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A. Considerations regarding the indica-
tors

A.1. General remarks on optimality-based indica-
tors

The first order optimality condition is such that
(disregarding regularization for now)

Ex,y∼I∇ΘE(x, y; Θ) = 0 (1)

Owing to the backpropagation, we have

∂E(x, y; Θ)

∂zj
= pj(x)− yj (2)

∇θlE(x, y; Θ) =

(
L∏
i=l

JTi (x)

)
∇zE(x, y; Θ) (3)

where Ji(x) is the Jacobian of the ith layer at x.
A gradient-based optimization of the network will

not only push pj toward yj but will also tend to produce
uniform probabilities where yj = 0, since the parameters
relating to higher gaps will be affected more.

If the network performs well, all the first order infor-
mation should be contained in ∇zE(x, y), as a Jacobian
being responsible for zeroing the gradient would (i) not
force optimality for layers further in the network, and
(ii) would suggest a vanishing gradient situation leading
to being trapped in a local minimum.

Since the network is optimized on a learning sample
(and furthermore there is a regularization term), the
expected gradient of the loss is not zero, in practice.
However, a deployed network should have a small ex-
pected loss gradient, which allow us to derive several
indicators for which we expect the values on ID samples
to be low.

Optimality vs. performance Even though the in-
dicators are qualified as optimality-based, they also rely
on the network performing well, that is, we expect both
the loss and its gradient to be small on ID samples.

We feel this should be the case for any deployed model,
especially in sensitive applications. In the event where
the gradient of the loss is small while the loss itself is
not so small (for instance, with a model of insufficient
capacity), we expect the so-called “optimality-based”
indicators to underperform. We discuss this further in
Appendix C.1 when comparing CIFAR 10 and CIFAR
100. We additionnaly shed some more light on the mat-
ter in Appendix C.3, where we discuss the impact of the
model quality, and in Appendix C.4, where we discuss
the related problem of misclassification detection.

proj The proj indicator combines the information
from both ang and norm. On datasets where there is
no asymmetry (such as class imbalance, for instance),
||wj || and bj tend to be relatively constant with respect
to j (see Table 1). Therefore proj is expected to be
closely related to the logit. This is confirmed by Table
3 of the main paper.

positivity ReLU-based architectures, that is, most
modern ones in image classification, end the feature
extraction phase with a ReLU activation, possibly fol-
lowed by max or average pooling. As a result, the latent
vectors are non-negative, whereas some (significant part
of the) components of the hyperplane weights are neg-
ative (see Table 1). As a consequence, most weights
are used to bid against the other classes, rather than
for the predicted one. This suggests that it might be
worth looking at the positive and negative parts of the
previous indicators separately.

Let P(w) = {1 ≤ i ≤ pL−1|w(i) ≥ 0} be the set of
indices of the non-negative components of w. Suppose
the predicted class for x is k and let
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Table 1: Statistics of the latent space parameters.

order of std(W ) / std(b) Percentage of positive components of W
CIFAR 10 CIFAR 100 CIFAR 10 CIFAR 100

ResNet 50 10−2 / 10−1 10−2 / 10−2 37.5 35.8
WideResNet 10−1 / 10−1 10−1 / 10−2 41.1 40.1
DenseNet 121 10−1 / 10−1 10−2 / 10−2 42.1 43.1

|| · ||+j =

√ ∑
i∈P(wj)

(
·(i)
)2

(4)

act+(x) = −
∑

i∈P(k)

w
(i)
k u(i) (5)

ang++(x) = 1 +
act+(x)

||wk||+k ||u||
+
k

(6)

The rationale for using the positive indicators act+
and ang++, instead of their counterpart, is to reject
OOD samples whose high probability would be due to
being unlikely to come from any other classes than the
predicted one, rather than appearing to belong to the
predicted class. Note that positivity also implies ang
cannot be zero.

A.2. Relationship between logit and T1000

The main result covered by this section is

pk|T=1000(x) ≈ c

K
+

1

TK
zk(x) (7)

where k is the predicted class by the network, K is the
number of class, z(x) is the logit vector corresponding
to input x and T = 1000 is the temperature. It holds
so long as ||z|| � T and the network is trained long
enough.

For shorthand, let p̂k stands for softmaxk. From
Taylor decomposition, it follows that

pk|T=1000 = p̂k

(
1

T
z

)
(8)

= p̂k(0) +
1

T
(∇z p̂k (0))

T
z + o

(
1

T 2
||z||

)
(9)

≈ 1

K
+

1

T

K∑
j=1

(p̂k(0) (δj,k − p̂j(0)) zj) (10)

=
1

K
+

1

T

K∑
j=1

(
1

K

(
δj,k −

1

K

)
zj

)
(11)

=
1

K
+

1

T K

zk − 1

K

K∑
j=1

zj

 (12)

=
1

K
+
zk − z̄
T K

(13)

where δj,k is the Kronecker symbol.

By linearity, we have

z̄(x) =
1

K

∑
j

zj(x) (14)

=
1

K

∑
j

(
wTj x+ bj

)
(15)

= wTx+ b̄ (16)

∆z(x) = zk(x)− z̄(x) (17)

=
(
wTk x+ bk

)
−
(
wTx+ b̄

)
(18)

= ∆wTk x+ ∆bk (19)

So we end up with a linear relationship between
pk|T=1000 and the ∆-logit ∆z.

In addition, the average weight vector and bias tends
to be close to null. Owing to the softmax translation
invariance

ezk−(wT x+b̂)∑
j e
zj−(wT x+b̂)

=
ezk∑
j e
zj

(20)

the only incentive acting on the average weight vector
and bias is the slight penalization which goes in the
direction of w = 0 and b̄ = 0. Indeed,

w =
1

K

wk +
∑
j 6=k

wj

 =
1

K
(wk + w¬k) (21)

Since w¬k represents a hyperplane for rejecting class
k, it would be wasteful for the network not enforcing
wk = −w¬k. As for b̄, it does not depend on x and can
be hidden away in the independent term.

Overall—provided the network was trained enough—
we arrive at the conclusion

wTx� wTk x (22)

=⇒ pk|T=1000 ≈
c

K
+

zk
T K

(23)

For the purpose of ranking samples, we can further
remove the constant term Z = z̄ − ε(z), where Z is the
expected average of logits over the input space and ε(z)
is the deviation of the logit mean from its expectation.
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This leads to

=
1

K
+
zk −

(
ε(z) + Z

)
T K

(24)

=
1

K

(
1− Z

T

)
+
zk − ε(z)
T K

(25)

=
c′

K
+

zk
T K

− ε(z)

T K
(26)

In this last relationship, ε(z) is of the order of mag-
nitude of the standard deviation of w and b̄, typically 8
order smaller than zk (see Table 2) and can be safely
ignored.

B. Protocol details

Here we further discuss the protocol we used. We do
not expect our main results to be influenced much by the
actual details, so long as the networks are well-trained.

In our empirical study, we relied on three networks
and three image classification tasks to serve as ID
datasets, namely CIFAR 10, CIFAR 100 [6] and Ima-
geNet [3].

CIFARs CIFAR 10/CIFAR 100 consist in 60000
32×32 RGB images. CIFAR 10 has 10 classes, while CI-
FAR 100 has 100. The datasets are balanced class-wise
(across both train and test sets). There is a standard
train/test split of respectively 50000 and 10000 images.
We split further the training set to keep 5000 images
as validation set. The testing samples are only used to
assess the model accuracies (Table 3) at the end of train-
ing; they are not used to back up any decision during
training. They serve as ID samples for our experiments.

ImageNet In the case of ImageNet, We re-used the
available weights through PyTorch [7]. The 100000
unlabeled RGB test images, spread among 1000 classes,
are used as ID samples. We followed the standard
procedure to rescale the images to a size of 256 along its
shortest spatial dimension and extract centred 224×224
crops.

Networks The networks are a ResNet 50 [4], a
WideResNet-40 [8] and a DenseNet 121 [5]. All three
architectures are ReLU-based and output non-negative
latent vectors. Table 3 portrays the accuracy of each
model.

On CIFARs, they expect input of size 32× 32 and
were trained for 450 epochs by stochastic gradient de-
scent (batches of size 128, weight decay of 5× 10−4 and
momentum of 0.9). The learning rate was initialized at
0.1. It was decreased by a factor 10 after 150 epochs and

again at epoch 300. Each decrease was accompanied
by a restart from the best model according to the vali-
dation accuracy. Horizontal flip and random cropping
(with a padding of 4) were used as data augmentation.

As mentioned, PyTorch’s pre-trained network were
used for ImageNet and expected images of size 224×224.

Pre-processing Prior to running through the net-
work, all images (ID and OOD) are resized to fit the
network expected size, transformed to RGB if necessary,
rescaled in the range [0, 1] and then normalized channel-
wise according to the ID dataset input statistics (see
next paragraph). Artifacts due to resizing may help
detect OOD samples. In the case of artificial datasets,
images are generated with the appropriate size.

Input normalization For CIFARs, we estimated the
channel mean/standard deviation on the training set.
Regarding the standard deviation, we computed the
square root of the total variance, in accordance to Py-
Torch’s batchnorm implementation. For some reasons,
available statistics usually used the average intra-image
variance, disregarding the inter-image variance. Admit-
tedly, the difference is slight.

For ImageNet, we re-used pre-trained network and
thus conformed to using the same statistics as were
used for training (based on intra-image variance).

ID/OOD balance Except in the case of the super-
vised approach (see main text), the whole ID test set
and the whole OOD dataset are used to assess the
indicator performances. As a consequence, the classifi-
cation task is quite unbalanced (as might be the case in
a real setting, although we might expect a much higher
proprotion of ID samples). For artificial datasets, we
generated 50000 samples.

Variability On CIFARs, results are established on
three random initializations of the network’s param-
eters and is, with batch sampling, the only sources
of randomness; artificially-generated datasets are the
same throughout the experiments. Since we re-used
pre-trained models for ImageNet, there is only one ex-
periment per network (there is only one set of weights
available per architecture). Note that the in- indicators
are independent of the network; they only depend on
the input, channel-wise statistics of the ID datasets. As
such, they are not subject to randomness.

C. Additional results
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Table 2: Mean values for the average weight vector and bias, as well as the logit of the predicted class (on the ID
task). The first two tends to be very small, while the last one is several order of magnitude higher. Although the
logit is expected to be lower on a OOD task, orders of magnitude are equivalent. C. 10 and C. 100 stand for CIFAR
10 and CIFAR 100 respectively.

||w|| b̄ zk

C
.

1
0 ResNet 50 5 10−6 ± 4 10−7 1 10−7 ± 3 10−7 11.3± 2.5

WideResNet 4 10−6 ± 1 10−6 −3 10−7 ± 3 10−7 12.0± 3.4
DenseNet 121 3 10−6 ± 1 10−7 −2 10−7 ± 2 10−7 10.2± 2.2

C
.

1
0
0 ResNet 50 2 10−6 ± 6 10−8 1 10−8 ± 5 10−9 13.3± 3.8

WideResNet 4 10−6 ± 4 10−6 3 10−7 ± 2 10−7 13.5± 4.4
DenseNet 121 7 10−7 ± 2 10−7 5 10−8 ± 4 10−8 13.2± 4.1

Table 3: Model Performance (in %) on the ID task.

Accuracy ImageNet
CIFAR 10 CIFAR 100 Top-1 error Top-5 error

ResNet 50 94.11 ± 0.25 77.48 ± 0.23 23.85 7.13
WideResNet 94.18 ± 0.31 74.17 ± 0.72 21.49 5.91

DenseNet 121 94.30 ± 0.31 77.89 ± 0.04 25.35 7.83

C.1. Detailed auroc tables

Tables 4-6 holds detailed results for CIFAR 10, CI-
FAR 100 and Imagenet as ID datasets, respectively.

Supervised approach Although not the focus of this
work, we see that a supervised linear SVM [2] estab-
lished on the true ID/OOD mix distribution performs
almost perfectly. ON CIFARs, it only struggles with
Tiny ImageNet (TIN) and LSUN, where it still performs
best, except on TIN with CIFAR 100. In that setting,
the mean results of act, ang and sometimes T1000 is
slightly higher.

On ImageNet, it is perfect but for LSUN, where it
comes first with a large margin.

Baselines ODIN and T1000 are strong baselines.
For ImageNet, it would seem the additional perturba-
tion provided by ODIN pays off, especially on grey
images (fashion MNIST, MNIST). On CIFARs, the gap
is much less present, apart on MNIST for CIFAR 100
where 5 to 10 percent of auroc are lost. On harder tasks,
T1000 may have a slight edge.

mp and h rarely yield remarkable results.

Batchnorm indicators The in- family of indicators
may work well at detecting grey images, although in-
dss never really works. When input statistics are close
to the ID’s (Tiny ImageNet, LSUN), those indicators
do not work better than random. They also fail on
the noisy Gaussian dataset, which has individual pixel
statistics that are close to ID’s. It would be easy to

reject such samples if inter-channel information were
available.

On the other hand, indicators based on all batchnorm
layers work extremely well on Gaussian since interme-
diate tensors contain inter-channel information, thanks
to convolutions. Interestingly, dss and/or dss-ext per-
form well on SVHN in all settings. Those indicators are
much less robust to the network and its initialization,
however. For instance, dms achieves 82.73± 0.56% on
DenseNet 121 for discriminating fashion MNIST against
CIFAR 10, but it only achieves 69.39±6.49% on ResNet
50 for the same task (note the high variance).

Quite often, batchnorm indicators have auroc much
lower than 50%, indicating lower values for OOD sam-
ples. In our sample-free setting, we can only discard
such indicators and conclude they can only discrimi-
nate specific OOD sets. However, in a supervised set-
ting, such indicators might prove useful as the ordering
condition we impose on indicators could be altogether
ignored.

Latent space indicators As expected, norm and
norm+ do not convey the appropriate information.
The remaining indicators rank well, however. On Im-
ageNet, positive-only indicators seem to work better,
while this is not as clear for the other ID tasks. In par-
ticular, ang++ performs better than ang on ImageNet
but ang works better in the other settings (except for
ResNet 50 on CIFAR 100). Once again, the OOD
dataset has an impact on the ranking: act/act+ tend
to struggle with (fashion) MNIST on CIFAR 100 and
ImageNet, while, with ImageNet as ID task, ang++
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comes way ahead of the other indicators against CI-
FARs as OOD but underperfoms on LSUN (except on
WideResNet).

1C-Sum Overall, 1C-Sum results are good. Com-
pared to individual indicators, it mainly lags behind on
MNIST with CIFARs as ID sets and on LSUN. Hope-
fully, as soon as data become available, 1C-Sum can be
turned into the supervised indicator to compensate for
its initial weaknesses. More precisely, incorporating the
in- feature to better detect grey images and drop other
batchnorm indicators for LSUN. Assumptions regarding
the expected OOD distribution may also help tuning
the model weights.

CIFAR 10 vs. CIFAR 100 CIFAR 100 is a harder
base task than CIFAR 10 and even well-optimized net-
works achieve more modest performances (Table 3). As
we can see, the gap in accuracy is reflected in OOD de-
tection as well, at least on optimality-based indicators,
thus confirming that we also need the loss to be small
for OOD detection. In Appendix C.4, we will investi-
gate whether the lower auroc scores can be attributed
to lower accuracies.
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Table 4: Area under the ROC curve for OOD detection with CIFAR 10 as ID. TIN stands for Tiny ImageNet.

Gaussian SVHN MNIST fash. MNIST TIN LSUN

R
es

N
et

5
0

odin 91.36 ± 5.42 90.22 ± 4.03 96.88 ± 0.70 95.89 ± 0.75 87.22 ± 2.12 92.38 ± 1.56
T1000 83.17 ± 9.00 93.14 ± 3.05 94.81 ± 0.78 95.43 ± 0.62 88.70 ± 1.23 92.66 ± 1.04
mp 89.27 ± 4.90 91.89 ± 1.30 90.76 ± 0.65 91.97 ± 0.47 87.05 ± 0.61 90.08 ± 0.60
h 89.05 ± 5.03 92.51 ± 1.46 91.40 ± 0.62 92.71 ± 0.58 87.52 ± 0.67 90.62 ± 0.59
norm 53.96 ± 33.02 85.46 ± 10.89 92.28 ± 4.92 89.52 ± 4.00 80.19 ± 4.27 82.50 ± 4.93
norm+ 54.99 ± 28.60 87.17 ± 9.12 94.61 ± 2.09 92.92 ± 1.85 85.00 ± 2.61 88.87 ± 2.82
act 83.34 ± 9.02 93.32 ± 2.95 94.90 ± 0.70 95.47 ± 0.59 88.77 ± 1.18 92.50 ± 1.08
act+ 87.68 ± 9.18 94.23 ± 3.50 96.03 ± 1.44 95.93 ± 0.72 88.05 ± 1.53 91.68 ± 1.38
proj 85.53 ± 8.09 94.01 ± 2.42 95.61 ± 0.40 95.47 ± 0.58 88.61 ± 1.26 92.05 ± 1.21
ang 91.78 ± 2.79 93.41 ± 0.09 94.15 ± 0.60 94.76 ± 1.02 88.35 ± 0.51 91.98 ± 0.58
ang++ 99.89 ± 0.12 97.26 ± 0.17 94.25 ± 1.22 93.41 ± 1.70 86.05 ± 0.88 88.43 ± 0.75
in-dms 7.85 60.46 98.59 71.94 52.89 49.26
in-dms-aos 52.79 30.41 99.68 96.02 52.55 54.91
in-dss 5.13 85.99 36.16 58.53 52.03 42.94
dms 100.00 ± 0.00 80.29 ± 8.30 93.97 ± 2.47 69.39 ± 6.49 34.21 ± 5.54 22.67 ± 5.33
dms-aos 99.25 ± 0.48 4.72 ± 2.26 81.12 ± 9.04 59.42 ± 9.53 25.25 ± 2.65 23.78 ± 2.66
dss 99.86 ± 0.14 96.51 ± 0.60 70.33 ± 15.30 62.22 ± 3.53 55.01 ± 1.90 47.40 ± 4.40
dss-ext 98.24 ± 0.61 97.70 ± 0.34 66.93 ± 1.88 67.64 ± 1.67 66.84 ± 0.88 62.94 ± 1.38
supervised 100.00 ± 0.00 99.75 ± 0.05 100.00 ± 0.00 99.70 ± 0.03 90.82 ± 0.45 96.14 ± 0.19
1C-Sum 97.84 ± 2.70 97.83 ± 0.95 96.47 ± 1.58 95.86 ± 0.63 88.86 ± 0.79 91.61 ± 0.90

W
id

eR
es

N
et

odin 99.73 ± 0.20 90.85 ± 5.11 94.11 ± 4.14 95.22 ± 1.16 84.31 ± 4.70 90.22 ± 2.87
T1000 98.13 ± 1.37 95.20 ± 1.76 91.59 ± 4.71 94.88 ± 0.79 87.65 ± 2.06 91.49 ± 1.49
mp 96.69 ± 1.60 93.34 ± 1.01 88.42 ± 3.64 92.01 ± 0.33 86.62 ± 1.04 89.69 ± 0.75
h 97.41 ± 1.65 94.10 ± 1.25 89.08 ± 3.89 92.76 ± 0.38 87.09 ± 1.16 90.22 ± 0.85
norm 98.11 ± 2.24 92.21 ± 4.95 89.09 ± 10.60 87.96 ± 5.56 76.42 ± 7.85 79.48 ± 6.15
norm+ 98.97 ± 0.90 93.73 ± 3.41 90.84 ± 7.45 92.89 ± 2.58 83.54 ± 4.64 87.58 ± 2.34
act 98.32 ± 1.24 95.35 ± 1.71 91.96 ± 4.39 94.96 ± 0.77 87.73 ± 2.03 91.36 ± 1.50
act+ 99.17 ± 0.75 95.54 ± 2.36 92.45 ± 5.73 94.87 ± 1.46 85.57 ± 3.49 89.70 ± 2.72
proj 98.29 ± 1.38 95.67 ± 1.46 92.88 ± 3.68 94.94 ± 0.69 87.74 ± 1.92 90.97 ± 1.64
ang 96.24 ± 1.90 92.63 ± 0.75 90.78 ± 1.20 93.49 ± 0.78 88.68 ± 0.50 91.61 ± 1.07
ang++ 97.41 ± 2.15 92.46 ± 1.83 87.46 ± 3.74 86.36 ± 3.87 80.42 ± 0.15 81.92 ± 4.51
in-dms 7.85 60.46 98.59 71.94 52.89 49.26
in-dms-aos 52.79 30.41 99.68 96.02 52.55 54.91
in-dss 5.13 85.99 36.16 58.53 52.03 42.94
dms 100.00 ± 0.00 94.13 ± 0.87 98.26 ± 1.11 80.14 ± 3.04 48.94 ± 0.77 38.39 ± 0.75
dms-aos 100.00 ± 0.00 4.10 ± 0.62 78.41 ± 2.76 53.01 ± 2.33 35.58 ± 1.63 40.37 ± 2.01
dss 100.00 ± 0.00 96.83 ± 0.27 83.13 ± 2.05 80.13 ± 2.09 54.11 ± 3.19 40.92 ± 4.76
dss-ext 94.81 ± 1.16 97.77 ± 0.24 68.79 ± 2.13 71.78 ± 1.34 63.17 ± 2.63 53.89 ± 3.84
supervised 100.00 ± 0.00 99.74 ± 0.04 100.00 ± 0.00 99.69 ± 0.02 90.64 ± 0.38 95.13 ± 0.64
1C-Sum 100.00 ± 0.00 98.87 ± 0.19 94.98 ± 2.17 95.50 ± 0.73 87.49 ± 2.51 89.28 ± 2.89

D
en

se
N

et
1
2
1

odin 99.49 ± 0.37 82.99 ± 3.14 85.32 ± 8.29 88.69 ± 3.87 75.92 ± 1.61 82.35 ± 3.57
T1000 96.93 ± 1.89 93.66 ± 1.47 84.19 ± 6.56 91.87 ± 1.89 83.51 ± 0.49 87.53 ± 2.03
mp 96.49 ± 0.91 93.07 ± 1.30 85.76 ± 3.96 91.67 ± 0.71 85.48 ± 0.30 88.45 ± 1.00
h 96.79 ± 1.22 93.62 ± 1.37 86.04 ± 4.10 92.14 ± 0.78 85.72 ± 0.35 88.75 ± 1.10
norm 51.24 ± 34.67 65.16 ± 6.79 44.44 ± 22.17 51.29 ± 15.42 46.78 ± 2.38 49.02 ± 4.55
norm+ 65.46 ± 29.49 78.63 ± 4.36 59.79 ± 17.81 73.50 ± 11.20 66.09 ± 1.53 70.25 ± 3.43
act 97.13 ± 1.78 93.86 ± 1.43 84.58 ± 6.46 91.94 ± 1.83 83.59 ± 0.49 87.32 ± 2.04
act+ 96.30 ± 3.39 90.53 ± 2.00 76.80 ± 11.96 85.04 ± 6.23 76.24 ± 0.83 80.38 ± 2.96
proj 97.45 ± 1.61 94.39 ± 1.44 86.86 ± 5.04 92.07 ± 1.67 83.55 ± 0.42 86.22 ± 2.07
ang 98.75 ± 0.39 96.46 ± 0.79 94.65 ± 0.44 95.44 ± 0.88 89.68 ± 0.39 91.86 ± 0.71
ang++ 99.85 ± 0.15 94.74 ± 1.24 95.67 ± 0.63 90.89 ± 1.15 83.01 ± 2.71 84.29 ± 2.09
in-dms 7.85 60.46 98.59 71.94 52.89 49.26
in-dms-aos 52.79 30.41 99.68 96.02 52.55 54.91
in-dss 5.13 85.99 36.16 58.53 52.03 42.94
dms 99.99 ± 0.00 94.61 ± 0.61 98.29 ± 0.36 82.73 ± 0.56 42.67 ± 1.58 34.95 ± 1.30
dms-aos 98.79 ± 0.39 12.33 ± 1.91 74.75 ± 0.64 55.15 ± 1.00 27.51 ± 0.77 35.15 ± 0.31
dss 99.87 ± 0.10 97.09 ± 0.45 84.08 ± 1.36 78.19 ± 3.74 60.25 ± 2.33 42.50 ± 2.02
dss-ext 99.06 ± 0.32 97.61 ± 0.29 79.54 ± 1.82 76.86 ± 1.93 70.61 ± 1.88 56.10 ± 2.18
supervised 100.00 ± 0.00 99.78 ± 0.05 99.98 ± 0.00 99.74 ± 0.04 92.02 ± 0.34 95.64 ± 0.09
1C-Sum 100.00 ± 0.00 97.89 ± 0.54 92.68 ± 3.43 93.69 ± 2.02 83.47 ± 1.09 83.76 ± 2.81
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Table 5: Area under the ROC curve for OOD detection with CIFAR 100 as ID. TIN stands for Tiny ImageNet.

