human epigenetic factor; IDPs; circular dichroism; amyloid fibrils
Abstract :
[en] Double PHD fingers 3 (DPF3) is a human epigenetic factor found in the multiprotein BRG1-associated factor (BAF) chromatin remodeling complex. It has two isoforms: DPF3b and DPF3a, but very little is known about the latter. Despite the lack of structural data, it has been established that DPF3a is involved in various protein-protein interactions and that it is subject to phosphorylation. These features are typical of intrinsically disordered proteins (IDPs) for which the disorder is essential to their functionality. IDPs are also prone to aggregation and can assemble into cytotoxic amyloid fibrils in specific pathological contexts. In the present work, the DPF3a disordered nature and propensity to aggregation have been investigated using a combination of disorder predictors and biophysical methods. The DPF3a-predicted disordered character has been correlated to a characteristic random coil signal in far-UV circular dichroism (CD) and to a fluorescence emission band typical of Trp residues fully exposed to the solvent. After DPF3a purification and 24 h of incubation at room temperature, dynamic light scattering confirmed the presence of DPF3a aggregates whose amyloid nature have been highlighted by a specific deep-blue autofluorescence signature, as well as by an increase in thioflavin T fluorescence upon binding. These results are supported by an enrichment in twisted β-sheets as observed in far-UV CD and a blue shift in intrinsic Trp fluorescence. Both indicate that DPF3a spontaneously tends to orderly aggregate into amyloid fibrils. The diversity of optical signatures originates from dynamical transitions between the disordered and aggregated states of the protein during the incubation. Transmission electron microscopy micrographs reveal that the DPF3a fibrillation process leads to the formation of short needle-shape filaments.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Mignon, Julien
Mottet, Denis ; Université de Liège - ULiège > GIGA Molecul. Biolog. of Diseases - Gene Expression & Cancer
Verrillo, Giulia ; Université de Liège - ULiège > GIGA Molecul. Biolog. of Diseases - Gene Expression & Cancer
Matagne, André ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie et repliement des protéines
Perpète, Eric A.
Michaux, Catherine
Language :
English
Title :
Revealing Intrinsic Disorder and Aggregation Properties of the DPF3a Zinc Finger Protein.
Publication date :
2021
Journal title :
ACS Omega
eISSN :
2470-1343
Publisher :
American Chemical Society, Washington DC, United States - Washington
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Lange, M.; Kaynak, B.; Forster, U. B.; Tönjes, M.; Fischer, J. J.; Grimm, C.; Schlesinger, J.; Just, S.; Dunkel, I.; Krueger, T.; Mebus, S.; Lehrach, H.; Lurz, R.; Gobom, J.; Rottbauer, W.; Abdelilah-Seyfried, S.; Sperling, S. Regulation of Muscle Development by DPF3, a Novel Histone Acetylation and Methylation Reader of the BAF Chromatin Remodeling Complex. Genes Dev. 2008, 22, 2370-2384, 10.1101/gad.471408
