Article (Scientific journals)
Sample-Free White-Box Out-of-Distribution Detection for Deep Learning
Begon, Jean-Michel; Geurts, Pierre
2021In Conference on Computer Vision and Pattern Recognition Workshops
Peer reviewed
 

Files


Full Text
fadetrcv2021_accepted.pdf
Author preprint (320.88 kB)
Download
Annexes
supplement.pdf
(2.75 MB)
Supplementary
Download
ood_poster.pdf
(662.28 kB)
Poster
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Machine learning; Robustness; Data-free
Abstract :
[en] Being able to detect irrelevant test examples with respect to deployed deep learning models is paramount to properly and safely using them. In this paper, we address the problem of rejecting such out-of-distribution (OOD) samples in a fully sample-free way, ie, without requiring any access to in-distribution or OOD samples. We propose several indicators which can be computed alongside the prediction with little additional cost, assuming white-box access to the network. These indicators prove useful, stable and complementary for OOD detection on frequently-used architectures. We also introduce a surprisingly simple, yet effective summary OOD indicator. This indicator is shown to perform well across several networks and datasets and can furthermore be easily tuned as soon as samples become available. Lastly, we discuss how to exploit this summary in real-world settings.
Disciplines :
Computer science
Author, co-author :
Begon, Jean-Michel ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Language :
English
Title :
Sample-Free White-Box Out-of-Distribution Detection for Deep Learning
Publication date :
2021
Journal title :
Conference on Computer Vision and Pattern Recognition Workshops
ISSN :
2160-7508
eISSN :
2160-7516
Publisher :
IEEE Computer Society, Washington, United States - District of Columbia
Peer reviewed :
Peer reviewed
Available on ORBi :
since 21 August 2021

Statistics


Number of views
122 (15 by ULiège)
Number of downloads
121 (10 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi