Chatterjee G, Pai T, Hardiman T et al (2018) Molecular patterns of cancer colonisation in lymph nodes of breast cancer patients. Breast Cancer Res 20:143. 10.1186/s13058-018-1070-3 DOI: 10.1186/s13058-018-1070-3
Balsat C, Blacher S, Herfs M et al (2017) A specific immune and lymphatic profile characterizes the pre-metastatic state of the sentinel lymph node in patients with early cervical cancer. Oncoimmunology 6:1–10. 10.1080/2162402X.2016.1265718 DOI: 10.1080/2162402X.2016.1265718
Wakisaka N, Hasegawa Y, Yoshimoto S et al (2015) Primary tumor-secreted lymphangiogenic factors induce pre-metastatic lymphvascular niche formation at sentinel lymph nodes in oral squamous cell carcinoma. PLoS ONE 10:e0144056. 10.1371/journal.pone.0144056 DOI: 10.1371/journal.pone.0144056
Tuomas T, Kari A (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476. 10.1016/j.cell.2010.01.045 DOI: 10.1016/j.cell.2010.01.045
Maus RLG, Jakub JW, Hieken TJ et al (2019) Identification of novel, immune-mediating extracellular vesicles in human lymphatic effluent draining primary cutaneous melanoma. Oncoimmunology 8:1–10. 10.1080/2162402X.2019.1667742 DOI: 10.1080/2162402X.2019.1667742
Cho JK, Hyun SH, Choi N et al (2015) Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl Oncol 8:119–125. 10.1016/j.tranon.2015.03.001 DOI: 10.1016/j.tranon.2015.03.001
Stacker SA, Williams SP, Karnezis T et al (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14:159–172. 10.1038/nrc3677 DOI: 10.1038/nrc3677
Padera TP, Meijer EFJ, Munn LL (2016) The lymphatic system in disease processes and cancer progression. Annu Rev Biomed Eng 18:125–158. 10.1146/annurev-bioeng-112315-031200 DOI: 10.1146/annurev-bioeng-112315-031200
Sleeman JP (2015) The lymph node pre-metastatic niche. J Mol Med 93:1173–1184. 10.1007/s00109-015-1351-6 DOI: 10.1007/s00109-015-1351-6
Sleeman JP, Nazarenko I, Thiele W (2011) Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 128:2511–2526. 10.1002/ijc.26027 DOI: 10.1002/ijc.26027
Cady B (2007) Regional lymph node metastases, a singular manifestation of the process of clinical metastases in cancer: contemporary animal research and clinical reports suggest unifying concepts. Cancer Treat Res 135:185–201. 10.1007/978-0-387-69219-7_14 DOI: 10.1007/978-0-387-69219-7_14
Fisher B, Jeong JH, Anderson S et al (2002) Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med 347:567–575. 10.1056/NEJMoa020128 DOI: 10.1056/NEJMoa020128
Cascinelli N, Morabito A, Santinami M et al (1998) Immediate or delayed dissection of regional nodes in patients with melanoma of the trunk: a randomised trial. Lancet 351:793–796. 10.1016/S0140-6736(97)08260-3 DOI: 10.1016/S0140-6736(97)08260-3
Nathanson SD, Kwon D, Kapke A et al (2009) The role of lymph node metastasis in the systemic dissemination of breast cancer. Ann Surg Oncol 16:3396–3405. 10.1245/s10434-009-0659-2 DOI: 10.1245/s10434-009-0659-2
Brown M, Assen FP, Leithner A et al (2018) Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359:1408–1411. 10.1126/science.aal3662 DOI: 10.1126/science.aal3662
Pereira ER, Kedrin D, Seano G et al (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359:1403–1407. 10.1126/science.aal3622 DOI: 10.1126/science.aal3622
Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827. 10.1038/nature04186 DOI: 10.1038/nature04186
Peinado H, Zhang H, Matei IR et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317. 10.1038/nrc.2017.6 DOI: 10.1038/nrc.2017.6
Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293. 10.1038/nrc2621 DOI: 10.1038/nrc2621
Maru Y (2015) The lung metastatic niche. J Mol Med 93:1185–1192. 10.1007/s00109-015-1355-2 DOI: 10.1007/s00109-015-1355-2
Houg DS, Bijlsma MF (2018) The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol Cancer 17:95. 10.1186/s12943-018-0842-9 DOI: 10.1186/s12943-018-0842-9
Ren G, Esposito M, Kang Y (2015) Bone metastasis and the metastatic niche. J Mol Med 93:1203–1212. 10.1007/s00109-015-1329-4 DOI: 10.1007/s00109-015-1329-4
Paolillo M, Schinelli S (2019) Extracellular matrix alterations in metastatic processes. Int J Mol Sci 20:4947. 10.3390/ijms20194947 DOI: 10.3390/ijms20194947
Williamson T, Sultanpuram N, Sendi H (2019) The role of liver microenvironment in hepatic metastasis. Clin Transl Med 8:21. 10.1186/s40169-019-0237-6 DOI: 10.1186/s40169-019-0237-6
Malanchi I, Santamaria-Martínez A, Susanto E et al (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–91. 10.1038/nature10694 DOI: 10.1038/nature10694
Hirakawa S, Kodama S, Kunstfeld R et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099. 10.1084/jem.20041896 DOI: 10.1084/jem.20041896
Hirakawa S, Brown LF, Kodama S et al (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017. 10.1182/blood-2006-05-021758 DOI: 10.1182/blood-2006-05-021758
Farnsworth RH, Lackmann M, Achen MG, Stacker SA (2014) Vascular remodeling in cancer. Oncogene 33:3496–3505. 10.1038/onc.2013.304 DOI: 10.1038/onc.2013.304
Aspelund A, Robciuc MR, Karaman S et al (2016) Lymphatic system in cardiovascular medicine. Circ Res 118:515–530. 10.1161/CIRCRESAHA.115.306544 DOI: 10.1161/CIRCRESAHA.115.306544
Vaahtomeri K, Karaman S, Mäkinen T, Alitalo K (2017) Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev 31:1615–1634. 10.1101/gad.303776.117 DOI: 10.1101/gad.303776.117
Fütterer A, Mink K, Luz A et al (1998) The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9:59–70. 10.1016/S1074-7613(00)80588-9 DOI: 10.1016/S1074-7613(00)80588-9
Cherrier M, Eberl G (2012) The development of LTi cells. Curr Opin Immunol 24:178–183. 10.1016/j.coi.2012.02.003 DOI: 10.1016/j.coi.2012.02.003
Meier D, Bornmann C, Chappaz S et al (2007) Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26:643–654. 10.1016/j.immuni.2007.04.009 DOI: 10.1016/j.immuni.2007.04.009
Dougall WC, Glaccum M, Charrier K et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424. 10.1101/gad.13.18.2412 DOI: 10.1101/gad.13.18.2412
Van De Pavert SA, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10:664–674. 10.1038/nri2832 DOI: 10.1038/nri2832
Randall T, Carragher D, Rangel-Moreno J (2008) Development of secondary lymphoid organs. Annu Rev Immunol 26:627–650. 10.1146/annurev.immunol.26.021607.090257 DOI: 10.1146/annurev.immunol.26.021607.090257
Bovay E, Sabine A, Prat-Luri B et al (2018) Multiple roles of lymphatic vessels in peripheral lymph node development. J Exp Med 215:2760–2777. 10.1084/jem.20180217 DOI: 10.1084/jem.20180217
Onder L, Ludewig B (2018) A fresh view on lymph node organogenesis. Trends Immunol 39:775–787. 10.1016/j.it.2018.08.003 DOI: 10.1016/j.it.2018.08.003
Van De Pavert SA, Mebius RE (2014) Development of secondary lymphoid organs in relation to lymphatic vasculature. Adv Anat Embryol Cell Biol 214:81–91. 10.1007/978-3-7091-1646-3_7 DOI: 10.1007/978-3-7091-1646-3_7
Onder L, Mörbe U, Pikor N et al (2017) Lymphatic endothelial cells control initiation of lymph node organogenesis. Immunity 47:80-92.e4. 10.1016/j.immuni.2017.05.008 DOI: 10.1016/j.immuni.2017.05.008
Fletcher AL, Acton SE, Knoblich K (2015) Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol 15:350–361. 10.1038/nri3846 DOI: 10.1038/nri3846
Rodda LB, Lu E, Bennett ML et al (2018) Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48:1014-1028.e6. 10.1016/j.immuni.2018.04.006 DOI: 10.1016/j.immuni.2018.04.006
Harlé G, Kowalski C, Garnier L, Hugues S (2020) Lymph node stromal cells: mapmakers of t cell immunity. Int J Mol Sci 21:1–18. 10.3390/ijms21207785 DOI: 10.3390/ijms21207785
Grant SM, Lou M, Yao L et al (2020) The lymph node at a glance—how spatial organization optimizes the immune response. J Cell Sci 133:1–7. 10.1242/jcs.241828 DOI: 10.1242/jcs.241828
Girard JP, Moussion C, Förster R (2012) HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12:762–773. 10.1038/nri3298 DOI: 10.1038/nri3298
Bellomo A, Gentek R, Bajénoff M, Baratin M (2018) Lymph node macrophages: Scavengers, immune sentinels and trophic effectors. Cell Immunol 330:168–174. 10.1016/j.cellimm.2018.01.010 DOI: 10.1016/j.cellimm.2018.01.010
Petrova TV, Koh GY (2018) Organ-specific lymphatic vasculature: from development to pathophysiology. J Exp Med 215:35–49. 10.1084/jem.20171868 DOI: 10.1084/jem.20171868
