
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences 
https://doi.org/10.1007/s00018-021-03873-z

REVIEW

The pre‑metastatic niche in lymph nodes: formation 
and characteristics

Lionel Gillot1 · Louis Baudin1 · Loïc Rouaud1 · Frédéric Kridelka2 · Agnès Noël1 

Received: 9 November 2020 / Revised: 10 May 2021 / Accepted: 5 June 2021 
© The Author(s) 2021

Abstract
Lymph node metastasis is a crucial prognostic parameter in many different types of cancers and a gateway for further dis-
semination to distant organs. Prior to metastatic dissemination, the primary tumor prepares for the remodeling of the draining 
(sentinel) lymph node by secreting soluble factors or releasing extracellular vesicles that are transported by lymphatic vessels. 
These important changes occur before the appearance of the first metastatic cell and create what is known as a pre-metastatic 
niche giving rise to the subsequent survival and growth of metastatic cells. In this review, the lymph node structure, matrix 
composition and the emerging heterogeneity of cells forming it are described. Current knowledge of the major cellular and 
molecular processes associated with nodal pre-metastatic niche formation, including lymphangiogenesis, extracellular matrix 
remodeling, and immunosuppressive cell enlisting in lymph nodes are additionally summarized. Finally, future directions 
that research could possibly take and the clinical impact are discussed.
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Introduction

Many types of cancer, including melanoma, breast, oral, 
pancreatic and cervical cancers, disseminate through the 
lymphatic system [1–5]. In a large number of cases, lymph 
nodes (LNs) are relay the first metastases and the pres-
ence or absence of LN metastases is a crucial prognos-
tic parameter for clinicians [6]. Indeed, the presence of 
tumor cells in the first draining LN, the so-called sentinel 

LN, is regarded as a predictor for poor patient outcome 
[7]. The expression of lymphangiogenic growth factors, 
high lymphatic vessel (LV) density, and high incidence 
of lymphovascular invasion are typically associated with 
LN metastases and poor patient outcome [8, 9]. Metastatic 
dissemination to LNs develops when tumor cells become 
detached from the primary neoplasm, enter an LV and are 
subsequently transported to the sentinel LN where they 
initially accumulate in the nodal subcapsular sinus (SCS). 
Within the LN, disseminated tumor cells may either be 
destroyed, pass through the LN and enter the efferent LV, 
or remain in the LN where they form a colony [10, 11]. It 
has been debated at length whether cancer cells in LNs can 
secondarily seed distant metastases and colonize in distant 
organs. LN metastases were either viewed as clinically 
inconsequential [12, 13] or had the potential to seed dis-
tant organs [14, 15]. Two elegant studies demonstrated the 
migration of metastatic cells from LNs to distant organs in 
pre-clinical models [16, 17]. These data provided a defini-
tive proof-of-concept that metastatic cells in LNs can go 
on to seed distant organs. They also provide an indication 
that, when treating LN metastases, the aim should be, not 
only to obtain local control but also to prevent distant dis-
ease and, therefore, death. Nevertheless, there is still no 
explanation as to why some tumors tend to metastasize in 
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LNs, while others intravasate directly into blood vessels 
and reach distal sites via the blood stream.

The concept of a pre-metastatic niche was first for-
mulated by David Lyden and colleagues 15 years ago 
[18]. This pioneering study revealed that factors shed or 
secreted by tumor cells provide the microenvironment, 
within the organ, where metastases may later develop. 
These factors prepare the target organ to support the sur-
vival and proliferation of disseminating tumor cells. The 
main events in such a priming process include the secre-
tion of pro-metastatic growth factors and chemokines/
cytokines, as well as the release of extracellular vesicles 
(EVs) by the primary tumor. These primary tumor-derived 
factors induce the recruitment of specific cell types, an 
escalation in numbers of immunosuppressive cells and the 
remodeling of the extracellular matrix (ECM) in the pre-
metastatic organ. These molecular and cellular changes 
create a unique microenvironment that will support sub-
sequent metastatic growth [8, 10, 18–20]. Pre-metastatic 
niche formation has been described in detail for the lung 
[21], liver [22] and bone [23], with some specificities for 
each organ [24–26]. However, less is known about the 
pre-metastatic niche in LNs. Hirakawa et al. were the first 
to observe LN remodeling at a pre-metastatic stage in 
2005 [27] and 2007 [28]. They proved that the vascular 
growth factors (VEGF-A and VEGF-C) are responsible for 
inducing lymphangiogenesis in sentinel LNs. Since then, 
a number of studies have elucidated a number of distinc-
tive features of pre-metastatic LNs, including increased 
lymphangiogenesis and lymph flow, remodeling of high 
endothelial venules (HEVs), recruitment of myeloid cells 
and reduction of effector lymphocyte numbers and func-
tion[18, 28, 29]. This review will begin by describing the 
specific structure of LNs under physiological conditions to 
more clearly describe the tissue remodeling set in motion 
by the primary tumor. The latest findings on key compo-
nents and mechanisms involved in pre-metastatic niche 
formation in LNs will also be summarized.

Cellular composition 
and compartmentalization in LNs 
under physiological conditions

The lymphatic system is a unidirectional, blind-ended 
vascular network, of not only lymphatic capillaries and 
larger collecting vessels, but also secondary lymphoid 
organs such as LNs. This vascular system is essential for 
maintaining fluid homeostasis, absorbing dietary lipids 
and transporting immune cells and soluble antigens from 
peripheral tissues towards LNs and the central circulatory 
system [30, 31].

LN development

LN formation during fetal development has been studied 
through the generation and phenotyping of various gene-
deficient mice but is not yet fully understood [32–35]. 
However, what is known is that the interaction between 
lymphoid-tissue inducer (LTi) cells and lymphoid-tissue 
organizer (LTo) cells is crucial for LN development [36]. 
LTi cells arising in the fetal liver are attracted to LN 
development sites by a gradient of chemokines, including 
CXCL13, CCL19 and CCL21 [37]. In a mouse model, the 
loss of CXCR5, a receptor for CXCL13, prevented the for-
mation of peripheral LNs [38], stromal LTo cells expressed 
lymphotoxin-β-receptor (LTβR), while LTi cells produced 
its ligand, lymphotoxin-α1β2. This interaction between the 
two cell types induced an upregulation of adhesion mol-
ecules. For instance, vascular cell adhesion molecule 1 
(VCAM-1) promoted the retention of hematopoietic cells 
in forming LNs [39]. LTβR signaling induced the secretion 
of VEGF-C by LTo cells, which could potentially attract 
lymphatic endothelial cells (LECs) into the developing 
organ. LECs surrounded LTi and LTo clusters and express 
CCL21, which further drew in LTi cells and activated 
LECs [40]. This activation was attributed to the expres-
sion of the receptor activator of NF-κB (RANK) by LECs. 
Accordingly, the ablation of RANK expression in LECs 
blocked LTi organization and LN formation [41]. Collect-
ing lymphatic vessels are required for the transport of LTi 
cells, the formation of the LN capsule and SCS speciali-
zation in embryonic stages. Indeed, SCS specialization 
coincides with lymphatic vascular maturation. LECs of the 
LN lymphatic cup are organized in a double layer. LECs 
of the outer layer expressed FOXC2 (a marker for collect-
ing vessels), whereas those of the inner layer expressed 
LYVE1, ITGA2B and MADCAM, specific markers of 
LECs lining the floor (fLEC). The genetic loss of FOXC2 
in LECs from embryos is characterized by the absence of 
valves as a result of the suspension of collecting vessel 
development. In those mice, LN capsule formation was 
impaired, and SCS LECs failed to express ITGA2B. These 
results demonstrated that FOXC2 ensures collecting vessel 
maturation and capsule specialization [38].

LN organization

LNs are immune organs occupying strategic positions 
throughout the body. There is a complex network of 
lymphatic sinuses surrounding a highly organized paren-
chyma composed of reticular fibers, supporting immune 
cells, specialized blood vessels and fibroblastic reticu-
lar cells (FRCs). FRCs play a key role in B and T cell 
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compartmentalization in LNs and, together, represent 
between 20 and 50% of the non-hematopoietic component 
of them. These specialized cells express molecules com-
monly found in myofibroblasts, including desmin, vimen-
tin, CD90, CD73, CD103, α-smooth muscle actin (αSMA) 
and the ERTR7 antigen [42]. FRCs form stellate cell–cell 
contacts, thereby creating a three-dimensional network 
along which leukocytes can migrate. They also produce 
fibroreticular fibers which are involved in molecular trans-
portation and cell migration. Recently, heterogeneity of 
stromal cells has been identified in murine LNs [43]. In 
fact, a number of subsets were identified, including mar-
ginal reticular cells, which produce CXCL13 which has a 
key role in B cell homing and migration towards follicles 

[44]. In the paracortex, two divergent subsets have been 
distinguished and express different levels of CCL19, a 
regulator of lymphocyte migration [43]. This organiza-
tion provides an optimal environment for immune response 
induction and regulation[45]. The LN is divided into three 
areas: the cortex, paracortex and medulla (Fig. 1). The cor-
tex contains follicular dendritic cells and B cells that are 
mainly associated with germinal follicles, where follicular 
dendritic cells present antigens to naïve B lymphocytes, 
leading to antibody production by activated B cells. An 
interfollicular zone is also present in the cortex and sepa-
rates the germinal follicles. The paracortex is known as 
the T cell zone in which antigen-presenting dendritic cells 
(DCs) prime naïve T lymphocytes. The medulla contains a 

Fig. 1   Lymph node (LN) 
organization. The LN is divided 
into three parts: the cortex (C), 
paracortex (PC) and medulla 
(M). A Dendritic cells (DCs) 
from all over the body arrive at 
the LN via afferent vessels and 
then migrate into the cortex (C). 
B B lymphocytes are located in 
germinal follicles and interact 
with follicular dendritic cells 
(FDCs). C T lymphocytes are in 
the paracortex to interact with 
DCs. D DCs migrate on reticu-
lar fibers to the high endothelial 
venules (HEVs), where they 
interact with naïve lymphocytes 
entering the LN from the HEV. 
Activated B and T lymphocytes 
crawl along the medullary sinus 
to leave the LN
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complex network of medullary sinuses (MS), which con-
verge at the hilum into the efferent LVs [45, 46]. This 
region contains blood vessels, antibody-secreting B cells 
and macrophages, which express markers such as CD169, 
F4/80, MARCO and CD206 [47, 48].

Recent advances have identified intriguing LEC plastic-
ity, heterogeneity and origin diversity [49, 50]. In LNs, dif-
ferent LEC subtypes have been identified in the different 
anatomical sites described above in both humans and mice 
[51–54]. Interestingly, SCS LECs and MS LECs display 
distinct features, including cellular organization, expres-
sion profiles, and roles [51]. Mouse SCS LECs produce 
macrophage scavenger receptors which are involved in the 
transmigration of lymphocytes entering LNs from peripheral 
tissues. MS LECs, which express high levels of PD-L1, can 
be said to contribute to the deletion of alloreactive CD8 + T 
cells [55]. In humans, however, an additional subset was 
identified in the MS and cortical sinuses which expressed 
the C-type lectin CD209, allowing the adhesion of neutro-
phils to the medulla. In addition, NT5E + , LYVE1 + and 
MFAP4 + are the LECs lining the ceiling of the medulla, 
whereas LECs from lymphatic capillaries express PDPN, 
LYVE1 and CCL21[54]. A first transcriptomic analysis from 
mouse LNs has revealed the existence of two intriguing LEC 
subsets in the SCS that further support a substantial degree 
of LEC specialization [51]. fLECs of the SCS secrete neu-
trophil chemoattractant CXCL1-CXCL5, and LECs lining 
the ceiling (cLECs) express CCRL1, a chemokine receptor, 
thereby creating a gradient favorable for DC migration [56]. 
In humans, these 2 LEC subsets can be distinguished by the 
expression of caveolin-1 (by cLECs), while fLECs express 
TNFRSF9 [54]. These data demonstrate a specific signature 
of LECs although this depends on where they are located 
within the LN.

The lymph enters the node via the afferent LVs, which 
pierce the capsule and drain into the space underneath, 
known as the SCS. The lymph contains lymphocytes, anti-
gens and DCs that are scanned by macrophages when it 
arrives in the SCS [57]. It filters through the trabeculae, 
cortical sinuses and MS before leaving the LN via the effer-
ent LV [58]. From the SCS, smaller antigens and soluble 
molecules can access the interfollicular zone and the para-
cortex via a tubular network composed of specialized reticu-
lar fibers deposited by FRCs [59]. These reticular fibers are 
made up of a collagen core surrounded by microfibrils and 
a basement membrane [58]. This highly organized and inter-
connected network of ECM components generates conduits, 
which rapidly transport soluble molecules deep into the LN 
parenchyma. These conduits form a real 3D pipeline-like 
system known to rapidly distribute lymphatic fluid, solu-
ble molecules and antigens deep into the LN parenchyma 
[60, 61] and have also recently been found to transport even 
larger molecules, such as immunoglobulins or virions [62]. 

This mesh-like network is essentially present in the T cell 
zone but follicles remain sparse. It extends to the para-
cortex where the HEVs are located, creating a connection 
between the SCS and these specialized blood vessels [61]. 
This particular structural micro-anatomy where hematopoi-
etic cells can circulate, survive, and interact, both together, 
and with their environment, allows the LN to carry out its 
task of an initial immune response site. During an immune 
response, FRCs produce CCL19/CCL21, which assists in 
the directional cell migration of naïve T cells, B cells and 
DCs expressing CCR7. During homeostasis and in the pres-
ence of infection, this chemokine gradient helps lymphocyte 
homing and mediates interactions between T cells and DCs 
[63]. The reticular fibers descend from fLECs towards the 
HEVs, which are post-capillary venules especially suitable 
for lymphocyte entry into the LN parenchyma [50]. They 
are surrounded by pericytes embedded in a thick basement 
membrane [64]. HEV endothelial cells have a cuboidal shape 
and express general endothelial markers (CD31, CD34, VE-
cadherin and VEGFR-2), specific blood endothelial markers 
(von Willebrand factor and peripheral lymph node addressin 
(PNAd) and VEGFR1) [65].

The LN extracellular matrix

The ECM provides structural scaffolding and biochemical 
support for tissue function and mechanical integrity and 
regulates the availability of growth factors and cytokines. It 
is composed of a network of biochemically distinct compo-
nents, including fibrous proteins, glycoproteins, proteogly-
cans and matricellular proteins [66]. Although it has always 
been described as a support structure for tissue architecture, 
it is, in fact, a highly dynamic compartment that regulates 
a large number of cell functions. An integral feature of the 
ECM is that it constantly remodels itself as ECM compo-
nents are deposited, degraded, or modified by ECM-mod-
ifying enzymes such as matrix metalloproteinases (MMP) 
and lysyl oxidase (LOX). The ECM plays a crucial role, not 
only in the primary tumor [67] but also in the secondary site, 
particularly at a pre-metastatic stage [68, 69].

Collagen accounts for the largest number of ECM pro-
teins, but its composition and structure vary across differ-
ent tissue types [70]. For instance, the basement membrane 
surrounding endothelial cells mainly consists of collagen 
type IV, while the fibroreticular stroma is, for the most part, 
composed of fibrillar types I and III collagen embedded in 
a meshwork of fibrillin microfibers. In LNs, reticular fibers 
form the principal ECM fibers which support the lymphoid 
organ architecture. The reticular arrangement of those fibrils 
is particularly suited to forming conduits and they transport 
antigen and signaling molecules, as well as guiding migrat-
ing cells [71]. Reticular fibers begin at the SCS and extend to 
the MS. Fibrillin-1 and -2 are essential matricellular proteins 
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in the LN that connect collagen fibers and the basement 
membrane in tubular structures [71]. Fibrillins constitute 
the structural backbone of microfibrils, which are found in 
many elastic and non-elastic tissues where they carry out 
a diverse number of functions, including interactions with 
latent transforming growth factor-binding proteins (LTBP) 
described below [72].

In the majority of organs, fibroblasts are the main source 
of ECM components, including at least type I and III col-
lagens, elastin, fibronectin, tenascin (TNC) and periostin 
(POSTN) [24]. In LNs, on the other hand, FRCs are the 
primary producers of ECM components [59]. Under physi-
ological conditions, these cells produce fibrillary types I 
and III collagen, collagen type IV, laminin, fibronectin and 
TNC, which allow cell migration within the LN [59, 73]. A 
transcriptional analysis performed on murine LNs confirmed 
that FRCs expressed integrin subunits such as αV, α4, α5, 
α6, α9, β1, β3, and β5, enabling their adhesion to many ECM 
components [74]. For example, integrin α5β1 can bind to 
fibronectin, and αVβ3 interacts with fibronectin, vitronectin, 
fibrinogen, thrombospondin and POSTN [75, 76]. TNC can 
bind to numerous integrins, including α2β1 and ανβ3, but 
the TNC-integrin α9β1 interaction is considered to be of 
higher avidity [77].

Contribution of tumor‑secreted EVs 
to the formation of the pre‑metastatic LN 
niche

Extracellular vesicles (EVs), including exosomes, are 
released by a range of cells and contain proteins and nucleic 
acids but are produced in larger quantities by tumor cells 
than by normal cells [78, 79]. Metastatic cancers produce 
EVs that are able to prime a pre-metastatic niche. Cancer-
derived EVs are thought to be involved in the suppression 
of innate immune responses through the mobilization of 
MDSCs and the activation of TAMs and neutrophils [80, 
81]. However, the detailed mechanism through which EVs 
promote the pre-metastatic niche is not yet fully under-
stood. miR-105 is expressed and secreted via EV by meta-
static breast cancer cells and can be transferred to endothe-
lial cells. Tumor-secreted miR-105 targets ZO-1, leading 
to increased vascular permeability and metastasis and has 
been detected in the blood of tumor-bearing mice in the pre-
metastatic stage [82]. Recently, miR-25-3P has been shown 
to promote pre-metastatic niche formation by enhancing vas-
cular permeability and angiogenesis. Tumor-secreted miR-
25-3P can also be transferred to vascular endothelial cells 
where it targets KLF2 and KLF4. KLF2 inhibits VEGFR-2 
promoter activity, and KLF4 regulates the integrity of the 
endothelial barrier [83]. A prospective study has recently 
revealed that lymphatic EVs from afferent LVs inhibit DC 

maturation. Through a proteomic analysis performed on 
lymphatic exudates from patients with primary melanoma, 
a signature of 18 immune-modulating proteins was identi-
fied, including S100A9, a known inhibitor of DC matura-
tion [5]. These data suggest that EVs present in draining 
lymphatics contain a panel of molecules capable of induc-
ing pre-metastatic niche formation in melanoma patients. 
Broggi et al. compared lymphatic exudate contents from 
metastatic melanoma patients to the plasma from all patients 
[84]. They observed that lymphatic exudate was enriched in 
melanoma-associated proteins but with a fivefold increase 
in the numbers of EVs. The proteomic profile of EVs from 
patients undergoing lymphadenectomy with negative LNs 
was associated with pathways such as VEGF, integrin and 
cellular extravasation. On the other hand, in patients under-
going lymphadenectomy with positive LNs for tumor cells, 
upregulation of proliferation, cancer and cell death pathways 
was observed. Moreover, the expression of S100 was signifi-
cantly higher in patients with positive LNs than in patients 
with non-metastatic LNs [84]. These data suggest that EVs 
from early or advanced melanoma express protein signatures 
that correlate with different stages of the metastatic pro-
cess. Tumor-derived EVs were injected intradermally into 
transgenic mice lacking dermal lymphatics and were nearly 
undetectable in tissues compared to WT mice, suggesting 
that lymphatic vessels are actively involved in the transpor-
tation of EVs. Moreover, this demonstrated that LECs were 
the main stromal cells taking up EVs in the tumor-draining 
LNs [84]. Similar results were observed by Garcia-Silva 
et al. [85], who also observed that lymphatic exudate had a 
higher level of S100 protein than plasma. Interestingly, the 
BRAFV600E mutation was detected in exudate-derived vesi-
cles [85]. All these data suggest that exudate-derived EVs 
could represent a new prognostic tool for melanoma progres-
sion and for detecting melanoma mutations. Moreover, these 
data support the existence of a pre-metastatic niche and the 
role of LNs in tumor progression. Further details on EV 
implications in LN metastatic dissemination, can be found 
in a recent review [86].

Vascular remodeling in the pre‑metastatic 
LN niche

Lymphangiogenesis and HEV remodeling are key events 
in the formation of the LN pre-metastatic niche. LN lym-
phangiogenesis is mainly driven by VEGF-A, VEGF-C, 
integrin and erythropoietin and correlates with increased 
systemic metastasis [8, 27, 28, 87, 88]. Lymphangiogenic 
factors such as VEGF-C are released in the primary tumor 
by cancer cells and stromal cells, among which macrophages 
are an important source [89]. VEGF-C stimulates LEC pro-
liferation and migration, inducing the sprouting of LVs and 
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the enlargement of existing vessels, thereby increasing the 
potential surface of lymphatic contact with tumor cells [90]. 
Furthermore, the enlargement of collecting lymphatics due 
to LEC proliferation and structural remodeling of smooth 
muscle cells results in an enhanced flow rate and increases 
sentinel LN metastases [91]. Experimental studies have 
highlighted lymphovascular remodeling in sentinel LNs [27, 
28]. Lymphatic remodeling, controlled by soluble factors 
drained from the primary tumor, within tumor-draining LNs 
was found to occur even before tumor cells were detected 
in the LN. It has been suggested that the expanded lym-
phatic network in LNs contribute to a pre-metastatic niche 
that promotes LN colonization by metastatic cells [90]. 
Pre-metastatic induction of lymphangiogenesis in LNs has 
already been described at length in experimental models. 
RNA sequencing analysis revealed an altered transcriptional 
profile of LECs issued from tumor-draining LNs compared 
to naïve LNs. Interestingly, one of the strongest upregulated 
genes was integrin αIIb [92], whose expression on a specific 
subset of LN LECs responsive to RANKL has previously 
been reported [93]. This integrin, which is upregulated in 
LECs issued from tumor-draining LNs, promotes LN LEC 
adhesion to fibrinogen. Another integrin, crucial for LN 
colonization by tumor cells, such as melanoma cells, is 
integrin α4. The activation of this integrin is increased by 
VEGF-C and the PI3Kα signaling pathway and promotes 
the expansion of the lymphatic endothelium in LNs. This 
activation also serves as an adhesive ligand that captures 
VCAM-1 + metastatic tumor cells, thereby promoting LN 
metastasis [87]. VCAM-1 is also upregulated in tumor-asso-
ciated LECs and, importantly, increases lymphatic perme-
ability by weakening lymphatic junctions through a mecha-
nism triggered by its interaction with integrin α4β1 [94].

Single-cell RNA sequencing of LECs isolated from naïve 
murine LNs was performed by Fujimoto et al. [52]. Four 
subsets of LECs were identified, corresponding to distinct 
anatomical locations. cLECs were negative for LYVE1 and 
ITGA2B but positive for CCRL1 (chemokine receptors) 
and FLRT2, all of which play a role in cell–cell adhesion. 
Conversely, fLECs expressed LYVE1, ITGA2B and MAD-
CAM but not CCRL1. The expression of genes coding for 
cell adhesion, such as MADCAM, ITGA2B and FLRT2, 
suggested that fLECs and cLECs could be the first LECs 
encountered by tumor cells, allowing LN colonization. Due 
to the expression of chemokines and chemokine receptors, 
fLECs and cLECs could also play a role in tumor cell migra-
tion [53], although there is currently no clear evidence for 
the implication of cLECs and fLECs in tumor progression. 
However, the increased ITGA2B expression in LN LECs 
during tumorigenesis suggests its involvement through 
mechanisms yet to be explained [92]. Two other LEC sub-
sets were identified. The first, medullary LECs, defined by 
the expression of markers such as MRC1 and MARCO. The 

second subset was cortex LECs expressed unique markers, 
including PTX3, ITIH5 and KCNJ8. In addition, a specific 
cortical LEC subtype implicated in rapid lymphocyte egress 
from LNs was identified [52]. In parallel, another study con-
ducted on murine LN samples provided similar results but 
defined eight populations of LECs, including the four sub-
sets described above and four new populations, including 
collecting valve LECs, a bridge population (between cLECs 
and fLECs) and transition zone LECs (tzLECs) [53]. It is 
worth noting that no specific gene markers of tzLECs were 
identified and only a variable expression of MADCAM, 
CCL20, MARCO and LYVE1. In this study, a clear distinc-
tion was made between medullary LECs by the expression 
of MARCO-LECs and CD274 + and PTX3-LECs (CD274-
), but there was no distinction of cortex LECs [53]. Tran-
scriptional profiling of LECs isolated from the LNs of mice 
bearing tumors has been reported by Commerford et al. [92]. 
Takeda and colleagues have recently conducted a single-
cell sequencing analysis of non-sentinel LN LECs (distant 
from the tumor) collected from cancer patients [54]. In line 
with the mouse data, SCS cLECs, SCS fLECs and medul-
lary sinus LECs were again distinguished. Two additional 
subsets were identified for lymphatic valves and capillary 
lymphatics. Blood endothelial cell heterogeneity in naïve 
murine LNs was also addressed. Eight different subtypes 
of blood endothelial cells from mouse LNs were identified 
with different gene expression. They included arterial ECs, 
two venous subsets, five capillary subsets, high endothelial 
cells (HECs) and non-HEC veins, and HECs express genes 
required for lymphocyte recruitment, such as Glycam1 and 
Chst4 [95]. Despite these important advances, there remains 
a need to discover how these lymphatic and blood endothe-
lial subtypes contribute to the pre-metastatic LN niche.

The remodeling of HEVs in tumor-draining LNs is 
likely to impair the recruitment of naïve lymphocytes and 
the anti-tumor immune response and may also increase 
the supply of oxygen and nutrients to a growing metastatic 
lesion [8]. The features of these blood vessels can again 
be altered by the primary tumor, even before the appear-
ance of metastases. These alterations are characterized by 
the dilation and flattening of the endothelium as well as a 
loss of functional molecules prior to colonization by tumor 
cells [29, 96, 97]. Bone morphogenetic protein-4 (BMP-4) 
expression is reduced in HEVs of tumor-draining LNs. This 
decrease in BMP-4 is implicated in HEV morphology by 
changing the shape of endothelial cells from a cuboidal to 
a flattened shape [98]. HEV remodeling further contributes 
to tumor-induced immunosuppression by interfering with 
lymphocyte trafficking. To study the role of HEVs in tumor 
dissemination, Brown et al. [16] developed a model of intra-
lymphatic injection to directly add a number of fluorescent 
tumor cells into the LN SCS. To determine the importance 
of HEVs, the efferent LVs were ligated to avoid lymphatic 
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dissemination. Eleven days after injecting the tumor, mice 
developed lung metastases. Tumor cells became progres-
sively associated with HEVs during tumor progression and 
frequently localized in their lumen. This experimental study 
provided evidence that HEVs represent an escape pathway 
for tumor cells to exit LNs and spread to distant organs 
using blood circulation [16, 17]. Structural and molecular 
remodeling of HEVs has been more recently observed in 
patients with breast cancer although not in healthy patients. 
This remodeling was associated with the dysregulation of 
CCL21 in perivascular FRCs, disturbing the migration of 
CCR7 + naïve lymphocytes in the LN parenchyma [99].

Immunosuppressive microenvironment 
in pre‑metastatic LNs

The LN is a dynamic organ subjected to important remod-
eling at histological, cellular and molecular levels under 
pathological conditions. In the context of cancer, it is 
believed that tumor antigens can induce an anti-tumoral 
response in LNs that initially restricts metastasis forma-
tion. Nevertheless, as tumors develop, immunomodulatory 
factors, drained from the tumor, prime an immunosuppres-
sive response in the LNs that supports metastatic outgrowth 
(Fig. 2) [10]. Several immune cells, such as myeloid-derived 
suppressor cells (MDSCs), tumor-associated macrophages 
(TAMs), Tregs and immature DCs, all play a central role in 
tumor growth and metastasis and by accumulating in LNs 
can inhibit the anti-tumor immune activities of CD4, CD8 
T cells and NK cells [100–102]. MDSCs are precursors of 
macrophages, DCs, granulocytes and myeloid cells and are 
key actors in eliciting immunosuppression. Myeloid differ-
entiation and MDSC expansion are promoted by a variety of 
molecules, such as GM-CSF, M-CSF, IL-3, IL-6 and VEGF 
which are produced by tumor cells [103] and the mecha-
nisms used to recruit MDSCs in tumor-draining and dis-
tant LNs are described[100, 103–107]. Immunosuppressive 
activity exerted by MDSCs involves several mechanisms 
acting on distinct targets through a consistent panel of mol-
ecules, including arginase 1, indoleamine-2,3-dioxygenase 
(IDO), NOS, ROS, peroxynitrite, TGF-β and IL-10 [108, 
109]. IDO is an enzyme metabolizing tryptophan that can be 
expressed by a number of different cell types including DCs. 
IDO decreases the immune response of T cells and is likely 
to play a role in the establishment of an immunosuppres-
sive microenvironment in LNs [110]. In fact, a correlation 
has already been established between the co-expression of 
IFN-γ and IL-10 and the expression of IDO in sentinel LNs 
[111]. The function and fate of MDSCs are dependent on 
their living environment. In lymphoid organs, high STAT3 
activity prevents their differentiation into dendritic cells 
and macrophages and therefore induces their accumulation 

[112]. The principal target of MDSCs is the T lymphocyte 
compartment, a deficiency of which is associated with a 
poor prognosis [113] and targeting essential amino acids 
is an immunosuppressive strategy used by them [114]. 
Upregulation of arginase 1 activity leads to the depletion of 
L-arginine, which is essential for T cell proliferation [115]. 
MDSCs are also responsible for cysteine depletion and in 
the microenvironment this was found to impair T cell acti-
vation [116]. By secreting IDO, MDSCs also decrease the 
level of tryptophan, leading to T cell apoptosis via kynure-
nine generation [117]. The production of NO, which reacts 
with superoxide, promotes the production of peroxynitrite 
by MDSCs and this can cause nitration and nitrosylation 
of the T cell receptor, leading to T cell tolerance [118]. 
By nitrating chemokines such as CCL2, peroxynitrite also 
impairs T cell migration [119] although TGF-β and IL-10 
represent the main immunosuppressive MDSC-derived 
factors owing to their ability to inhibit cytotoxic activity 
and T cell activation [108]. As a result of the expression 
of PD-L1 and FAS-L, binding the respective ligands PD-1 
and FAS present at the T cell membrane, MDSCs also exert 
immunosuppressive activity through direct contact with T 
cells [120, 121] and can also induce the expansion of Tregs, 
another major immunosuppressive actor [122, 123]. These 
features highlight the dual role of recruited MDSCs in per-
missive microenvironment generation. Indeed, they are 
directly responsible for two synergic and complementary 
processes, immunosuppression and immunotolerance, which 
make them attractive therapeutic targets to overcome cancer 
immune escape strategies [124].

Together, these immune cells actively contribute to the 
formation of the pre-metastatic niche, necessary for LN col-
onization by metastatic cells that can eventually exit from 
the LN into the blood circulation [101, 125]. They modu-
late the local microenvironment by secreting inflammatory 
cytokines, growth factors, pro-angiogenic molecules and 
enzymes that remodel the matrix, such as LOX and MMPs 
[126].