Ishizaka, A.; Mizutani, T.; Kobayashi, K.; Tando, T.; Sakurai, K.; Fujiwara, T.; Iba, H. Double Plant Homeodomain (PHD) Finger Proteins DPF3a and-3b Are Required as Transcriptional Co-Activators in SWI/SNF Complex-Dependent Activation of NF-KB RelA/P50 Heterodimer. J. Biol. Chem. 2012, 287, 11924-11933, 10.1074/jbc.m111.322792
Kulikova, D. A.; Mertsalov, I. B.; Simonova, O. B. D4 Family Genes: Genomic Organization and Expression. Russ. J. Dev. Biol. 2013, 44, 1-6, 10.1134/s1062360413010037
Sanchez, R.; Zhou, M. M. The PHD Finger: A Versatile Epigenome Reader. Trends Biochem. Sci. 2011, 36, 364-372, 10.1016/j.tibs.2011.03.005
Boamah, D.; Lin, T.; Poppinga, F. A.; Basu, S.; Rahman, S.; Essel, F.; Chakravarty, S. Characteristics of a PHD Finger Subtype. Biochemistry 2018, 57, 525-539, 10.1021/acs.biochem.7b00705
Zeng, L.; Zhang, Q.; Li, S.; Plotnikov, A. N.; Walsh, M. J.; Zhou, M.-M. Mechanism and Regulation of Acetylated Histone Binding by the Tandem PHD Finger of DPF3b. Nature 2010, 466, 258-262, 10.1038/nature09139
Li, W.; Zhao, A.; Tempel, W.; Loppnau, P.; Liu, Y. Crystal Structure of DPF3b in Complex with an Acetylated Histone Peptide. J. Struct. Biol. 2016, 195, 365-372, 10.1016/j.jsb.2016.07.001
Zhang, W.; Xu, C.; Bian, C.; Tempel, W.; Crombet, L.; MacKenzie, F.; Min, J.; Liu, Z.; Qi, C. Crystal Structure of the Cys2His2-Type Zinc Finger Domain of Human DPF2. Biochem. Biophys. Res. Commun. 2011, 413, 58-61, 10.1016/j.bbrc.2011.08.043
Cui, H.; Schlesinger, J.; Schoenhals, S.; Tönjes, M.; Dunkel, I.; Meierhofer, D.; Cano, E.; Schulz, K.; Berger, M. F.; Haack, T.; Abdelilah-Seyfried, S.; Bulyk, M. L.; Sauer, S.; Sperling, S. R. Phosphorylation of the Chromatin Remodeling Factor DPF3a Induces Cardiac Hypertrophy through Releasing HEY Repressors from DNA. Nucleic Acids Res. 2015, 44, 2538-2553, 10.1093/nar/gkv1244
El Hadidy, N.; Uversky, V. N. Intrinsic Disorder of the Baf Complex: Roles in Chromatin Remodeling and Disease Development. Int. J. Mol. Sci. 2019, 20, 5260, 10.3390/ijms20215260
Wright, P. E.; Dyson, H. J. Intrinsically Unstructured Proteins: Re-Assessing the Protein Structure-Function Paradigm. J. Mol. Biol. 1999, 293, 321-331, 10.1006/jmbi.1999.3110
Dunker, A. K.; Lawson, J. D.; Brown, C. J.; Williams, R. M.; Romero, P.; Oh, J. S.; Oldfield, C. J.; Campen, A. M.; Ratliff, C. M.; Hipps, K. W.; Ausio, J.; Nissen, M. S.; Reeves, R.; Kang, C.; Kissinger, C. R.; Bailey, R. W.; Griswold, M. D.; Chiu, W.; Garner, E. C.; Obradovic, Z. Intrinsically Disordered Protein. J. Mol. Graphics Modell. 2001, 19, 26-59, 10.1016/s1093-3263(00)00138-8
Tompa, P. Structure and Function of Intrinsically Disordered Proteins, 1 st ed.; Chapman & Hall/CRC Press: Boca Raton, 2009.