Ulvmar MH, Mäkinen T (2016) Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res 111:310–321. 10.1093/cvr/cvw175 DOI: 10.1093/cvr/cvw175
Iftakhar-E-Khuda I, Fair-Mäkelä R, Kukkonen-Macchi A et al (2016) Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. Proc Natl Acad Sci U S A 113:10643–10648. 10.1073/pnas.1602357113 DOI: 10.1073/pnas.1602357113
Fujimoto N, He Y, D’Addio M et al (2020) Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes. PLoS Biol 18:e3000704. 10.1371/journal.pbio.3000704 DOI: 10.1371/journal.pbio.3000704
Xiang M, Grosso RA, Takeda A et al (2020) A single-cell transcriptional roadmap of the mouse and human lymph node lymphatic vasculature. Front Cardiovasc Med. 10.3389/fcvm.2020.00052 DOI: 10.3389/fcvm.2020.00052
Takeda A, Hollmén M, Dermadi D et al (2019) Single-cell survey of human lymphatics unveils marked endothelial cell heterogeneity and mechanisms of homing for neutrophils. Immunity 51:561-572.e5. 10.1016/j.immuni.2019.06.027 DOI: 10.1016/j.immuni.2019.06.027
Cohen JN, Tewalt EF, Rouhani SJ et al (2014) Tolerogenic properties of lymphatic endothelial cells are controlled by the lymph node microenvironment. PLoS ONE 9:e87740. 10.1371/journal.pone.0087740 DOI: 10.1371/journal.pone.0087740
Ulvmar MH, Werth K, Braun A et al (2014) The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat Immunol 15:623–630. 10.1038/ni.2889 DOI: 10.1038/ni.2889
Cochran AJ, Huang RR, Lee J et al (2006) Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol 6:659–670. 10.1038/nri1919 DOI: 10.1038/nri1919
Roozendaal R, Mempel TR, Pitcher LA et al (2009) Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–276. 10.1016/j.immuni.2008.12.014 DOI: 10.1016/j.immuni.2008.12.014
Martinez VG, Pankova V, Krasny L et al (2019) Fibroblastic reticular cells control conduit matrix deposition during lymph node expansion. Cell Rep 29:2810-2822.e5. 10.1016/j.celrep.2019.10.103 DOI: 10.1016/j.celrep.2019.10.103
Novkovic M, Onder L, Bocharov G, Ludewig B (2020) Topological Structure and robustness of the lymph node conduit system. Cell Rep 30:893-904.e6. 10.1016/j.celrep.2019.12.070 DOI: 10.1016/j.celrep.2019.12.070
Kelch ID, Bogle G, Sands GB et al (2019) High-resolution 3D imaging and topological mapping of the lymph node conduit system. PLoS Biol 17:1–25. 10.1371/journal.pbio.3000486 DOI: 10.1371/journal.pbio.3000486
Reynoso GV, Weisberg AS, Shannon JP et al (2019) Lymph node conduits transport virions for rapid T cell activation. Nat Immunol 20:602–612. 10.1038/s41590-019-0342-0 DOI: 10.1038/s41590-019-0342-0
Förster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371. 10.1038/nri2297 DOI: 10.1038/nri2297
Ager A (2017) High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front Immunol 8:1–16. 10.3389/fimmu.2017.00045 DOI: 10.3389/fimmu.2017.00045
Pawlak JB, Caron KM (2020) Lymphatic programing and specialization in hybrid vessels. Front Physiol 11:114. 10.3389/fphys.2020.00114 DOI: 10.3389/fphys.2020.00114
Hynes RO, Naba A (2012) Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4:a004903–a004903. 10.1101/cshperspect.a004903 DOI: 10.1101/cshperspect.a004903
Walker C, Mojares E, Del Río HA (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19:3028. 10.3390/ijms19103028 DOI: 10.3390/ijms19103028
Høye AM, Erler JT (2016) Structural ECM components in the premetastatic and metastatic niche. Am J Physiol Cell Physiol 310:C955–C967. 10.1152/ajpcell.00326.2015 DOI: 10.1152/ajpcell.00326.2015
Eble JA, Niland S (2019) The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 36:171–198. 10.1007/s10585-019-09966-1 DOI: 10.1007/s10585-019-09966-1
Bourgot I, Primac I, Louis T et al (2020) Reciprocal interplay between fibrillar collagens and collagen-binding integrins: implications in cancer progression and metastasis. Front Oncol 10:1–28. 10.3389/fonc.2020.01488 DOI: 10.3389/fonc.2020.01488
Sixt M, Kanazawa N, Selg M et al (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29. 10.1016/j.immuni.2004.11.013 DOI: 10.1016/j.immuni.2004.11.013