Macrophages are present throughout the LN but are clas-
sified in different subtypes according to their location. A 
distinction is made between macrophages present in the SCS 
and MS from those residing in the LN parenchyma [47]. SCS 
macrophages are able to capture antigens from the lymph 
and transfer them to B cell follicles, but they appear poorly 
phagocytic. In contrast, CD209 + MS macrophages are more 
phagocytic and express F4/80. Both types are characterized 
by CD169 expression, a member of the sialic acid-binding 
lectin family. [48]. LECs play an important role in the main-
tenance of these macrophages via RANKL production and 
they are lost when there is RANKL deficiency [127]. LECs 
produce CSF-1 and this also plays a crucial role in the main-
tenance of the macrophages, as well as the MS macrophages 
[128]. An additional type of macrophage present in the LN 
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germinal center is tangible body macrophages, which have a 
particular role in the uptake of apoptotic cells within germi-
nal centers [48]. Macrophages are also present in the paren-
chyma adjacent to the MS known as the medullary cords 
[47]. The last subset of parenchymal macrophages resides 
in the T cell zone. They express CD11c, CX3CR1, CD64 
and MER proto-oncogene tyrosine kinase (MERTK) but test 
negative for CD169 and F4/80 [129]. Modifications in the 
CD169 + macrophage density have also been reported in pre-
metastatic LNs. These macrophages capture tumor-derived 

antigens in the SCS and transfer them to CD8 + T cells 
to elicit an anti-tumor response and can also capture EVs 
derived from tumor cells [86]. In a pre-clinical model, mice 
lacking CD169 + macrophages failed to induce anti-tumor 
immunity [130]. Reduced CD169 expression in pre-met-
astatic LNs is associated with subsequent metastatic dis-
ease and a poor outcome in several tumor types [131–134]. 
Tumor-derived EVs bind SCS CD169 + macrophages 
in tumor-draining LNs [135]. These macrophages are a 
major host cell type interacting with EVs in tumor-bearing 

Fig. 2   Establishment of the 
lymph node (LN) pre-metastatic 
niche. Tumor-derived factors, 
including vascular endothe-
lial growth factor (VEGF-A, 
VEGF-C and VEGF-D), 
extracellular vesicles, TGF-β 
and lysyl oxidase (LOX), 
induce an immunosuppressive 
microenvironment by recruiting 
macrophages, myeloid-derived 
suppressor cells (MDSCs) and 
regulatory T cells (Tregs). Pro-
liferation of lymphatic endothe-
lial cells (LECs) and fibroblastic 
reticular cells (FRCs) drives 
the production of LN factors 
such as chemokines (CCL19; 
CCL21; CXCL1, 2, 5, 8, and 
12); TGF-β; matrix metallopro-
teinases (MMPs); indoleamine-
2,3-dioxygenase (IDO); and 
nitric oxide (NO), which induce 
high endothelial venule (HEV) 
remodeling, stimulate lym-
phangiogenesis, and regulate 
tumor cells chemoattraction at 
metastatic stage
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mice. 3D imaging of tumor-derived LNs with decreased 
CD169 + macrophages showed a higher penetration of EVs 
in the LN cortex. These data therefore suggest that SCS 
macrophages act as EV scavengers in an attempt to prevent 
cancer progression [135]. In humans, the presence of mac-
rophages testing positive for HMB-45, a transmembrane gly-
coprotein expressed by melanomas, was localized near the 
LN capsule. LNs proved negative for tumor cells, suggesting 
that tumor-derived factors reach LNs in cancer progression, 
supporting the hypothesis of the pre-metastatic niche [135]. 
Prostaglandin E2 (PGE2) also plays an important role in 
the LN pre-metastatic niche and has been identified as an 
immunosuppressive molecule that increases the immuno-
suppressive potential of Tregs. PGE2 can also stimulate the 
expression of CXCL12 via the EP3 receptor, which increases 
the accumulation of CXCR4 + tumor cells and promotes the 
formation of the LN pre-metastatic niche [136].

Beyond the vessel wall lining functions described above, 
LECs can play a key role in immunosuppression, facilitat-
ing metastatic cell survival. LECs express inhibitory ligands 
such as PD-L1, which allows CD8 lymphocyte suppression 
or deletion [137]. LN LECs can also cross-present tumor 
antigens to promote CD4 suppression and produce immu-
nosuppressive molecules such as nitric oxide, TGF-β, and 
IDO to promote an immunosuppressive nodal microenvi-
ronment [137–142]. It is known that both MHC class I and 
MHC class II are present in LN LECs [84, 143], and play an 
important part in immunotolerance and immune response. 
MHC I plays a crucial role in self-tolerance by presenting 
endogenous antigens to CD8 + T cells. Tumor-draining LN 
LECs were able to cross-present tumor antigens using MHC 
I and directly alter the CD8 + T cell response [9, 143, 144]. 
In addition, through acquiring MHC II from DCs, LECs 
were also shown to induce CD4 + T cell tolerance [145, 
146]. fLECs can also be distinguished from other LEC sub-
sets due to the expression of CD74 which is involved in the 
formation and transport of MHC class II antigen complexes 
[53].

The most striking TGF-β function is immunosuppression, 
of paramount importance in the context of cancer. Indeed, 
TGF-β is able to induce the expression of cell cycle regula-
tors (p21 and p27), which inhibit the proliferation of naïve 
T lymphocytes [147]. TGF-β inhibits antigen presentation 
of DCs by suppressing the expression of major histocom-
patibility complex II [148] and promotes the differentiation 
of T cells in Tregs by triggering the expression of FOXP3 
[149]. The emerging picture is that latent TGF-β could be 
activated through two different mechanisms, one involving 
LTBPs associated with the ECM and the other implicat-
ing transmembrane glycoprotein A repetitions predomi-
nant (GARP) [72, 150, 151]. Both mechanisms of TGF-β 
involve an integrin, binding to LAP to induce its mechanical 
deformation and the release of mature protein. The role of 

GARP has been mainly studied in Tregs, although it can be 
produced by non-immune cells such as endothelial cells and 
fibroblasts [152].