Gaussian SVHN MNIST fash. MNIST TIN LSUN

R
es

N
et

5
0

odin 95.76 ± 5.19 79.33 ± 3.38 81.32 ± 2.85 90.12 ± 0.41 76.40 ± 0.19 72.32 ± 0.91
T1000 89.86 ± 10.20 84.64 ± 3.11 74.49 ± 2.97 88.95 ± 0.30 77.99 ± 0.10 72.58 ± 0.61
mp 85.59 ± 9.02 76.65 ± 4.14 69.09 ± 2.66 83.93 ± 0.78 77.34 ± 0.07 73.46 ± 0.17
h 83.18 ± 9.83 73.58 ± 4.21 64.83 ± 2.69 80.49 ± 0.59 72.86 ± 0.11 72.21 ± 2.45
norm 54.94 ± 33.83 71.68 ± 7.59 66.84 ± 4.26 64.45 ± 3.31 51.99 ± 1.12 53.81 ± 1.58
norm+ 65.88 ± 35.79 78.49 ± 6.22 67.89 ± 2.16 79.23 ± 2.00 65.95 ± 0.60 62.63 ± 1.35
act 89.98 ± 9.92 84.80 ± 3.08 74.66 ± 2.93 88.93 ± 0.30 78.00 ± 0.10 72.51 ± 0.63
act+ 90.95 ± 11.23 88.55 ± 2.64 79.42 ± 3.69 88.46 ± 0.29 74.54 ± 0.09 71.80 ± 0.86
proj 89.53 ± 9.93 81.13 ± 4.19 74.02 ± 3.17 88.40 ± 0.28 78.04 ± 0.14 71.18 ± 0.56
ang 94.04 ± 2.86 75.70 ± 2.60 70.15 ± 2.99 88.44 ± 0.43 80.53 ± 0.16 72.73 ± 0.12
ang++ 99.66 ± 0.14 81.42 ± 1.28 82.02 ± 4.09 89.17 ± 0.58 79.26 ± 0.18 75.66 ± 0.62
in-dms 0.01 22.19 88.75 42.44 16.50 32.71
in-dms-aos 46.01 26.70 98.78 92.11 46.88 48.78
in-dss 0.00 30.31 2.55 11.62 6.87 26.80
dms 99.94 ± 0.03 0.25 ± 0.12 13.40 ± 9.11 0.75 ± 0.55 0.46 ± 0.08 21.96 ± 15.56
dms-aos 99.10 ± 0.82 7.03 ± 1.27 77.65 ± 5.84 54.39 ± 4.72 37.60 ± 0.79 40.94 ± 0.32
dss 0.00 ± 0.00 4.60 ± 1.34 0.00 ± 0.00 0.00 ± 0.00 0.31 ± 0.22 22.55 ± 15.79
dss-ext 96.67 ± 1.36 95.98 ± 0.36 83.69 ± 2.62 74.09 ± 1.33 52.02 ± 0.68 43.52 ± 0.15
supervised 100.00 ± 0.00 99.04 ± 0.14 99.98 ± 0.02 99.36 ± 0.24 79.18 ± 0.30 84.88 ± 1.16
1C-Sum 99.85 ± 0.17 92.97 ± 0.84 84.14 ± 3.56 90.52 ± 0.45 76.93 ± 1.01 70.25 ± 1.43

W
id

eR
es

N
et

odin 98.48 ± 1.06 81.28 ± 3.49 84.98 ± 2.82 91.10 ± 1.04 77.58 ± 0.42 73.20 ± 2.69
T1000 94.49 ± 3.78 86.47 ± 2.43 78.51 ± 3.23 89.63 ± 0.92 78.99 ± 0.25 73.05 ± 2.43
mp 92.03 ± 6.00 77.21 ± 2.06 70.71 ± 2.92 81.93 ± 0.97 76.17 ± 0.17 72.18 ± 1.08
h 94.37 ± 4.14 80.54 ± 2.23 72.63 ± 3.04 85.29 ± 1.10 78.04 ± 0.11 78.03 ± 3.05
norm 67.44 ± 29.49 74.28 ± 5.66 75.02 ± 6.14 79.18 ± 2.71 63.00 ± 2.52 59.63 ± 2.45
norm+ 80.19 ± 22.36 79.68 ± 4.77 74.43 ± 4.11 85.21 ± 1.60 71.13 ± 1.57 66.82 ± 2.56
act 94.41 ± 3.84 86.74 ± 2.37 78.80 ± 3.17 89.58 ± 0.96 79.00 ± 0.24 72.94 ± 2.42
act+ 97.40 ± 2.04 89.09 ± 2.27 82.62 ± 3.83 89.68 ± 0.81 76.47 ± 0.72 70.52 ± 2.77
proj 94.80 ± 3.59 85.51 ± 2.26 79.05 ± 3.61 89.69 ± 0.90 78.90 ± 0.23 73.06 ± 2.13
ang 96.22 ± 2.52 82.42 ± 1.30 75.17 ± 2.02 87.68 ± 1.09 79.93 ± 0.33 74.65 ± 1.28
ang++ 97.02 ± 2.08 84.14 ± 1.29 83.48 ± 3.30 84.41 ± 0.77 75.10 ± 0.21 69.17 ± 1.05
in-dms 0.01 22.19 88.75 42.44 16.50 32.71
in-dms-aos 46.01 26.70 98.78 92.11 46.88 48.78
in-dss 0.00 30.31 2.55 11.92 6.87 26.80
dms 100.00 ± 0.00 84.65 ± 1.38 91.79 ± 1.54 62.49 ± 1.26 39.19 ± 0.54 75.94 ± 30.23
dms-aos 100.00 ± 0.00 6.61 ± 0.81 62.58 ± 5.99 43.24 ± 4.88 40.56 ± 0.81 48.03 ± 0.36
dss 99.99 ± 0.00 94.85 ± 0.04 86.68 ± 1.64 82.52 ± 1.22 44.58 ± 0.61 77.31 ± 31.68
dss-ext 85.25 ± 1.53 95.52 ± 0.14 78.13 ± 2.66 75.51 ± 1.68 51.30 ± 0.75 37.70 ± 0.94
supervised 100.00 ± 0.00 99.22 ± 0.06 99.98 ± 0.02 99.20 ± 0.10 78.40 ± 0.05 81.15 ± 1.64
1C-Sum 100.00 ± 0.00 95.44 ± 0.99 84.95 ± 4.30 91.06 ± 1.29 77.30 ± 0.32 68.55 ± 2.62

D
en

se
N

et
1
2
1

odin 97.79 ± 2.03 80.72 ± 1.10 75.12 ± 7.12 90.68 ± 1.28 79.22 ± 1.11 74.42 ± 1.55
T1000 92.50 ± 5.48 87.45 ± 1.47 67.66 ± 6.00 89.77 ± 1.27 80.36 ± 0.78 73.99 ± 1.43
mp 78.51 ± 13.57 82.17 ± 1.57 67.17 ± 1.57 83.52 ± 0.03 78.33 ± 0.04 74.09 ± 0.88
h 76.84 ± 13.03 77.78 ± 1.55 61.64 ± 2.34 79.65 ± 0.32 75.32 ± 3.00 74.88 ± 0.96
norm 69.60 ± 27.50 58.29 ± 1.80 37.50 ± 14.69 64.73 ± 5.77 60.14 ± 3.49 60.96 ± 2.14
norm+ 79.09 ± 26.05 69.80 ± 2.88 44.41 ± 14.49 78.80 ± 3.44 70.54 ± 2.26 66.05 ± 2.77
act 92.38 ± 5.56 87.50 ± 1.48 67.77 ± 6.02 89.77 ± 1.25 80.39 ± 0.78 73.97 ± 1.43
act+ 93.93 ± 5.11 87.97 ± 0.99 66.48 ± 8.88 88.31 ± 2.40 77.85 ± 1.42 73.97 ± 1.70
proj 92.36 ± 5.32 85.34 ± 2.32 67.46 ± 5.92 89.12 ± 1.12 80.23 ± 0.66 72.53 ± 1.31
ang 92.01 ± 7.24 86.73 ± 2.62 77.82 ± 0.67 89.85 ± 0.36 81.26 ± 0.10 72.25 ± 0.35
ang++ 89.91 ± 13.68 87.72 ± 2.17 84.04 ± 3.14 85.70 ± 0.96 76.23 ± 0.09 71.79 ± 0.25
in-dms 0.01 22.19 88.75 42.44 16.50 42.68
in-dms-aos 46.01 26.70 98.78 92.11 46.88 48.78
in-dss 0.00 30.31 2.55 11.62 6.87 38.55
dms 100.00 ± 0.00 3.41 ± 1.67 6.56 ± 2.87 0.45 ± 0.19 13.92 ± 18.52 35.32 ± 0.33
dms-aos 99.99 ± 0.01 8.99 ± 1.44 51.12 ± 4.77 33.48 ± 2.93 38.62 ± 0.81 50.00 ± 0.67
dss 1.84 ± 2.42 6.24 ± 1.04 0.00 ± 0.01 0.00 ± 0.00 14.04 ± 19.82 31.02 ± 1.71
dss-ext 96.60 ± 0.74 95.39 ± 0.67 90.90 ± 0.63 84.26 ± 0.63 50.79 ± 0.32 33.29 ± 1.01
supervised 100.00 ± 0.00 99.26 ± 0.08 99.98 ± 0.01 99.43 ± 0.09 80.30 ± 0.48 84.84 ± 0.30
1C-Sum 99.40 ± 0.85 93.23 ± 1.61 79.50 ± 3.08 92.06 ± 1.39 80.10 ± 0.36 72.54 ± 1.78
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Table 6: Area under the ROC curve for OOD detection with ImageNet as ID.

Gaussian SVHN MNIST fash. MNIST LSUN CIFAR 10 CIFAR 100
R

es
N

et
5
0

odin 99.96 99.82 99.73 94.16 80.38 87.66 89.98
T1000 98.77 98.37 98.03 87.28 78.17 84.23 86.48
mp 93.87 97.25 91.65 86.99 75.70 81.57 84.75
h 97.55 98.36 96.16 89.32 77.47 84.36 87.25
norm 99.62 95.89 99.53 57.95 62.92 48.98 58.23
norm+ 99.80 96.35 99.58 63.67 70.37 55.09 63.66
act 98.74 98.37 98.05 87.29 78.15 84.18 86.46
act+ 99.94 99.58 99.77 87.29 77.36 83.00 86.89
proj 98.77 98.21 98.43 88.37 77.04 83.59 86.31
ang 90.53 93.83 88.94 89.26 74.70 86.40 87.21
ang++ 99.87 99.56 99.51 98.23 75.03 94.46 96.14
in-dms 26.50 61.58 97.00 68.76 50.00 50.79 56.51
in-dms-aos 42.46 22.50 98.87 92.60 56.66 38.43 43.72
in-dss 7.52 86.70 55.74 71.10 43.38 54.91 59.55
dms 99.92 97.10 99.18 95.69 38.20 86.99 89.04
dms-aos 8.10 16.26 85.79 73.03 52.50 34.10 33.59
dss 100.00 98.15 98.19 88.37 31.08 80.06 84.03
dss-ext 100.00 93.17 87.10 72.58 36.36 73.95 77.98
supervised 100.00 99.98 100.00 99.79 85.18 99.13 99.09
1C-Sum 100.00 99.43 99.62 93.28 61.76 87.51 91.55

W
id

eR
es

N
et

odin 100.00 99.91 99.36 96.13 78.42 87.79 89.44
T1000 99.77 96.59 96.26 88.87 77.00 83.20 85.16
mp 99.70 95.25 92.17 87.41 77.51 82.89 85.41
h 99.69 96.96 95.49 89.78 78.90 84.96 87.42
norm 80.56 53.96 74.21 40.52 44.73 27.21 31.31
norm+ 92.88 59.47 80.81 45.66 53.56 32.13 36.98
act 99.77 96.58 96.27 88.88 76.98 83.17 85.14
act+ 99.92 97.96 98.25 89.36 70.56 81.72 84.04
proj 99.85 96.67 96.93 90.17 76.64 81.69 84.60
ang 98.93 96.16 93.74 92.55 79.65 89.14 90.46
ang++ 99.98 99.70 99.51 99.15 79.40 96.50 97.12
in-dms 26.50 61.58 97.00 68.76 50.00 50.79 56.51
in-dms-aos 42.46 22.50 98.87 92.60 56.66 38.43 43.72
in-dss 7.52 86.70 55.74 71.10 43.38 54.91 59.55
dms 99.74 95.03 99.92 96.69 48.86 81.34 84.74
dms-aos 4.70 12.07 99.67 83.86 58.68 23.12 26.21
dss 99.06 96.37 99.51 96.17 27.21 85.18 87.43
dss-ext 99.99 96.36 92.57 87.23 32.86 84.58 86.41
supervised 100.00 99.98 100.00 99.98 88.23 99.65 99.54
1C-Sum 99.94 99.27 99.94 97.56 71.73 88.27 91.35

D
en

se
N

et
1
2
1

odin 100.00 99.54 98.08 92.86 81.90 86.44 88.10
T1000 99.84 99.02 92.79 88.70 79.93 85.72 87.78
mp 97.27 97.61 80.44 87.31 76.95 83.16 85.56
h 99.87 98.79 86.31 90.04 79.01 86.01 88.13
norm 99.94 94.53 94.32 49.85 58.91 45.45 57.07
norm+ 99.97 94.64 95.82 57.67 67.43 51.74 63.24
act 99.85 99.03 92.88 88.71 79.90 85.68 87.76
act+ 99.98 99.59 97.33 88.40 77.65 81.84 86.33
proj 99.93 98.94 95.15 88.97 77.85 85.73 87.97
ang 95.93 95.93 85.38 90.89 75.49 88.79 88.77
ang++ 99.96 99.33 97.79 97.94 73.80 93.29 94.81
in-dms 26.50 61.58 97.00 68.76 50.00 50.79 56.51
in-dms-aos 42.46 22.50 98.87 92.60 56.66 38.43 43.72
in-dss 7.52 86.70 55.74 71.10 43.38 54.91 59.55
dms 99.17 90.45 97.55 91.63 52.45 79.22 82.03
dms-aos 0.09 4.23 93.40 76.40 56.95 16.62 18.08
dss 100.00 98.92 99.86 97.76 30.66 90.02 92.35
dss-ext 100.00 97.93 94.25 89.08 34.29 88.85 90.68
supervised 100.00 99.95 99.99 99.87 87.13 98.84 98.69
1C-Sum 99.99 99.74 99.78 97.63 63.98 92.15 95.00
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(a) Variance distribution across principal components
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(b) Loading analysis on CIFAR 10 (ID set).
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(c) Loading analysis on Gaussian noise
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(d) Loading analysis on Tiny ImageNet.

Figure 1: PCA analysis of redundancy on CIFAR 10 with ResNet 50. In the loading analyses, pixel on row i and
column j expresses the absolute value of the correlation between the ith indicator and the jth component.
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C.2. Complementarity/redundancy

We use principal component analysis (PCA) to as-
sess the (linear) redundancy or complementarity of the
proposed indicators. For each dataset independently,
we created one unsupervised n× p matrix Md. Md[i, j]
is value of the jth indicator for the ith sample from
dataset d, standardized according to the mean/standard
deviation of indicator j on d. We then computed the
PCA of each matrices (Figure 1).

Figure 1a shows how the ratio of explained variance
evolves with respect to the number of principal com-
ponents. The first component accounts for 50% of the
variance and roughly half of the components are needed
to account for the majority (i.e. > 95%) of the variance.

Figures 1b-1d show how the components relate to
the original indicators. As can be seen, the first compo-
nent mainly focuses on the optimality-based indicators.
The large quantity of variance its explains is somewhat
misleading, since more than half of the indicators are so
highly correlated themselves. Interestingly, ang++, h,
mp, norm and norm+ correlations are spread among
two components, mainly, suggesting those might be
complementary to the other optimality-based indica-
tors.

To a lesser extend, the second component focuses
on the batchnorm indicators. However, several com-
ponents are needed to fully capture all the batchnorm
information. In particular, in-dms(-aos) stand apart
from the other indicators. As for in-dss, it tends to
share its variance with two components. Of the remain-
ing indicators, dss and dss-ext are well correlated
and are the main focus of one component. On natural
images, dms and dms-aos correlate with several compo-
nents. On Gaussian noise, though—where they perform
well—they stand apart as the second component.

Overall, we observe three main clusters of indicators:
(i) the optimality-based ones, (ii) in- indicators, and
(iii) the remaining batchnorm ones. Nevertheless, more
than three components are needed to summarize (most
of) the variance, since some indicators spread their
variance across several components. Although partially
redundant, the indicators remain complementary and
might help catch different OOD samples.

This analysis suggests that the first few principal
components could be used as new indicators that sum-
marize the information contained in the proposed ones.
Nevertheless, using the principal components in practice
is not trivial, owing to the by-dataset standardization.
One could use the same technique as we proposed for
1C-Sum, namely using a (noisy) reference dataset to per-
form the PCA reduction. We are concerned, however,
that this would further bias the detector to perform
well mostly on closer OOD dataset to the one used as

reference, and degrade the performances in the other
cases.

C.3. Model quality

In this section, we would like to investigate how much
the quality of the model impacts the quality of OOD
detection. To do so, we trained a ResNet 50 on CIFAR
10 and paused the learning at several stages to compute
the proposed indicators. We used the accuracy on the
training set as criterion to snapshot the performances.
Table 7 holds the results with a selection of indicators
for several datasets, as well as the test set accuracies.

We can distinguish between three phases. At first,
the model is training but not yet overfitting. Around
95% of training accuracy, we see the first evidence of
overfitting occurring. Somewhere between 97.5% and
99%, the overfitting is no longer mild. At this point,
the gain of accuracy is small and the network decreases
its training loss mainly by becoming more confident. A
few observations are worth mentionning.