Robertson IB, Horiguchi M, Zilberberg L et al (2016) Latent TGF-β-binding proteins. Matrix Biol 47:44–53. 10.1016/j.matbio.2015.05.005 DOI: 10.1016/j.matbio.2015.05.005
Sobocinski GP, Toy K, Bobrowski WF et al (2010) Ultrastructural localization of extracellular matrix proteins of the lymph node cortex: evidence supporting the reticular network as a pathway for lymphocyte migration. BMC Immunol 11:42. 10.1186/1471-2172-11-42 DOI: 10.1186/1471-2172-11-42
Malhotra D, Fletcher AL, Astarita J et al (2012) Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol 13:499–510. 10.1038/ni.2262 DOI: 10.1038/ni.2262
Hamidi H, Ivaska J (2018) Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 10.1038/s41568-018-0038-z DOI: 10.1038/s41568-018-0038-z
González-González L, Alonso J (2018) Periostin: a matricellular protein with multiple functions in cancer development and progression. Front Oncol 8:1–15. 10.3389/fonc.2018.00225 DOI: 10.3389/fonc.2018.00225
Yokosaki Y, Monis H, Ghen J, Sheppard D (1996) Differential effects of the integrins α9β1, αvβ3, and αvβ6 on cell proliferative responses to tenascin. Roles of the β subunit extracellular and cytoplasmic domains. J Biol Chem 271:24144–24150. 10.1074/jbc.271.39.24144 DOI: 10.1074/jbc.271.39.24144
Piao YJ, Kim HS, Hwang EH et al (2018) Breast cancer cell-derived exosomes and macrophage polarization are associated with lymph node metastasis. Oncotarget 9:7398–7410. 10.18632/oncotarget.23238 DOI: 10.18632/oncotarget.23238
Tickner JA, Urquhart AJ, Stephenson SA et al (2014) Functions and therapeutic roles of exosomes in cancer. Front Oncol 4:1–8. 10.3389/fonc.2014.00127 DOI: 10.3389/fonc.2014.00127
Plebanek MP, Angeloni NL, Vinokour E et al (2017) Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat Commun 8:1319. 10.1038/s41467-017-01433-3 DOI: 10.1038/s41467-017-01433-3
Hood JL, San Roman S, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801. 10.1158/0008-5472.CAN-10-4455 DOI: 10.1158/0008-5472.CAN-10-4455
Zhou W, Fong MY, Min Y et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–515. 10.1016/j.ccr.2014.03.007 DOI: 10.1016/j.ccr.2014.03.007
Zeng Z, Li Y, Pan Y et al (2018) Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 9:5395. 10.1038/s41467-018-07810-w DOI: 10.1038/s41467-018-07810-w
Broggi MAS, Maillat L, Clement CC et al (2019) Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J Exp Med 216:1091–1107. 10.1084/jem.20181618 DOI: 10.1084/jem.20181618
García-Silva S, Benito-Martín A, Sánchez-Redondo S et al (2019) Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAFV600E mutation. J Exp Med 216:1061–1070. 10.1084/jem.20181522 DOI: 10.1084/jem.20181522
Nogués L, Benito-Martin A, Hergueta-Redondo M, Peinado H (2018) The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination. Mol Aspects Med 60:15–26. 10.1016/j.mam.2017.11.012 DOI: 10.1016/j.mam.2017.11.012
Garmy-susini B, Avraamides CJ, Desgrosellier JS et al (2013) PI3K α activates integrin α 4 β 1 to establish a metastatic niche in lymph nodes. Proc Natl Acad Sci U S A 110:9042–9047. 10.1073/pnas.1219603110/ DOI: 10.1073/pnas.1219603110/
Lee AS, Kim DH, Lee JE et al (2011) Erythropoietin induces lymph node lymphangiogenesis and lymph node tumor metastasis. Cancer Res 71:4506–4517. 10.1158/0008-5472.CAN-10-3787 DOI: 10.1158/0008-5472.CAN-10-3787
Dieterich LC, Detmar M (2016) Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 99:148–160. 10.1016/j.addr.2015.12.011 DOI: 10.1016/j.addr.2015.12.011
Ma Q, Dieterich LC, Detmar M (2018) Multiple roles of lymphatic vessels in tumor progression. Curr Opin Immunol 53:7–12. 10.1016/j.coi.2018.03.018 DOI: 10.1016/j.coi.2018.03.018
Karnezis T, Shayan R, Fox S et al (2012) The connection between lymphangiogenic signalling and prostaglandin biology: a missing link in the metastatic pathway. Oncotarget 3:890–903. 10.18632/oncotarget.593 DOI: 10.18632/oncotarget.593
Commerford CD, Dieterich LC, He Y et al (2018) Mechanisms of tumor-induced lymphovascular niche formation in draining lymph nodes. Cell Rep 25:3554-3563.e4. 10.1016/j.celrep.2018.12.002 DOI: 10.1016/j.celrep.2018.12.002
