, 10.1016/J.BMC.2007.11.025.
Aldib, I., Soubhye, J., Zouaoui Boudjeltia, K., Vanhaeverbeek, M., Rousseau, A., Furtmüller, P.G., Obinger, C., Dufrasne, F., Nève, J., Van Antwerpen, P., Prévost, M., Evaluation of new scaffolds of myeloperoxidase inhibitors by rational design combined with high-throughput virtual screening. J. Med. Chem. 55 (2012), 7208–7218, 10.1021/jm3007245.
Aldib, I., Gelbcke, M., Soubhye, J., Prévost, M., Furtmüller, P.G., Obinger, C., Elfving, B., Alard, I.C., Roos, G., Delporte, C., Berger, G., Dufour, D., Zouaoui Boudjeltia, K., Nève, J., Dufrasne, F., Van Antwerpen, P., Novel bis-arylalkylamines as myeloperoxidase inhibitors: design, synthesis, and structure-activity relationship study. Eur. J. Med. Chem. 123 (2016), 746–762, 10.1016/j.ejmech.2016.07.053.
Meek, I.L., van de Laar, M.A.F.J., Vonkeman, H.E., Non-steroidal anti-inflammatory drugs: an overview of cardiovascular risks. Pharmaceuticals 3 (2010), 2146–2162, 10.3390/ph3072146.
Omar, M., Khan, F., Lee, H.J., Synthesis and pharmacology of anti-inflammatory steroidal antedrugs. Chem. Rev. 108 (2008), 5131–5145, 10.1021/cr068203e.
Michaelidou, A.S., Hadjipavlou-Litina, D., Nonsteroidal anti-inflammatory drugs (NSAIDs): A comparative qsar study. Chem. Rev. 105 (2005), 3235–3271, 10.1021/cr040708m.
Ballini, A., Cantore, S., Scacco, S., Coletti, D., Tatullo, M., Mesenchymal stem cells as promoters, enhancers, and playmakers of the translational regenerative medicine 2018. Stem Cell. Int., 2018, 2018, 69274019, 10.1155/2018/6927401.
Spagnuolo, G., Codispoti, B., Marrelli, M., Rengo, C., Rengo, S., Tatullo, M., Commitment of oral-derived stem cells in dental and maxillofacial applications. Dent. J., 6, 2018, 72, 10.3390/dj6040072.
Peroni, J.F., Borjesson, D.L., Anti-inflammatory and immunomodulatory activities of stem. Cells. Vet. Clin. N. Am. Equine Pract. 27 (2011), 351–362, 10.1016/j.cveq.2011.06.003.
Vicini, P., Zani, F., Cozzini, P., Doytchinova, I., Hydrazones of 1,2-benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations. Eur. J. Med. Chem. 37 (2002), 553–564, 10.1016/S0223-5234(02)01378-8.
Marrelli, M., Codispoti, B., Shelton, R.M., Scheven, B.A., Cooper, P.R., Tatullo, M., Paduano, F., Dental pulp stem cell mechanoresponsiveness: effects of mechanical stimuli on dental pulp stem cell behavior. Front. Physiol., 9, 2018, 1685, 10.3389/fphys.2018.01685.
Tatullo, M., Spagnuolo, G., Codispoti, B., Zamparini, F., Zhang, A., Esposti, M.D., Aparicio, C., Rengo, C., Nuzzolese, M., Manzoli, L., Fava, F., Prati, C., Fabbri, P., Gandolfi, M.G., PLA-based mineral-doped scaffolds seeded with human periapical cyst-derived MSCs: a promising tool for regenerative healing in dentistry. Materials, 12, 2019, 597, 10.3390/ma12040597.
Wei, L., Hu, F., Shen, Y., Chen, Z., Yu, Y., Lin, C.-C., Wang, M.C., Min, W., Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11 (2014), 410–412, 10.1038/nmeth.2878.
Su, M., Zhu, X., Zhang, W., Probing the acyl carrier protein-enzyme interactions within terminal alkyne biosynthetic machinery. AIChE J. 64 (2018), 4255–4262, 10.1002/aic.16355.
Feltes, M.K., Moores, S., Gale, S.E., Krishnan, K., Mydock-McGrane, L., Covey, D.F., Ory, D.S., Schaffer, J.E., Synthesis and characterization of diazirine alkyne probes for the study of intracellular cholesterol trafficking. J. Lipid Res. 60 (2019), 707–716, 10.1194/jlr.D091470.
Franck, T., Mouithys-Mickalad, A., Robert, T., Ghitti, G., Deby-Dupont, G., Neven, P., Serteyn, D., Differentiation between stoichiometric and anticatalytic antioxidant properties of benzoic acid analogues: a structure/redox potential relationship study. Chem. Biol. Interact. 206 (2013), 194–203, 10.1016/j.cbi.2013.09.009.
Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 28 (1995), 25–30, 10.1016/S0023-6438(95)80008-5.
Tennant, J.R., Evaluation of the Trypan bleu technique for determination of cell viability. Transplantation 2 (1964), 685–694.
Tsumbu, C.N., Deby-Dupont, G., Tits, M., Angenot, L., Franck, T., Serteyn, D., Mouithys-Mickalad, A., Antioxidant and antiradical activities of manihot esculenta crantz (euphorbiaceae) leaves and other selected tropical green vegetables investigated on lipoperoxidation and phorbol-12-myristate-13-acetate (PMA) activated monocytes. Nutrients 3 (2011), 818–838, 10.3390/nu3090818.
Nyssen, P., Mouithys-Mickalad, A., Minguet, G., Sauvage, E., Wouters, J., Franck, T., Hoebeke, M., Morphine, a potential inhibitor of myeloperoxidase activity. Biochim. Biophys. Acta Gen. Subj. 1862 (2018), 2236–2244, 10.1016/J.BBAGEN.2018.07.007.
Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R., Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267 (1997), 727–748, 10.1006/JMBI.1996.0897.
Forbes, L.V., Sjogren, T., Auchere, F., Jenkins, D.W., Thong, B., Laughton, D., Hemsley, P., Pairaudeau, G., Turner, R., Eriksson, H., Unitt, J.F., Kettle, A.J., Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. J. Biol. Chem. 288 (2013), 36636–36647, 10.1074/jbc.M113.507756.
Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19 (1998), 1639–1662, 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.
DeLano, W.L., PyMOL. DeLanoScientific, San Carlos, DeLanoScientific, San Carlos, CA. 2002, 700.
Wallace, A.C., Laskowski, R.A., Thornton, J.M., Ligplot: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 8 (1995), 127–134, 10.1093/protein/8.2.127.
Vandenbelt, J.M., Doub, L., Characterization of the ultraviolet absorption spectra of some substituted benzene-sulfonamides. J. Am. Chem. Soc. 66 (1944), 1633–1636, 10.1021/ja01238a007.
Etse, K.S., Zaragoza, G., Pirotte, B., Crystal structure and Hirshfeld surface analysis of N-(2-(N-methylsulfamoyl)phenyl)formamide: degradation product of 2-methyl-2H-1,2,4-benzothiadiazine 1,1-dioxide. Eur. J. Chem. 10 (2019), 189–194, 10.5155/eurjchem.10.3.189-194.1903.
Phan, C.U., Shen, J., Liu, J., Mao, J., Hu, X., Tang, G., Isomorphous crystals formed by the similar supramolecular motifs in sorafenib hydrochloride and regorafenib hydrochloride salts. Crystals 9 (2019), 649–661, 10.3390/cryst9120649.
Etsè, K.S., Zaragoza, G., Boschini, F., Mahmoud, A., New N-methylimidazolium hexachloroantimonate: synthesis, crystal structure, Hirshfeld surface and catalytic activity of in cyclopropanation of stryrene. Inorg. Chem. Commun., 122, 2020, 108291, 10.1016/j.inoche.2020.108291.
Turner, M.A., M. J. McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Spackman, P.R., Jayatilaka, D., Spackman, CrystalExplorer17, University of Western Australia. 2017.
Ebalunode, J.O., Ouyang, Z., Liang, J., Zheng, W., Novel approach to structure-based pharmacophore search using computational geometry and shape matching techniques. J. Chem. Inf. Model. 48 (2008), 889–901, 10.1021/ci700368p.
Etsè, K.S., Zaragoza, G., Etsè, K.D., Easy preparation of novel 3,3-dimethyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide: molecular structure, Hirshfeld surface, NCI analyses and molecular docking on AMPA receptors. J. Mol. Struct., 1238, 2021, 130435, 10.1016/j.molstruc.2021.130435 Published.
Mio, M.J., Kopel, L.C., Braun, J.B., Gadzikwa, T.L., Hull, K.L., Brisbois, R.G., Markworth, C.J., Grieco, P.A., One-Pot synthesis of symmetrical and unsymmetrical bisarylethynes by a modification of the sonogashira coupling reaction. Org. Lett. 4 (2002), 3199–3202, 10.1021/ol026266n.
Chakraborty, S., Hill, A.L., Shirsekar, G., Afzal, A.J., Wang, G.L., Mackey, D., Bonello, P., Quantification of hydrogen peroxide in plant tissues using Amplex Red. Methods 109 (2016), 105–113, 10.1016/j.ymeth.2016.07.016.
Reszka, K.J., Wagner, B.A., Burns, C.P., Britigan, B.E., Effects of peroxidase substrates on the Amplex red/peroxidase assay: antioxidant properties of anthracyclines. Anal. Biochem. 342 (2005), 327–337, 10.1016/j.ab.2005.04.017.
Malich, G., Markovic, B., Winder, C., The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 124 (1997), 179–192, 10.1016/S0300-483X(97)00151-0.
Shiba, Y., Kinoshita, T., Chuman, H., Taketani, Y., Takeda, E., Kato, Y., Naito, M., Kawabata, K., Ishisaka, A., Terao, J., Kawai, Y., Flavonoids as substrates and inhibitors of myeloperoxidase: molecular actions of aglycone and metabolites. Chem. Res. Toxicol. 21 (2008), 1600–1609, 10.1021/tx8000835.
Plewczynski, D., Łaźniewski, M., Augustyniak, R., Ginalski, K., Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem. 32 (2011), 742–755, 10.1002/jcc.21643.
Pantsar, T., Poso, A., Binding affinity via docking: fact and fiction. Molecules, 23, 2018, 1899, 10.3390/molecules23081899.
Ramírez, D., Caballero, J., Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target?. Int. J. Mol. Sci., 17, 2016, 525, 10.3390/ijms17040525.