Optimality-based indicators Without surprise,
optimality-based indicators suffer from a sub-optimal
network. At the first two stages, the proportions of
misclassified test samples is relatively high. Since these
indicators all rely in some way or another on the pre-
dicted class, the poor performances are to be expected.
Once reaching 95% of training accuracy, the proportion
of misclassified test samples remains stable, and the
performances vary less, up to the point where the model
becomes overconfident. It does indeed seem easy for the
network to push all samples far away from the decision
planes in the last latent space, with a regrettable side
effect for OOD detection. In this regime, the variance
of the results increases as well.

Batchnorm indicators Firstly, note we did not in-
clude the in- indicators because they do not depend on
the model. On datasets where they are useful (Gaussian,
SVHN), the other batchnorm indicators reach notice-
able performances early in the training but keep being
refined up till the end. Overconfidence is not a problem
for those indicators. They are quite unstable on MNIST
and overall worthless against Tiny ImageNet.

Supervised method When supervision is applicable,
the model quality plays a much less important role.
Except on Tiny ImageNet, the indicator performances
with the model trained at 75% of accuracy is already
close to its best. Even at the first stage, the linear
SVM model is able to discard useless indicators (as
against Gaussian, where individual optimality-based
indicators perform randomly). As showcases MNIST,
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the supervised models also go beyond picking up the
best individual indicator. This appraoch is also more
robust with respect to overconfidence.

1C-Sum With 1C-Sum, we see that by combining
indicators, we can achieve good performances with a less
well-trained model (85% of training accuracy, a stage
more on Tiny ImageNet). At that stage, this indicator is
already performing better than most other (sample-free)
indicator at their peak. Unlike the supervised method,
this approach suffers somewhat from overconfidence.

CIFAR 10 vs. CIFAR 100 At 75% of training
accuracy, the network has comparable test accuracy
as optimal-ones on CIFAR 100 (Table 3). Against the
Gaussian dataset, optimality-based indicators perform
much better in the case of CIFAR 100. Against SVHN
and Tiny ImageNet, the performance are similar in both
cases. Against MNIST, indicators work better in the
case of CIFAR 10.

Discussion As expected, optimality-based indicators
suffer from a sub-optimal model. They also suffer from
an over-confident network. 1C-Sum follows the same
trend but depends less on the model optimality. It
is also less impacted by overconfidence. Batchnorm
indicators are less predictable but seem to be also im-
pacted by the model quality when they are useful. Some
supervision can compensate for the lack of training.

C.4. Misclassification detection

In this section, we investigate whether wrongly re-
jected ID samples correspond to misclassified ones. We
performed two experiments.

Error detection The first experiment consist in using
the proposed indicators to detect misclassifications: we
only look at the training set of the base task and label
as positive the samples for which the network makes
an classification error; samples for which the model
is correct are labeled as negative. Table 8 shows the
area under the ROC curve for detecting these positive
samples. As can be seen, not all indicators are equal in
this respect. Indicator appropriateness is stable across
architectures and datasets.

Optimality-based indicators are clearly best suited: a
well-optimized network should lower its confidence when
making a mistake. Among those, mp and h stand out,
then comes ang, followed by act, proj and T1000. For
this task, the positive variant are less adequate. T1000
always outperforms ODIN; the adversarial perturbation
will lower the network confidence blurring the separation
between positive and negative samples.

Batchnorm indicators are not suited for the task,
suggesting that the network mistakes are not due to
statistical outliers. As for the aggregating indicator,
1C-Sum, it performs adequately, although simpler indi-
cators work better.

Even though the networks make more mistakes on CI-
FAR 100, detecting them is a harder challenge. Whether
this is caused by a less well-performing model, or by
other factors (such the number of classes which might
spread the predictions more across classes) is not clear.

Joint OOD and misclassification detection In
the second experiment, we are considering both OOD
samples and misclassification as the positive class. In
other words, are considered negative samples only those
of the base task for which the network predicts the
correct class. Although misclassifications cannot count
as OOD samples per se, it might be more interesting in
practice to reject those as well.

Table 9 shows the average (over the OOD datasets—
the same as for the other experiments) improvement in
auroc when tackling the joint task rather than OOD
detection only. It is confirmed that wrongly rejected ID
samples are partly due to misclassified one, in the case
of optimality-based indicators. Indeed, they benefit
from a raise of auroc, which is more pronounced with
CIFAR 100, where there are much more classification
errors.

We also see that this is not true of batchnorm indica-
tors, albeit in-dms and in-dss see a small improvement.
This suggests that misclassified samples are not neces-
sarily statistically off compared to other ID samples.

Interestingly, 1C-Sum benefits slightly from the joint
task, even though it incorporates batchnorm indicators.

The previous analyses highlighted that indicators
good at detecting misclassifications might differ from
those best at OOD detection. However, when the net-
work performs well, misclassified samples should be
negligible. This is confirmed by table 10, which dis-
plays the average (across OOD datasets—the same as
for the other experiments) top rank for each indicator
at this joint task. On CIFAR 10, the relative order of
indicators is mostly unchanged. On CIFAR 100, mp
and h are better positionned in the ranking, although
the number of mistakes might be too low for them to
outperforms the best indicators.

Overall, it does seem that some of the wrongly re-
jected ID samples are also misclassified. 1C-Sum re-
mains the best bet to tackle OOD detection, possibly
jointly with misclassification rejection, at least in the
absence of data.
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Table 7: Model quality and its impact on OOD detection. A ResNet 50 was trained on CIFAR 10 and paused when
reaching some training set accuracy threshold (first row) to examine how the features perform. The metric is the
area under the ROC curve. Coloring reflects the 50% of overall best results per dataset.

Train accuracy (%) 75 85 95 97.5 99 full

Test accuracy (%) 77.15 ± 1.49 84.99 ± 0.36 92.41 ± 0.49 93.49 ± 0.07 93.58 ± 0.06 94.11 ± 0.25

G
a
u
ss

ia
n

T1000 49.23 ± 13.93 89.71 ± 2.95 96.95 ± 3.31 97.28 ± 1.61 95.41 ± 4.59 83.17 ± 9.00
mp 41.31 ± 15.76 84.84 ± 5.74 95.06 ± 5.27 95.23 ± 2.73 93.31 ± 5.37 89.27 ± 4.90
h 42.82 ± 16.58 87.59 ± 4.08 95.65 ± 4.80 96.32 ± 2.36 94.09 ± 5.33 89.05 ± 5.03
norm 47.98 ± 13.03 83.74 ± 1.46 96.57 ± 3.76 96.55 ± 1.80 94.61 ± 5.47 53.96 ± 33.02
act 49.50 ± 13.95 89.51 ± 3.40 96.87 ± 3.43 97.28 ± 1.72 95.48 ± 4.50 83.34 ± 9.02
proj 49.47 ± 14.99 89.69 ± 4.11 96.57 ± 3.97 97.17 ± 2.05 95.63 ± 4.02 85.53 ± 8.09
ang 51.94 ± 14.55 89.41 ± 5.93 95.85 ± 4.38 96.20 ± 2.46 94.73 ± 3.90 91.78 ± 2.79
dms-aos 84.91 ± 11.58 85.95 ± 4.30 86.66 ± 4.07 92.49 ± 3.40 95.01 ± 2.37 99.25 ± 0.48
dss-ext 94.71 ± 5.24 96.60 ± 0.61 98.64 ± 0.55 98.77 ± 0.26 98.17 ± 0.79 98.24 ± 0.61
supervised 99.99 ± 0.01 100.00 ± 0.00 100.00 ± 0.01 100.00 ± 0.00 99.99 ± 0.01 100.00 ± 0.00
1C-Sum 81.41 ± 9.90 99.54 ± 0.13 99.88 ± 0.16 99.95 ± 0.06 99.81 ± 0.21 97.84 ± 2.70