Cordeiro OG, Chypre M, Brouard N et al (2016) Integrin-alpha IIb identifies murine lymph node lymphatic endothelial cells responsive to RANKL. PLoS ONE 11:1–16. 10.1371/journal.pone.0151848 DOI: 10.1371/journal.pone.0151848
Dieterich LC, Kapaklikaya K, Cetintas T et al (2019) Transcriptional profiling of breast cancer-associated lymphatic vessels reveals VCAM-1 as regulator of lymphatic invasion and permeability. Int J Cancer 145:2804–2815. 10.1002/ijc.32594 DOI: 10.1002/ijc.32594
Brulois K, Rajaraman A, Szade A et al (2020) A molecular map of murine lymph node blood vascular endothelium at single cell resolution. Nat Commun. 10.1038/s41467-020-17291-5 DOI: 10.1038/s41467-020-17291-5
Qian CN, Berghuis B, Tsarfaty G et al (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66:10365–10376. 10.1158/0008-5472.CAN-06-2977 DOI: 10.1158/0008-5472.CAN-06-2977
Chung MK, Do IG, Jung E et al (2012) Lymphatic vessels and high endothelial venules are increased in the sentinel lymph nodes of patients with oral squamous cell carcinoma before the arrival of tumor cells. Ann Surg Oncol 19:1595–1601. 10.1245/s10434-011-2154-9 DOI: 10.1245/s10434-011-2154-9
Farnsworth RH, Karnezis T, Shayan R et al (2011) A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res 71:6547–6557. 10.1158/0008-5472.CAN-11-0200 DOI: 10.1158/0008-5472.CAN-11-0200
Bekkhus T, Martikainen T, Olofsson A et al (2021) Article remodeling of the lymph node high endothelial venules reflects tumor invasiveness in breast cancer and is associated with dysregulation of perivascular stromal cells. Cancers 13:1–17. 10.3390/cancers13020211 DOI: 10.3390/cancers13020211
Chen JY, Lai YS, Chu PY et al (2019) Cancer-derived VEGF-C increases chemokine production in lymphatic endothelial cells to promote CXCR2-dependent cancer invasion and MDSC recruitment. Cancers 11:1120. 10.3390/cancers11081120 DOI: 10.3390/cancers11081120
Watanabe S, Deguchi K, Zheng R et al (2008) Tumor-induced CD11b + Gr-1 + myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol 181:3291–3300. 10.4049/jimmunol.181.5.3291 DOI: 10.4049/jimmunol.181.5.3291
Wang Z, Xiong S, Mao Y et al (2016) Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. J Pathol 239:484–495. 10.1002/path.4747 DOI: 10.1002/path.4747
Wang Y, Ding Y, Guo N, Wang S (2019) MDSCs: key criminals of tumor pre-metastatic niche formation. Front Immunol 10:1–16. 10.3389/fimmu.2019.00172 DOI: 10.3389/fimmu.2019.00172
Eisenblaetter M, Flores-Borja F, Lee JJ et al (2017) Visualization of tumor-immune interaction—target-specific imaging of S100A8/A9 reveals pre-metastatic niche establishment. Theranostics 7:2392–2401. 10.7150/thno.17138 DOI: 10.7150/thno.17138
Chafe SC, Lou Y, Sceneay J et al (2015) Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res 75:996–1008. 10.1158/0008-5472.CAN-14-3000 DOI: 10.1158/0008-5472.CAN-14-3000
Alicea-Torres K, Gabrilovich DI (2018) Biology of myeloid-derived suppressor cells. Oncoimmunology. 10.1007/978-3-319-62431-0_10 DOI: 10.1007/978-3-319-62431-0_10
Vetsika EK, Koukos A, Kotsakis A (2019) Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer. Cells 8:1647. 10.3390/cells8121647 DOI: 10.3390/cells8121647
Cochran AJ, Huang RR, Su A et al (2015) Is sentinel node susceptibility to metastases related to nodal immune modulation? Cancer J 21:39–46. 10.1097/PPO.0000000000000094 DOI: 10.1097/PPO.0000000000000094
Lee JH, Torisu-Itakura H, Cochran AJ et al (2005) Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res 11:107–112
Kumar V, Cheng P, Condamine T et al (2016) CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 44:303–315. 10.1016/j.immuni.2016.01.014 DOI: 10.1016/j.immuni.2016.01.014
Holtzhausen A, Harris W, Ubil E et al (2019) TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti–PD-1 therapy in melanoma. Cancer Immunol Res 7:1672–1686. 10.1158/2326-6066.CIR-19-0008 DOI: 10.1158/2326-6066.CIR-19-0008
Trovato R, Canè S, Petrova V et al (2020) The engagement between MDSCs and metastases: partners in crime. Front Oncol 10:1–16. 10.3389/fonc.2020.00165 DOI: 10.3389/fonc.2020.00165
Rodriguez PC, Hernandez CP, Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939. 10.1084/jem.20050715 DOI: 10.1084/jem.20050715
Srivastava MK, Sinha P, Clements VK et al (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77. 10.1158/0008-5472.CAN-09-2587 DOI: 10.1158/0008-5472.CAN-09-2587
Yu J, Du W, Yan F et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797. 10.4049/jimmunol.1201449 DOI: 10.4049/jimmunol.1201449
Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835. 10.1038/nm1609 DOI: 10.1038/nm1609
Molon B, Ugel S, Del Pozzo F et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962. 10.1084/jem.20101956 DOI: 10.1084/jem.20101956
Zhu J, Powis De Tenbossche CG, Cané S et al (2017) Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun. 10.1038/s41467-017-00784-1 DOI: 10.1038/s41467-017-00784-1
Mohammadpour H, MacDonald CR, Qiao G et al (2019) Β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J Clin Invest 129:5537–5552. 10.1172/JCI129502 DOI: 10.1172/JCI129502
Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131. 10.1158/0008-5472.CAN-05-1299 DOI: 10.1158/0008-5472.CAN-05-1299
Wang J, Yang L, Yu L et al (2017) Surgery-induced monocytic myeloid-derived suppressor cells expand regulatory T cells in lung cancer. Oncotarget 8:17050–17058. 10.18632/oncotarget.14991 DOI: 10.18632/oncotarget.14991
Tang F, Tie Y, Hong W et al (2020) Targeting myeloid-derived suppressor cells for premetastatic niche disruption after tumor resection. Ann Surg Oncol. 10.1245/s10434-020-09371-z DOI: 10.1245/s10434-020-09371-z
Liu Y, Cao X (2016) Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med 94:509–522. 10.1007/s00109-015-1376-x DOI: 10.1007/s00109-015-1376-x
Liu Y, Cao X (2016) Characteristics and significance of the pre-metastatic niche. Cancer Cell 30:668–681. 10.1016/j.ccell.2016.09.011 DOI: 10.1016/j.ccell.2016.09.011
Camara A, Cordeiro OG, Alloush F et al (2019) Lymph node mesenchymal and endothelial stromal cells cooperate via the RANK-RANKL cytokine axis to shape the sinusoidal macrophage niche. Immunity 50:1467-1481.e6. 10.1016/j.immuni.2019.05.008 DOI: 10.1016/j.immuni.2019.05.008
Mondor I, Baratin M, Lagueyrie M et al (2019) Lymphatic endothelial cells are essential components of the subcapsular sinus macrophage niche. Immunity 50:1453-1466.e4. 10.1016/j.immuni.2019.04.002 DOI: 10.1016/j.immuni.2019.04.002
Baratin M, Simon L, Jorquera A et al (2017) T cell zone resident macrophages silently dispose of apoptotic cells in the lymph node. Immunity 47:349-362.e5. 10.1016/j.immuni.2017.07.019 DOI: 10.1016/j.immuni.2017.07.019
Asano K, Nabeyama A, Miyake Y et al (2011) CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34:85–95. 10.1016/j.immuni.2010.12.011 DOI: 10.1016/j.immuni.2010.12.011
Ohnishi K, Yamaguchi M, Erdenebaatar C et al (2016) Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci 107:846–852. 10.1111/cas.12929 DOI: 10.1111/cas.12929
Saito Y, Ohnishi K, Miyashita A et al (2015) Prognostic significance of CD169+ lymph node sinus macrophages in patients with malignant melanoma. Cancer Immunol Res 3:1356–1363. 10.1158/2326-6066.CIR-14-0180 DOI: 10.1158/2326-6066.CIR-14-0180
Shiota T, Miyasato Y, Ohnishi K et al (2016) The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer. PLoS ONE 11:e0166680. 10.1371/journal.pone.0166680 DOI: 10.1371/journal.pone.0166680
Strömvall K, Sundkvist K, Ljungberg B et al (2017) Reduced number of CD169+ macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate 77:1468–1477. 10.1002/pros.23407 DOI: 10.1002/pros.23407
Pucci F, Garris C, Lai CP et al (2016) SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352:242–246. 10.1126/science.aaf1328 DOI: 10.1126/science.aaf1328
Ogawa F, Narumiya S, Majima M et al (2014) Prostanoid induces premetastatic niche in regional lymph nodes Find the latest version: prostanoid induces premetastatic niche in regional lymph nodes. J Clin Invest 124:4882–4894. 10.1172/JCI73530.tumor-specific DOI: 10.1172/JCI73530.tumor-specific
Rouhani JS (2014) Regulation of T-cell tolerance by lymphatic endothelial cells. J Clin Cell Immunol 05:242. 10.4172/2155-9899.1000242 DOI: 10.4172/2155-9899.1000242