Wright, P. E.; Dyson, H. J. Intrinsically Disordered Proteins in Cellular Signaling and Regulation. Nat. Rev. Mol. Cell Biol. 2015, 16, 18-29, 10.1038/nrm3920
Darling, A. L.; Uversky, V. N. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Front. Genet. 2018, 9, 158, 10.3389/fgene.2018.00158
Metallo, S. J. Intrinsically Disordered Proteins Are Potential Drug Targets. Curr. Opin. Chem. Biol. 2010, 14, 481-488, 10.1016/j.cbpa.2010.06.169
Uversky, V. N. Intrinsically Disordered Proteins and Novel Strategies for Drug Discovery. Expert Opin. Drug Discovery 2012, 7, 475-488, 10.1517/17460441.2012.686489
Vasili, E.; Dominguez-Meijide, A.; Outeiro, T. F. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Front. Mol. Neurosci. 2019, 12, 107, 10.3389/fnmol.2019.00107
Maji, S. K.; Wang, L.; Greenwald, J.; Riek, R. Structure-Activity Relationship of Amyloid Fibrils. FEBS Lett. 2009, 583, 2610-2617, 10.1016/j.febslet.2009.07.003
Fitzpatrick, A. W. P.; Debelouchina, G. T.; Bayro, M. J.; Clare, D. K.; Caporini, M. A.; Bajaj, V. S.; Jaroniec, C. P.; Wang, L.; Ladizhansky, V.; Müller, S. A.; MacPhee, C. E.; Waudby, C. A.; Mott, H. R.; De Simone, A.; Knowles, T. P. J.; Saibil, H. R.; Vendruscolo, M.; Orlova, E. V.; Griffin, R. G.; Dobson, C. M. Atomic Structure and Hierarchical Assembly of a Cross-β Amyloid Fibril. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 5468-5473, 10.1073/pnas.1219476110
Uversky, V. N. Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an "Elephant and Blind Men" Situation. Intrinsically Disordered Proteins Studied by NMR Spectroscopy; Springer, 2015; pp 215-260.
Contreras-Martos, S.; Nguyen, H. H.; Nguyen, P. N.; Hristozova, N.; Macossay-Castillo, M.; Kovacs, D.; Bekesi, A.; Oemig, J. S.; Maes, D.; Pauwels, K.; Tompa, P.; Lebrun, P. Quantification of Intrinsically Disordered Proteins: A Problem Not Fully Appreciated. Front. Mol. Biosci. 2018, 5, 83, 10.3389/fmolb.2018.00083
Vivian, J. T.; Callis, P. R. Mechanisms of Tryptophan Fluorescence Shifts in Proteins. Biophys. J. 2001, 80, 2093-2109, 10.1016/s0006-3495(01)76183-8
Gentile, A.; Amadoro, G.; Corsetti, V.; Ciotti, M. T.; Serafino, A.; Calissano, P. Spontaneous Aggregation and Altered Intracellular Distribution of Endogenous α-Synuclein during Neuronal Apoptosis. J. Alzheimer's Dis. 2008, 13, 151-160, 10.3233/jad-2008-13205
de Oliveira, G. A. P.; Silva, J. L. Alpha-Synuclein Stepwise Aggregation Reveals Features of an Early Onset Mutation in Parkinson's Disease. Commun. Biol. 2019, 2, 374, 10.1038/s42003-019-0598-9
Tcherkasskaya, O.; Uversky, V. N. Denatured Collapsed States in Protein Folding: Example of Apomyoglobin. Proteins: Struct., Funct., Genet. 2001, 44, 244-254, 10.1002/prot.1089
Chan, F. T. S.; Kaminski Schierle, G. S.; Kumita, J. R.; Bertoncini, C. W.; Dobson, C. M.; Kaminski, C. F. Protein Amyloids Develop an Intrinsic Fluorescence Signature during Aggregation. Analyst 2013, 138, 2156-2162, 10.1039/c3an36798c
Sirangelo, I.; Borriello, M.; Irace, G.; Iannuzzi, C. Intrinsic Blue-Green Fluorescence in Amyloyd Fibrils. AIMS Biophys. 2018, 5, 155-165, 10.3934/biophy.2018.2.155
Nilsson, M. Techniques to Study Amyloid Fibril Formation in Vitro. Methods 2004, 34, 151-160, 10.1016/j.ymeth.2004.03.012
Manning, M. C.; Illangasekare, M.; Woody, R. W. Circular Dichroism Studies of Distorted α-Helices, Twisted β-Sheets, and β-Turns. Biophys. Chem. 1988, 31, 77-86, 10.1016/0301-4622(88)80011-5
Iyer, A.; Roeters, S. J.; Kogan, V.; Woutersen, S.; Claessens, M. M. A. E.; Subramaniam, V. C-Terminal Truncated α-Synuclein Fibrils Contain Strongly Twisted β-Sheets. J. Am. Chem. Soc. 2017, 139, 15392-15400, 10.1021/jacs.7b07403
Bhopatkar, A. A.; Uversky, V. N.; Rangachari, V. Disorder and Cysteines in Proteins: A Design for Orchestration of Conformational See-Saw and Modulatory Functions. Progress in Molecular Biology and Translational Science, 1 st ed.; Elsevier Inc., 2020; Vol. 174; pp 331-373.