S
V

H
N

T1000 82.65 ± 3.65 94.68 ± 1.68 97.17 ± 1.05 97.32 ± 0.39 96.49 ± 0.32 93.14 ± 3.05
mp 80.17 ± 4.68 92.60 ± 1.17 94.89 ± 1.59 94.73 ± 0.72 94.32 ± 1.27 91.89 ± 1.30
h 81.69 ± 3.45 94.36 ± 1.35 96.36 ± 1.33 96.00 ± 0.66 95.19 ± 1.14 92.51 ± 1.46
norm 85.57 ± 3.88 95.52 ± 2.72 97.27 ± 1.90 97.58 ± 0.65 94.55 ± 1.83 85.46 ± 10.89
act 83.30 ± 3.53 94.94 ± 1.61 97.24 ± 1.05 97.42 ± 0.39 96.58 ± 0.30 93.32 ± 2.95
proj 81.85 ± 4.51 94.84 ± 1.35 97.34 ± 0.96 97.40 ± 0.38 96.68 ± 0.29 94.01 ± 2.42
ang 75.08 ± 5.28 90.84 ± 0.33 95.32 ± 0.29 94.63 ± 0.45 94.36 ± 1.19 93.41 ± 0.09
dms-aos 18.21 ± 6.46 11.38 ± 10.15 2.72 ± 1.27 2.46 ± 0.68 3.92 ± 1.70 4.72 ± 2.26
dss-ext 95.32 ± 0.83 97.80 ± 0.45 98.40 ± 0.22 98.20 ± 0.33 97.88 ± 0.18 97.70 ± 0.34
supervised 98.94 ± 0.23 99.50 ± 0.23 99.72 ± 0.01 99.67 ± 0.04 99.65 ± 0.04 99.75 ± 0.05
1C-Sum 89.12 ± 5.17 98.49 ± 0.59 99.00 ± 0.22 98.98 ± 0.20 98.71 ± 0.17 97.83 ± 0.95

M
N

IS
T

T1000 83.64 ± 4.91 89.35 ± 1.44 94.70 ± 0.18 94.88 ± 0.34 94.88 ± 2.18 94.81 ± 0.78
mp 75.71 ± 6.21 82.44 ± 1.47 90.03 ± 0.77 89.85 ± 1.00 89.47 ± 2.48 90.76 ± 0.65
h 78.97 ± 6.44 85.59 ± 1.33 91.76 ± 0.64 91.09 ± 0.94 90.41 ± 2.67 91.40 ± 0.62
norm 76.20 ± 1.94 88.82 ± 5.56 94.92 ± 1.60 95.17 ± 1.58 97.36 ± 0.93 92.28 ± 4.92
act 83.71 ± 4.25 89.44 ± 1.53 94.73 ± 0.19 94.92 ± 0.34 94.93 ± 2.19 94.90 ± 0.70
proj 83.74 ± 4.24 90.42 ± 1.73 95.30 ± 0.22 95.54 ± 0.30 95.59 ± 1.75 95.61 ± 0.40
ang 83.70 ± 5.68 88.18 ± 0.57 93.65 ± 1.14 93.77 ± 1.50 91.93 ± 2.90 94.15 ± 0.60
dms-aos 80.49 ± 10.05 64.11 ± 10.43 57.98 ± 2.28 71.07 ± 3.05 65.48 ± 5.40 81.12 ± 9.04
dss-ext 49.66 ± 2.26 68.02 ± 3.52 73.17 ± 1.54 70.39 ± 5.40 68.64 ± 3.40 66.93 ± 1.88
supervised 99.99 ± 0.01 99.99 ± 0.01 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
1C-Sum 85.02 ± 7.01 93.76 ± 1.89 96.37 ± 0.40 96.91 ± 0.51 96.53 ± 1.73 96.47 ± 1.58
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T1000 77.54 ± 1.42 83.33 ± 1.67 89.57 ± 0.05 90.17 ± 0.18 89.46 ± 0.36 88.70 ± 1.23
mp 73.90 ± 1.42 80.37 ± 1.76 87.05 ± 0.17 87.55 ± 0.18 87.20 ± 0.26 87.05 ± 0.61
h 75.72 ± 1.47 88.59 ± 1.49 88.23 ± 0.12 91.02 ± 0.11 90.06 ± 0.27 87.52 ± 0.67
norm 74.83 ± 1.64 80.70 ± 2.21 87.55 ± 0.17 87.16 ± 0.34 83.57 ± 1.55 80.19 ± 4.27
act 77.27 ± 1.46 83.09 ± 1.79 89.47 ± 0.09 90.14 ± 0.19 89.47 ± 0.38 88.77 ± 1.18
proj 77.32 ± 1.36 82.91 ± 1.80 89.34 ± 0.10 89.93 ± 0.10 89.30 ± 0.38 88.61 ± 1.26
ang 75.32 ± 1.35 81.02 ± 1.16 87.99 ± 0.15 88.81 ± 0.12 88.47 ± 0.23 88.35 ± 0.51
dms-aos 34.29 ± 2.51 29.05 ± 2.07 22.83 ± 1.20 22.83 ± 1.01 25.31 ± 1.19 25.25 ± 2.65
dss-ext 64.33 ± 0.55 65.97 ± 1.83 68.01 ± 0.55 68.29 ± 0.99 67.92 ± 0.39 66.84 ± 0.88
supervised 80.44 ± 1.44 85.22 ± 1.50 90.71 ± 0.27 90.89 ± 0.14 90.56 ± 0.17 90.82 ± 0.45
1C-Sum 76.12 ± 2.90 82.84 ± 2.39 89.33 ± 0.27 89.95 ± 0.26 88.92 ± 0.78 88.86 ± 0.79

C.5. Semantic anomalies

Recently, [1] proposed to distinguish OOD detection
between statistical and semantic anomalies detection. A

statistical shift occurs for instance when the network is
presented with a sample for which it knows the class but
under new lighting conditions. In opposition, a semantic
anomaly is a sample of an unknown class (at training

12



Table 8: Error detection. Indicator performance (area under the ROC curve) for misclassification prediction.

CIFAR 10 CIFAR 100
ResNet 50 WideResNet DenseNet 121 ResNet 50 WideResNet DenseNet 121

odin 85.63 ± 2.92 83.38 ± 3.84 75.17 ± 1.77 76.86 ± 0.14 78.66 ± 1.13 78.55 ± 1.08
T1000 88.99 ± 1.39 88.60 ± 0.35 85.70 ± 1.85 79.13 ± 0.32 79.78 ± 0.67 79.96 ± 0.27
mp 93.13 ± 0.59 92.96 ± 0.39 92.58 ± 0.28 86.54 ± 0.47 86.47 ± 0.19 87.32 ± 0.35
h 93.12 ± 0.59 92.88 ± 0.38 92.47 ± 0.27 86.19 ± 0.52 86.29 ± 0.17 86.87 ± 0.27
norm 74.79 ± 5.41 70.38 ± 7.18 50.37 ± 3.27 52.18 ± 0.72 62.44 ± 2.72 59.72 ± 3.18
norm+ 81.55 ± 3.41 80.04 ± 3.75 66.54 ± 3.13 65.77 ± 0.37 70.33 ± 1.86 69.47 ± 1.64
act 89.11 ± 1.33 88.63 ± 0.40 85.86 ± 1.80 79.18 ± 0.32 79.80 ± 0.65 80.02 ± 0.28
act+ 87.35 ± 1.99 84.90 ± 2.30 78.52 ± 2.92 74.06 ± 0.43 76.83 ± 1.17 76.94 ± 1.15
proj 88.97 ± 1.37 88.74 ± 0.12 86.09 ± 1.80 80.56 ± 0.28 79.74 ± 0.56 80.80 ± 0.13
ang 90.73 ± 0.52 91.79 ± 0.25 92.03 ± 0.58 84.06 ± 0.35 81.45 ± 0.20 82.14 ± 1.21
ang++ 90.48 ± 0.77 86.99 ± 0.73 86.96 ± 2.15 82.24 ± 0.29 76.84 ± 0.62 77.35 ± 0.60
dms 29.77 ± 4.79 37.70 ± 1.88 34.21 ± 1.89 38.76 ± 0.53 39.46 ± 0.64 39.69 ± 0.97
dms-aos 31.05 ± 1.91 38.47 ± 1.51 33.11 ± 0.97 39.47 ± 0.61 41.90 ± 0.29 41.12 ± 0.75
dss 40.39 ± 0.34 41.14 ± 2.19 45.40 ± 1.12 43.63 ± 1.06 44.46 ± 0.34 41.59 ± 1.29
dss-ext 53.46 ± 0.63 49.95 ± 1.84 56.76 ± 0.91 49.13 ± 0.27 49.57 ± 0.38 47.81 ± 0.39
1C-Sum 89.42 ± 2.64 86.24 ± 2.97 85.02 ± 1.87 78.95 ± 1.03 79.51 ± 0.89 81.82 ± 0.62

Table 9: Average auroc score improvement when tackling the joint task of OOD and misclassification detection.

CIFAR 10 CIFAR 100
ResNet 50 WideResNet DenseNet 121 ResNet 50 WideResNet DenseNet 121

odin 1.30 ± 0.68 0.87 ± 0.51 0.60 ± 0.79 4.39 ± 2.00 4.63 ± 2.53 4.49 ± 2.22
T1000 1.71 ± 0.93 1.22 ± 0.60 1.29 ± 0.51 5.06 ± 2.74 4.99 ± 2.97 4.88 ± 2.59
mp 2.64 ± 0.60 2.22 ± 0.59 2.15 ± 0.43 8.01 ± 2.35 8.10 ± 3.16 8.42 ± 2.91
h 2.47 ± 0.65 1.96 ± 0.66 1.99 ± 0.47 9.01 ± 2.29 6.73 ± 3.05 9.25 ± 2.62
norm 1.05 ± 1.20 0.21 ± 0.80 0.02 ± 0.79 -0.07 ± 2.62 2.19 ± 3.60 1.62 ± 2.94
norm+ 1.40 ± 1.16 0.65 ± 0.70 0.75 ± 0.71 2.78 ± 2.84 3.47 ± 3.26 3.40 ± 3.23
act 1.71 ± 0.94 1.20 ± 0.61 1.29 ± 0.52 5.06 ± 2.71 4.99 ± 2.95 4.90 ± 2.58
act+ 1.33 ± 0.87 0.82 ± 0.69 0.99 ± 0.67 3.21 ± 2.74 3.63 ± 3.37 3.85 ± 2.70
proj 1.64 ± 0.89 1.21 ± 0.62 1.29 ± 0.55 5.67 ± 2.76 4.99 ± 2.99 5.31 ± 2.62
ang 1.81 ± 0.47 1.83 ± 0.51 1.40 ± 0.56 6.48 ± 2.87 5.75 ± 3.29 5.61 ± 2.86
ang++ 1.25 ± 0.92 1.63 ± 0.80 1.19 ± 0.92 4.61 ± 3.53 4.26 ± 3.36 4.10 ± 3.08
dms -1.48 ± 1.16 -1.12 ± 1.05 -1.18 ± 1.03 -1.27 ± 4.83 -5.49 ± 4.35 -1.77 ± 4.21
dms-aos -1.38 ± 1.22 -1.10 ± 1.09 -1.40 ± 1.00 -3.82 ± 3.53 -3.74 ± 3.87 -3.39 ± 3.44
dss -1.08 ± 1.02 -0.96 ± 1.02 -0.71 ± 0.96 2.56 ± 2.98 -4.27 ± 4.50 1.69 ± 2.48
dss-ext -0.41 ± 0.91 -0.52 ± 0.83 -0.19 ± 0.88 -1.81 ± 3.18 -1.20 ± 2.80 -1.77 ± 3.37
1C-Sum 1.20 ± 0.93 0.73 ± 0.81 0.85 ± 0.87 3.25 ± 3.56 3.37 ± 4.09 4.01 ± 3.45

time) but from a close statistical distribution. The
authors illustrate this by using a left-out class of CIFAR
10 to define OOD samples with respect to a model
trained from all other classes. Note that most of the
time, OOD data are both statistically and semantically
different. For instance, MNIST is neither semantically
nor statistically close to CIFAR 10.

Table 11 contains some results relating to the prob-
lem of semantic anomalies. We split the classes of
CIFAR 10 in two halves. The first half, h1, contains the
airplane, bird, car, cat and deer classes (two vehicles,
three animals). The second half, h2, contains the dog,
horse, monkey, ship and truck classes (two vehicles and
three animals). We learned a ResNet 50 model on each

half separately and use the remaining one as OOD data
(accuracies are 95.4 ± 0.6 and 97.6 ± 0.1 for the first
and second halves respectively).

Interestingly, one OOD task is harder than the other
(whereas the accuracy on the ID tasks are roughly equiv-
alent). Without surprise the batchnorm features are
inadequate for semantic anomalies. The baseline in-
dicators are hard to outperform in this setting. Even
ang++, which sometimes excel, is hard pressed here.
The proposed 1C-Sum indicator does not perform so
well either. This is mainly due to the batchnorm fea-
tures dragging it down. When removed, 1C-Sum* per-
formance increases significantly.

The semantic anomaly detection subproblem is very
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Table 10: Average top ranking for the joint task of misclassification and OOD detection

CIFAR 10 CIFAR 100
ResNet 50 WideResNet DenseNet 121 ResNet 50 WideResNet DenseNet 121

odin 6.83 7.00 9.67 5.83 5.50 5.83
T1000 6.83 5.33 8.33 6.33 6.33 6.00
mp 10.17 8.83 5.67 6.67 8.17 7.00
h 9.00 7.33 4.67 9.17 6.17 9.33
norm 13.67 12.83 16.83 13.67 14.83 13.67
norm+ 12.17 10.17 14.17 12.50 12.83 12.50
act 5.83 4.00 7.33 6.00 6.33 5.17
act+ 6.67 6.83 11.67 7.83 7.00 8.33
proj 6.00 4.00 6.33 6.67 5.83 6.67
ang 6.17 6.83 2.17 5.33 5.67 3.33
ang++ 7.00 11.83 5.83 3.00 8.83 8.00
dms 14.33 13.83 12.33 17.00 13.83 16.83
dms-aos 16.17 17.67 17.50 14.67 17.33 14.33
dss 11.83 13.00 11.67 18.67 11.33 18.50
dss-ext 11.33 13.17 10.83 10.33 13.33 9.50
1C-Sum 2.67 3.83 3.83 3.83 3.67 3.00

challenging and might benefit most from having access
to ID data.

Table 11: Semantic anomaly detection. A ResNet 50
was trained on half the classes of CIFAR 10 while the
remaining classes are used as OOD set (h1 contains the
five first classes, h2 the second half). The metric used
is the Area under the ROC curve. Coloring reflects
the 50% best results (darker is better). Note that 1C-
Sum* only incorporates the non-batchnorm features of
1C-Sum.

Indicator h1 (id) / h2 (ood) h2 (id) / h1 (ood)
T1000 77.15 ± 1.07 88.02 ± 0.63
mp 77.77 ± 0.81 87.59 ± 0.61
h 77.88 ± 0.81 87.76 ± 0.62
norm 69.26 ± 0.86 83.49 ± 0.76
norm+ 73.24 ± 1.37 86.14 ± 0.79
act 77.04 ± 1.12 87.91 ± 0.65
act+ 75.17 ± 1.02 86.96 ± 0.79
proj 75.88 ± 1.08 87.87 ± 0.68
ang 76.84 ± 0.44 87.31 ± 0.63
ang++ 74.48 ± 0.82 83.40 ± 0.11
in-nota 45.12 55.28
in-dms 43.87 56.43
in-dms-aos 53.34 46.95
in-dss 41.23 59.21
nota 50.00 ± 0.00 49.54 ± 0.66
dms 32.34 ± 1.07 36.97 ± 3.71
dms-aos 44.17 ± 0.95 37.22 ± 0.64
dss 43.13 ± 1.78 57.45 ± 1.94
dss-ext 48.73 ± 1.63 58.92 ± 0.41
1C-Sum 71.30 ± 0.99 84.25 ± 0.73
1C-Sum* 76.17 ± 1.15 87.70 ± 0.60
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D. Selected indicator distributions

In this section, we would like to share some distribu-
tions of the indicators. Figure 2 displays the distribution
for some of bounded indicators. In theory, those are the
easiest to threshold without data. In practice, setting
the cut points without data is challenging. Interestingly,
in an application where rejecting ID samples is less of
a problem, mp and h seem good candidate to minimize
the OOD acceptance rate. This also explains why they
benefit so much from rejecting misclassified samples:
ID samples is their main source of mistakes—reducing
the number of such samples improves the auroc score.

Figure 3 displays some distributions for unbounded
indicators. It does seem that pinpointing where to place
the threshold is quite hard.

Figures 4 and 5 focuses on batchnorm indicators. As
one can see, these indicators are of limited use in most
cases.

Finally, Figure 6 displays the distribution of 1C-Sum
in various settings. Without any prior knowledge, plac-
ing the optimal threshold is, once more, challenging.
The dependency on the network might be more im-
portant than the one on the ID task (ResNet 50 for
ImageNet is slightly different than for CIFAR 10/100).
We leave the evaluation of transferability/meta-learning
of the threshold as future work.
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Figure 2: Bounded indicator distributions established with CIFAR 10 as ID task on ResNet 50.
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Figure 3: Unbounded indicator distributions established with CIFAR 10 as ID task on ResNet 50.
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Figure 4: in- indicator distributions established with CIFAR 10 as ID task on ResNet 50.
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Figure 5: Batchnorm indicator distributions established with CIFAR 10 as ID task on ResNet 50.
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(a) CIFAR 10 as ID task on ResNet 50
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(b) CIFAR 10 as ID task on WideResNet
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(c) CIFAR 100 as ID task on ResNet 50
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(d) ImageNet as ID task on ResNet 50

Figure 6: 1C-Sum indicator distributions.
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