[en] To understand the abilities of Ca-alginate microcapsules and their specific applications in different fields, it is necessary to
determine the physicochemical and structural properties of those formulated microcapsules. In this work, we aimed to study the
effect of alginate concentration in the improvement of the encapsulation efficiency (EE) and on the release of phenolic and
flavonoid substances. *e relationship between the structure of the encapsulated bioactive substance and Ca-alginate network and
their effect on the EE and release kinetics have been investigated. *e incorporation, structure, morphology, and phase properties
of all elaborated materials were characterized by UV-spectroscopy, Fourier transform infrared (ATR-FTIR), scanning electron
microscope (SEM), and X-ray diffraction (DRX). *e results indicate that increasing the polymer concentration increases the EE
and decreases the loading capacity (LC), whereas the effect of alginate polymer concentration on the release was not observed. *e
release study of bioactive substances showed that the release kinetics is relatively dependent on the structure and the physicochemical characteristics of the bioactive substance, which became clear when the encapsulated compounds were released from
the core of calcium alginate microcapsules. *us, it could be concluded that the pores size of the Ca-alginate network is smaller
than the volume of the crocin molecule (2794.926A˚ 3
) and higher than the volume of the gallic acid molecule (527.659A˚ 3
). For the
same microcapsules system, the release mechanism is affected by the structure and physicochemical properties of the
encapsulated molecules.
Disciplines :
Agriculture & agronomy Chemistry
Author, co-author :
Essifi, Kamal
BERRAAOUN, Doha
Ed-Daoui, Aberrahim
Brahmi, Mohamed
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Tahani, Abdesselam
Language :
English
Title :
Influence of sodium alginate concentration on microcapsules properties foreseeing the protection and controlled release of bioactive substances
Publication date :
August 2021
Journal title :
Journal of Chemistry
ISSN :
2090-9063
eISSN :
2090-9071
Publisher :
Hindawi Publishing Corporation, New-York, United States - New York
Gray A., Egan S., Bakalis S., Zhang Z., Determination of microcapsule physicochemical, structural, and mechanical properties. Particuology 2016, 24, 32, 43, 10.1016/j.partic.2015.06.002, 2-s2.0-84961181645
Andrade B., Song Z., Li J., New frontiers for encapsulation in the chemical industry. ACS Applied Materials & Interfaces 2015, 7, 12, 6359, 6368, 10.1021/acsami.5b00484, 2-s2.0-84926313550
Essifi K., Ed-Daoui A., Berraaouan D., Benelmostafa M., Dahmani M., Tahani A., Determination of the mechanical properties of single calcium alginate microbeads loaded gallic acid. Materials Today: Proceedings 2020, 31, 10.1016/j.matpr.2020.05.747
Lotfipour F., Mirzaeei S., Maghsoodi M., Preparation and characterization of alginate and psyllium beads containing Lactobacillus acidophilus. Science World Journal 2012, 2012, 8, 680108, 10.1100/2012/680108, 2-s2.0-84862316931
Sakhanokho H. F., Pounders C. T., Blythe E. K., Alginate encapsulation of begonia microshoots for short-term storage and distribution. Science World Journal 2013, 2013, 7, 341568, 10.1155/2013/341568, 2-s2.0-84893846296
Li J., Kim S. Y., Chen X., Park H. J., Calcium-alginate beads loaded with gallic acid: preparation and characterization. LWT-Food Science and Technology 2016, 68, 667, 673, 10.1016/j.lwt.2016.01.012, 2-s2.0-84962502899
Aarstad O., Strand B. L., Klepp-Andersen L. M., Skjåk-Bræk G., Analysis of G-block distributions and their impact on gel properties of in vitro epimerized mannuronan. Biomacromolecules 2013, 14, 10, 3409, 3416, 10.1021/bm400658k, 2-s2.0-84885656240
Essifi K., Lakrat M., Berraaouan D., Fauconnier M., El Bachiri A., Tahani A., Optimization of gallic acid encapsulation in calcium alginate microbeads using box-behnken experimental. Polymer Bulletin 2020, 10.1007/s00289-020-03397-9
Berraaouan D., Elmiz M., Salhi S., Tahani A., Effect of calcium chloride on rheological behavior of sodium alginate. Advanced Materials Proceedings 2017, 2, 10, 629, 633, 10.5185/amp.2017/893