Card CM, Yu SS, Swartz MA (2014) Emerging roles of lymphatic endothelium in regulating adaptive immunity. J Clin Invest 124:943–952. 10.1172/JCI73316 DOI: 10.1172/JCI73316
Cohen JN, Guidi CJ, Tewalt EF et al (2010) Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 207:681–688. 10.1084/jem.20092465 DOI: 10.1084/jem.20092465
Tewalt EF, Cohen JN, Rouhani SJ, Engelhard VH (2012) Lymphatic endothelial cells - key players in regulation of tolerance and immunity. Front Immunol 3:305. 10.3389/fimmu.2012.00305 DOI: 10.3389/fimmu.2012.00305
Habenicht LM, Kirschbaum SB, Furuya M et al (2017) Tumor regulation of lymph node lymphatic sinus growth and lymph flow in mice and in humans. Yale J Biol Med 90:403–415
Tewalt EF, Cohen JN, Rouhani SJ et al (2012) Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120:4772–4782. 10.1182/blood-2012-04-427013 DOI: 10.1182/blood-2012-04-427013
Jalkanen S, Salmi M (2020) Lymphatic endothelial cells of the lymph node. Nat Rev Immunol 20:566–578. 10.1038/s41577-020-0281-x DOI: 10.1038/s41577-020-0281-x
Lund AW, Duraes FV, Hirosue S et al (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1:191–199. 10.1016/j.celrep.2012.01.005 DOI: 10.1016/j.celrep.2012.01.005
Dubrot J, Duraes FV, Potin L et al (2014) Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. J Exp Med 211:1153–1166. 10.1084/jem.20132000 DOI: 10.1084/jem.20132000
Lucas ED, Tamburini BAJ (2019) Lymph node lymphatic endothelial cell expansion and contraction and the programming of the immune response. Front Immunol 10:36. 10.3389/fimmu.2019.00036 DOI: 10.3389/fimmu.2019.00036
Wolfraim LA, Walz TM, James Z et al (2004) p21 Cip1 and p27 Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-β-mediated G 1 arrest through modulation of IL-2 responsiveness. J Immunol 173:3093–3102. 10.4049/jimmunol.173.5.3093 DOI: 10.4049/jimmunol.173.5.3093
Batlle E, Massagué J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50:924–940. 10.1016/j.immuni.2019.03.024 DOI: 10.1016/j.immuni.2019.03.024
Ravi R, Noonan KA, Pham V et al (2018) Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat Commun 9:741. 10.1038/s41467-017-02696-6 DOI: 10.1038/s41467-017-02696-6
Lodyga M, Hinz B (2019) TGF-β1—a truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol 10:123–139. 10.1016/j.semcdb.2019.12.010 DOI: 10.1016/j.semcdb.2019.12.010
Campbell MG, Cormier A, Ito S et al (2020) Cryo-EM reveals integrin-mediated TGF-β activation without release from latent TGF-β. Cell 180:490-501.e16. 10.1016/j.cell.2019.12.030 DOI: 10.1016/j.cell.2019.12.030
Stockis J, Dedobbeleer O, Lucas S (2017) Role of GARP in the activation of latent TGF-β1. Mol Biosyst 13:1925–1935. 10.1039/c7mb00251c DOI: 10.1039/c7mb00251c
Liénart S, Merceron R, Vanderaa C et al (2018) Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells. Science 956:952–956. 10.1126/science.aau2909 DOI: 10.1126/science.aau2909
Pang Y, Gara SK, Achyut BR et al (2013) TGF-β signaling in myeloid cells is required for tumor metastasis. Cancer Discov 3:936–951. 10.1158/2159-8290.CD-12-0527 DOI: 10.1158/2159-8290.CD-12-0527
Huang SC, Wei PC, Hwang-Verslues WW et al (2017) TGF-β1 secreted by Tregs in lymph nodes promotes breast cancer malignancy via up-regulation of IL-17RB. EMBO Mol Med 9:1660–1680. 10.15252/emmm.201606914 DOI: 10.15252/emmm.201606914
Mani V, Bromley SK, Äijö T et al (2019) Migratory DCs activate TGF-b to precondition naïve CD8+T cells for tissue-resident memory fate. Science 366:eaav5728. 10.1126/science.aav5728 DOI: 10.1126/science.aav5728
Travis MA, Reizis B, Melton AC et al (2007) Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449:361–365. 10.1038/nature06110 DOI: 10.1038/nature06110
Liu T, Zhou L, Li D et al (2019) Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 7:1–14. 10.3389/fcell.2019.00060 DOI: 10.3389/fcell.2019.00060
Pelon F, Bourachot B, Kieffer Y et al (2020) Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat Commun 11:404. 10.1038/s41467-019-14134-w DOI: 10.1038/s41467-019-14134-w
Rodda LB, Lu E, Bennett ML et al (2018) Single-cell RNA sequencing of lymph node stromal resource single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48:1014-1028.e6. 10.1016/j.immuni.2018.04.006 DOI: 10.1016/j.immuni.2018.04.006