Marinelli, P.; Navarro, S.; Graña-Montes, R.; Bañó-Polo, M.; Fernández, M. R.; Papaleo, E.; Ventura, S. A Single Cysteine Post-Translational Oxidation Suffices to Compromise Globular Proteins Kinetic Stability and Promote Amyloid Formation. Redox Biol. 2018, 14, 566-575, 10.1016/j.redox.2017.10.022
Miseta, A.; Csutora, P. Relationship between the Occurrence of Cysteine in Proteins and the Complexity of Organisms. Mol. Biol. Evol. 2000, 17, 1232-1239, 10.1093/oxfordjournals.molbev.a026406
Chen, G.-f.; Xu, T.-h.; Yan, Y.; Zhou, Y.-r.; Jiang, Y.; Melcher, K.; Xu, H. E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205-1235, 10.1038/aps.2017.28
Xu, S.; Brunden, K. R.; Trojanowski, J. Q.; Lee, V. M.-Y. Characterization of Tau Fibrillization in Vitro. Alzheimer's Dementia 2010, 6, 110-117, 10.1016/j.jalz.2009.06.002
Cohen, T. J.; Guo, J. L.; Hurtado, D. E.; Kwong, L. K.; Mills, I. P.; Trojanowski, J. Q.; Lee, V. M. Y. The Acetylation of Tau Inhibits Its Function and Promotes Pathological Tau Aggregation. Nat. Commun. 2011, 2, 252, 10.1038/ncomms1255
Karikari, T. K.; Nagel, D. A.; Grainger, A.; Clarke-Bland, C.; Hill, E. J.; Moffat, K. G. Preparation of Stable Tau Oligomers for Cellular and Biochemical Studies. Anal. Biochem. 2019, 566, 67-74, 10.1016/j.ab.2018.10.013
Fardanesh, A.; Zibaie, S.; Shariati, B.; Attar, F.; Rouhollah, F.; Akhtari, K.; Shahpasand, K.; Saboury, A. A.; Falahati, M. Amorphous Aggregation of Tau in the Presence of Titanium Dioxide Nanoparticles: Biophysical, Computational, and Cellular Studies. Int. J. Nanomed. 2019, 14, 901-911, 10.2147/ijn.s194658
Hiramatsu, H.; Kobayashi, K.; Kobayashi, K.; Haraguchi, T.; Ino, Y.; Todo, T.; Iba, H. The Role of the SWI/SNF Chromatin Remodeling Complex in Maintaining the Stemness of Glioma Initiating Cells. Sci. Rep. 2017, 7, 889, 10.1038/s41598-017-00982-3
Gill, S. C.; von Hippel, P. H. Calculation of Protein Extinction Coefficients from Amino Acid Sequence Data. Anal. Biochem. 1989, 182, 319-326, 10.1016/0003-2697(89)90602-7
Peng, K.; Vucetic, S.; Radivojac, P.; Brown, C. J.; Dunker, A. K.; Obradovic, Z. Optimizing Long Intrinsic Disorder Predictors With Protein Evolutionary Information. J. Bioinf. Comput. Biol. 2005, 3, 35-60, 10.1142/s0219720005000886
Williams, R. M.; Obradovi, Z.; Mathura, V.; Braun, W.; Garner, E. C.; Young, J.; Takayama, S.; Brown, C. J.; Dunker, A. K. The Protein Non-Folding Problem: Amino Acid Determinants of Intrinsic Order and Disorder. Pac. Symp. Biocomput. 2001, 2001, 89-100, 10.1142/9789814447362_0010
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.