Ribeiro M. H. L., Afonso C., Vila-Real H. J., Alfaia A. J., Ferreira L., Contribution of response surface methodology to the modeling of naringin hydrolysis by naringinase Ca-alginate beads under high pressure. LWT-Food Science and Technology 2010, 43, 3, 482, 487, 10.1016/j.lwt.2009.09.015, 2-s2.0-72649087079
Shilpa A., Agrawal S. S., Ray A. R., Controlled delivery of drugs from alginate matrix. Journal of Macromolecular Science: Part C: Polymer Reviews 2003, 43, 2, 187, 221, 10.1081/mc-120020160, 2-s2.0-0037634195
Zeeb B., Saberi A. H., Weiss J., McClements D. J., Formation and characterization of filled hydrogel beads based on calcium alginate: factors influencing nanoemulsion retention and release. Food Hydrocolloids 2015, 50, 27, 36, 10.1016/j.foodhyd.2015.02.041, 2-s2.0-84928324718
Ko S., Gunasekaran S., Controlled release of food ingredients. Nano-and Microencapsulation for Foods 2014, Hoboken, NJ, USA John Wiley and Sons, Ltd. 325, 343, 10.1002/9781118292327.ch13, 2-s2.0-84926397796
McClements D. J., Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review. Advances in Colloid and Interface Science 2018, 253, 1, 22, 10.1016/j.cis.2018.02.002, 2-s2.0-85042372204
McClements D. J., Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science 2015, 219, 27, 53, 10.1016/j.cis.2015.02.002, 2-s2.0-84925382484
Matalanis A., Grif O., Mcclements D. J., Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids 2011, 25, 10.1016/j.foodhyd.2011.04.014, 2-s2.0-79961027717
McClements D., Particle characteristics and their impact on physicochemical properties of delivery systems. Nanoparticle-and Microparticle-Based Delivery Systems 2014, Boca Raton, FL, USA CRC Press 79, 122, 10.1201/b17280-4
Andersson Trojer M., Nordstierna L., Nordin M., Nydén M., Holmberg K., Encapsulation of actives for sustained release. Physical Chemistry Chemical Physics 2013, 15, 41, 17727, 17741, 10.1039/c3cp52686k, 2-s2.0-84885142743
Samaha D., Shehayeb R., Kyriacos S., Modeling and comparison of dissolution profiles of diltiazem modified-release formulations. Dissolution Technologies 2009, 16, 2, 41, 46, 10.14227/dt160209p41, 2-s2.0-69349103014
Lamprecht A., Yamamoto H., Takeuchi H., Kawashima Y., Microsphere design for the colonic delivery of 5-fluorouracil. Journal of Controlled Release 2003, 90, 3, 313, 322, 10.1016/s0168-3659(03)00195-0, 2-s2.0-0038445576
Souza J. d. L., Chiaregato C. G., Faez R., Green composite based on PHB and montmorillonite for KNO3 and NPK delivery system. Journal of Polymers and the Environment 2018, 26, 2, 670, 679, 10.1007/s10924-017-0979-4, 2-s2.0-85014801993
Dash S., Murthy P. N., Nath L., Chowdhury P., Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica-Drug Research 2010, 67, 217, 223
Rahaiee S., Shojaosadati S. A., Hashemi M., Moini S., Razavi S. H., Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. International Journal of Biological Macromolecules 2015, 79, 423, 432, 10.1016/j.ijbiomac.2015.04.041, 2-s2.0-84930200814
Li J., Wu H., Jiang K., Liu Y., Yang L., Park H. J., Alginate calcium microbeads containing chitosan nanoparticles for controlled insulin release. Applied Biochemistry and Biotechnology 2020, 193, 2, 463, 478, 10.1007/s12010-020-03420-9
Hu H., Nie L., Feng S., Suo J., Preparation, characterization and in vitro release study of gallic acid loaded silica nanoparticles for controlled release. Die Pharmazie 2013, 68, 401, 405, 10.1691/ph.2013.2205, 2-s2.0-84880460775
Zhao J., Li S., Zhao Y., Peng Z., Effects of cellulose nanocrystal polymorphs and initial state of hydrogels on swelling and drug release behavior of alginate-based hydrogels. Polymer Bulletin 2019, 77, 8, 10.1007/s00289-019-02972-z, 2-s2.0-85073986761
Salisu A., Sanagi M. M., Abu Naim A., Abd Karim K. J., Wan Ibrahim W. A., Abdulganiyu U., Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polymer Bulletin 2016, 73, 2, 519, 537, 10.1007/s00289-015-1504-3, 2-s2.0-84955412466
Peretz S., Anghel D. F., Vasilescu E., Florea-Spiroiu M., Stoian C., Zgherea G., Synthesis, characterization and adsorption properties of alginate porous beads. Polymer Bulletin 2015, 72, 12, 3169, 3182, 10.1007/s00289-015-1459-4, 2-s2.0-84944351408