Oskarsson T, Acharyya S, Zhang XHF et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874. 10.1038/nm.2379 DOI: 10.1038/nm.2379
O’Connell JT, Sugimoto H, Cooke VG et al (2011) VEGF-A and Tenascin-C produced by S100A4 + stromal cells are important for metastatic colonization. Proc Natl Acad Sci U S A 108:16002–16007. 10.1073/pnas.1109493108 DOI: 10.1073/pnas.1109493108
Gao D, Joshi N, Choi H et al (2012) Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72:1384–1394. 10.1158/0008-5472.CAN-11-2905 DOI: 10.1158/0008-5472.CAN-11-2905
Ratajczak-Wielgomas K, Dziegiel P (2015) The role of periostin in neoplastic processes. Folia Histochem Cytobiol 53:120–132. 10.5603/FHC.a2015.0014 DOI: 10.5603/FHC.a2015.0014
Wei WF, Chen XJ, Liang LJ et al (2021) Periostin+cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol 15:210–227. 10.1002/1878-0261.12837 DOI: 10.1002/1878-0261.12837
Fujita S, Sumi M, Tatsukawa E et al (2020) Expressions of extracellular matrix-remodeling factors in lymph nodes from oral cancer patients. Oral Dis 26:1424–1431. 10.1111/odi.13419 DOI: 10.1111/odi.13419
Owyong M, Chou J, van den Bijgaart RJE et al (2019) MMP9 modulates the metastatic cascade and immune landscape for breast cancer anti-metastatic therapy. Life Sci Alliance 2:1–16. 10.26508/lsa.201800226 DOI: 10.26508/lsa.201800226
Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the pre-metastatic niche. Cancer Cell 15:35–44. 10.1016/j.ccr.2008.11.012 DOI: 10.1016/j.ccr.2008.11.012
Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178. 10.1242/dmm.004077 DOI: 10.1242/dmm.004077
Chin AR, Wang SE (2016) Cancer tills the premetastatic field: mechanistic basis and clinical implications. Clin Cancer Res 22:3725–3733. 10.1158/1078-0432.CCR-16-0028 DOI: 10.1158/1078-0432.CCR-16-0028
Hiratsuka S, Nakamura K, Iwai S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300. 10.1016/S1535-6108(02)00153-8 DOI: 10.1016/S1535-6108(02)00153-8
Ghouse SM, Vadrevu SK, Manne S et al (2020) Therapeutic targeting of vasculature in the premetastatic and metastatic niches reduces lung metastasis. J Immunol 204:990–1000. 10.4049/jimmunol.1901208 DOI: 10.4049/jimmunol.1901208
Wu S, Zheng Q, Xing X et al (2018) Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. J Exp Clin Cancer Res 37:1–12. 10.1186/s13046-018-0761-z DOI: 10.1186/s13046-018-0761-z
Aguado BA, Bushnell GG, Rao SS et al (2017) Engineering the pre-metastatic niche. Nat Biomed Eng 1:1–28. 10.1038/s41551-017-0077 DOI: 10.1038/s41551-017-0077
Wakisaka N, Hasegawa Y, Yoshimoto S et al (2015) Primary tumor-secreted lymphangiogenic factors induce pre-metastatic lymphvascular niche formation at sentinel lymph nodes in oral squamous cell carcinoma. PLoS ONE 10:1–14. 10.1371/journal.pone.0144056 DOI: 10.1371/journal.pone.0144056
Kawai H, Minamiya Y, Ito M et al (2008) VEGF121 promotes lymphangiogenesis in the sentinel lymph nodes of non-small cell lung carcinoma patients. Lung Cancer 59:41–47. 10.1016/j.lungcan.2007.08.001 DOI: 10.1016/j.lungcan.2007.08.001
Zhao YC, Ni XJ, Wang MH et al (2012) Tumor-derived VEGF-C, but not VEGF-D, promotes sentinel lymph node lymphangiogenesis prior to metastasis in breast cancer patients. Med Oncol 29:2594–2600. 10.1007/s12032-012-0205-0 DOI: 10.1007/s12032-012-0205-0
Saif MW, Knost JA, Chiorean EG et al (2016) Phase 1 study of the anti-vascular endothelial growth factor receptor 3 monoclonal antibody LY3022856/IMC-3C5 in patients with advanced and refractory solid tumors and advanced colorectal cancer. Cancer Chemother Pharmacol 78:815–824. 10.1007/s00280-016-3134-3 DOI: 10.1007/s00280-016-3134-3
Padera TP, Kuo AH, Hoshida T et al (2008) Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol Cancer Ther 7:2272–2279. 10.1158/1535-7163.MCT-08-0182 DOI: 10.1158/1535-7163.MCT-08-0182
Ji RC, Eshita Y, Kobayashi T et al (2018) Role of simvastatin in tumor lymphangiogenesis and lymph node metastasis. Clin Exp Metastasis 35:785–796. 10.1007/s10585-018-9940-8 DOI: 10.1007/s10585-018-9940-8