[en] In this work we generalize the spaces ${T}_{u}^{p}$ introduced by Calderón and Zygmund using pointwise conditions emanating from generalized Besov spaces. We give conditions binding the functions belonging to these spaces and their wavelet coefficients. Next, we propose a multifractal formalism based on such spaces which generalizes the so-called wavelet leaders method and show that it is satisfied on a prevalent set.
Disciplines :
Mathématiques
Auteur, co-auteur :
Loosveldt, Laurent ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Nicolay, Samuel ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Langue du document :
Anglais
Titre :
Generalized spaces of pointwise regularity: toward a general framework for the WLM
Date de publication/diffusion :
09 août 2021
Titre du périodique :
Nonlinearity
ISSN :
0951-7715
Maison d'édition :
Institute of Physics Publishing (IOP), Royaume-Uni
Almeida A 2005 Wavelet bases in generalized Besov spaces J. Math. Anal. Appl. 304 198-211
Calderón A and Zygmund A 1961 Local properties of solutions of elliptic partial differential equations Stud. Math. 20 181-225
Christensen J P R 1972 On sets of Haar measure zero in abelian Polish groups Isr. J. Math. 13 255-60
Cobos F and Fernandez D L 1986 Hardy-Sobolev spaces and Besov spaces with a function parameter Function Spaces and Applications (Lecture Notes in Mathematics vol 1302) ed M Cwikel, J Peetre, Y Sagher and H Wallin (Berlin: Springer) pp 158-70
Daubechies I 1988 Orthonormal bases of compactly supported wavelets Commun. Pure Appl.Math. 41 909-96
Daubechies I 1992 Ten Lectures on Wavelets (CBMS-NSF Regional Conference Series in Applied Mathematics) (Philadelphia: Society for Industrial and Applied Mathematics)
Falconer K 2003 Fractal Geometry: Mathematical Foundations and Applications (New York: Wiley)
Fraysse A and Jaffard S 2006 How smooth is almost every function in a Sobolev space? Rev. Mat. Iberoam. 22 663-82
Hunt B R 1994 The prevalence of continuous nowhere differentiable functions Proc. Am. Math. Soc. 122 711
Hunt B R, Sauer T and Yorke J A 1992 Prevalence: A translation-invariant 'almost every' on infinitedimensional spaces Bull. Am. Math. Soc. 27 217-39
Jaffard S 2004 Wavelet techniques in multifractal analysis, fractal geometry and applications: A jubilee of Benoit Mandelbrot Proc. Symp. Pure Mathematics 72 pp 91-151
Jaffard S 2005 Beyond Besov spaces part 2: Oscillation spaces Constr. Approx. 21 29-61
Jaffard S and Martin B 2018 Multifractal analysis of the Brjuno function Invent. Math. 212 109-32
Jaffard S and Mélot C 2005 Wavelet analysis of fractal boundaries. Part 2: Multifractal analysis Commun. Math. Phys. 258 541-65
Jaffard S and Nicolay S 2009 Pointwise smoothness of space-filling functions Appl. Comput. Harmon. Anal. 26 181-99
Krantz S G 1983 Lipschitz spaces, smoothness of functions, and approximation theory Expo. Math. 1 193-260
Kreit D and Nicolay S 2012 Some characterizations of generalized Hölder spaces Math. Nachr. 285 2157-72
Kreit D and Nicolay S 2018 Generalized pointwise Hölder spaces defined via admissible sequences J. Funct. Spaces 2018 8276258
Leonarduzzi R, Wendt H, Jaffard S, Roux S G, TorresM E and Abry P 2014 Extending multifractal analysis to negative regularity: P-exponents and p-leaders 2014 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) pp 305-9
Loosveldt L and Nicolay S 2020 Generalized T p u spaces: On the trail of Calderón and Zygmund Diss. Math. 554 1-64
Loosveldt L and Nicolay S 2020 Some equivalent definitions of Besov spaces of generalized smoothness Math. Nachr. 292 2262-82
Mallat S 1999 A Wavelet Tour of Signal Processing (New York: Academic)
Merucci C 1984 Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces Interpolation Spaces and Allied Topics in Analysis (Lecture Notes in Mathematics vol 1070) ed M Cwikel and J Peetre (Berlin: Springer) pp 183-201
Meyer Y and Salinger D 1995 Wavelets and Operators vol 1 (Cambridge: Cambridge University Press)
Meyer Y and Xu H 1997 Wavelet analysis and chirps Appl. Comput. Harmon. Anal. 4 366-79
ParisiGand FrischU1985 On the singularity structure of fully developed turbulence Turbulence and Predictability in Geophysical Fluid Dynamics (Proc. Int. Summer School Phys. 'Enrico Fermi') ed M Ghil, R Benzi and G Parisi (Amsterdam: North-Holland) pp 84-7