Li J., Lee I. W., Shin G. H., Chen X., Park H. J., Curcumin-eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. European Journal of Pharmaceutics and Biopharmaceutics 2015, 94, 322, 332, 10.1016/j.ejpb.2015.06.002, 2-s2.0-84934972108
López Córdoba A., Deladino L., Martino M., Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydrate Polymers 2013, 95, 1, 315, 323, 10.1016/j.carbpol.2013.03.019, 2-s2.0-84875347132
Yun P. N., Simon S., Sudip R., Marija G. N., Jianyong J., Conrad O. P., Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chemistry 2013, 141, 3192, 3200, 10.1016/j.foodchem.2013.06.018, 2-s2.0-84879816622
Yun P. N., Sudip R., Jianyong J., Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system. Food Chemistry 2013, 136, 1013, 1021, 10.1016/j.foodchem.2012.09.010, 2-s2.0-84867058987
Lee F. Y., Htar T. T., Akowuah G. A., ATR-FTIR and spectrometric methods for the assay of crocin in commercial saffron spices (crocus savitus L.). International Journal of Food Properties 2015, 18, 8, 1773, 1783, 10.1080/10942912.2014.923911, 2-s2.0-84929155750
Kolanthai E., Sindu P. A., Khajuria D. K., Graphene oxide-a tool for the preparation of chemically crosslinking free alginate-chitosan-collagen scaffolds for bone tissue engineering. ACS Applied Materials & Interfaces 2018, 10, 15, 12441, 12452, 10.1021/acsami.8b00699, 2-s2.0-85045659170
Zhang R., Lei L., Song Q., Li X., Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release. Colloids and Surfaces B: Biointerfaces 2019, 175, 569, 575, 10.1016/j.colsurfb.2018.11.083, 2-s2.0-85058670245
Yashaswini Y. D., Prabhu A., Anil S., Venkatesan J., Preparation and characterization of dexamethasone loaded sodium alginate-graphene oxide microspheres for bone tissue engineering. Journal of Drug Delivery Science and Technology 2021, 64, 102624, 10.1016/j.jddst.2021.102624
Ionita M., Pandele M. A., Iovu H., Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydrate Polymers 2013, 94, 1, 339, 344, 10.1016/j.carbpol.2013.01.065, 2-s2.0-84874174050
Paz R., Paula G., Reyes N., Chávez J., Santos J., Acetylated starch and inulin as encapsulating agents of gallic acid and their release behaviour in a hydrophilic system. Food Chemistry 2012, 134, 1, 8, 10.1016/j.foodchem.2012.02.019, 2-s2.0-84860374871
Ross C., Rangika W., Luz S., MaryAnn A., Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Applied and Environmental Microbiology 2006, 72, 2280, 2282, 10.1128/aem.72.1.1-20.2006
Lupo B., Maestro A., Gutiérrez J. M., González C., Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: comparison of two gelation mechanisms. Food Hydrocolloids 2015, 49, 25, 34, 10.1016/j.foodhyd.2015.02.023, 2-s2.0-84938544437
Hu M., Zheng G., Zhao D., Yu W., Characterization of the structure and diffusion behavior of calcium alginate gel beads. Journal of Applied Polymer Science 2020, 137, 1, 9, 10.1002/app.48923
Puguan J. M. C., Yu X., Kim H., Diffusion characteristics of different molecular weight solutes in Ca-alginate gel beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 469, 158, 165, 10.1016/j.colsurfa.2015.01.027, 2-s2.0-84922311069
Pan Q., Deng X., Gao W., Chang J., Pu Y., He B., Small molecules-PEG amphiphilic conjugates as carriers for drug delivery: 1. the effect of molecular structures on drug encapsulation. Journal of Drug Delivery Science and Technology 2020, 60, 101997, 10.1016/j.jddst.2020.101997
Offeddu G. S., Axpe E., Harley B. A. C., Oyen M. L., Relationship between permeability and diffusivity in polyethylene glycol hydrogels. AIP Advances 2018, 8, 105006, 10.1063/1.5036999, 2-s2.0-85054550969
Paris M. J., Ramírez-Corona N., Palou E., López-Malo A., Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. Journal of Food Engineering 2020, 282, 10.1016/j.jfoodeng.2020.110024
Jurić S., Đermić E., Topolovec-Pintarić S., Bedek M., Vinceković M., Physicochemical properties and release characteristics of calcium alginate microspheres loaded with Trichoderma viride spores. Journal of Integrative Agriculture 2019, 18, 2534, 2548
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.