Under physiological conditions, TGF-β1 is the predomi-
nantly expressed isoform in immune cells, including immu-
nosuppressive Tregs. Immunosuppression by the TGF-β1 
pathway through Tregs avoids autoimmune reactions but 
contributes to tumor development [153]. Furthermore, 
myeloid cells such as TAMs, MDSCs and tumor-associated 
neutrophils also promote tumor progression by elaborating 
a pre-metastatic niche through an increased production of 
TGF-β [154].

The role of TGF-β in immunomodulation in LNs has 
been less well documented. Huang et al. demonstrated in 
a mouse model that Tregs secrete TGF-β1 in LNs [155], 
which in turn induces the expression of IL-17rb in 4T1 cells 
via the Smad2/3 signaling pathway boosting tumor malig-
nancy [155]. Furthermore, the integrin-mediated regulation 
of TGF-β activation is essential for naïve T cell conditioning 
by DCs in LNs [156]. Interestingly, αvβ8 integrin-deficient 
mice, either globally or specifically in DCs, spontaneously 
develop severe immune cell deficiencies due to the impair-
ment of TGF-β1 activation [157]. Further work is required 
to determine the exact contribution of TGF-β and its regu-
lators (LTBP, GARP, integrins) to pre-metastatic LN niche 
formation.

LN extracellular matrix remodeling 
in the pre‑metastatic niche

While cancer-associated fibroblasts (CAFs) represent a 
major cellular component of most primary neoplasms [158], 
these cells have only been poorly described in metastatic 
organs, particularly in LNs to date. Interestingly, a recent 
study identified four CAF subtypes in metastatic LNs of 
breast cancer patients [159]. Two of these subtypes (CAF 
subtype 1 and subtype 4) produce TGF-β and CXCL12 and 
activate the NOTCH signaling pathway to promote tumor 
cell invasion. Intriguingly, the origin of those CAFs in LNs 
remains unclear [159, 160]. Additional studies are required 
to increase knowledge of putative CAF implications in pre-
metastatic and metastatic LN niches.

ECM remodeling is a key event that contributes to met-
astatic organ pre-conditioning and to the formation of an 
appropriate environment for tumor seeding. ECM modifica-
tions in the pre-metastatic niche have already been described, 
in detail, for the lung, liver and bones but have been poorly 
documented in the case of LNs. Interestingly, organ specifi-
cities have been highlighted in terms of ECM remodeling 
[24]. Among the ECM proteins involved in the metastatic 
colonization of distant organs (lung, liver, and bone) are 
TNC, POSTN and versican, the large chondroitin sulfate 
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proteoglycan, which have been identified as key players [26, 
161–163]. POSTN plays a major role in tissue remodeling by 
interacting with ECM proteins such as fibronectin, TNC and 
collagen types I, IV, V [164]. POSTN-knockout mice bear-
ing breast tumors exhibit decreased MDSC accumulation 
in pre-metastatic lungs and percentages of CD4+ and CD8+ 
T cells were more prevalent in the lung, and immunosup-
pressive factors were reduced in them compared to levels in 
wild-type mice [104]. POSTN is thought to play its part in 
LN metastasis but has not been clearly demonstrated at the 
present time. Recently, POSTN has been identified in meta-
static LNs from patients with cervical cancer [165]. CAFs 
expressing POSTN, impaired lymphatic integrity by activat-
ing the integrin-FAK/Src-VE-cadherin signaling pathway in 
LECs, thereby increasing metastatic dissemination. Interest-
ingly, CAF-derived POSTN was not found in non-metastatic 
LNs, suggesting the importance of the role of POSTN in 
tumor cell dissemination [165]. Unfortunately, no evidence 
has been provided about POSTN in the LN pre-metastatic 
niche, and this needs further study. Increased fibrinogen dep-
osition was found in tumor-draining LNs compared to con-
trol LNs [92]. Furthermore, enhanced production of ECM-
remodeling factors such as LOX, MT1-MMP and TIMP-1 
was detected in metastatic LNs from patients with oral can-
cer [166]. This was in line with the implication of LOX and 
MMPs in the liver and lung pre-metastatic niches [167–170]. 
For instance, MMP9 induced by primary tumors in lung 
endothelial cells and macrophages promotes the invasion 
of tumor cells into the lung [171]. MDSCs recruited in the 
lung are also an important source of MMP9 [172]. LOX can 
also promote the production of MMP9 and fibronectin by 
fibroblasts in the lung pre-metastatic niche [173]. Taken as 
a whole, these data highlight important matrix remodeling 
in LNs at different stages of the metastatic cascade. Addi-
tional studies are, however, still required to reveal the role 
of ECM-remodeling factors in the LN pre-metastatic niche.

Conclusions and perspectives

A pre-metastatic niche is now widely accepted as a spe-
cific tumor-induced microenvironment, favorable for dis-
seminating tumor cells and metastasis formation [170]. The 
elaboration of a pre-metastatic niche before colonization 
by tumor cells is a complex process recognized as an ini-
tial key step in the metastatic cascade. Recent advances in 
this field have identified a panel of crucial molecular and 
cellular components contributing to pre-metastatic niche 
formation in various tumor models. Factors produced by 
primary tumors can potentially condition not only the LN 
microenvironment but also other distant organs, including 
the lung, liver, brain and bone [174]. The exposure of LNs 
to a higher concentration of tumor-secreted factors drained 

by the lymph compared to other organs could explain, at 
least partially, the predominance of LN metastases in can-
cer prognosis and in metastatic dissemination [10]. The 
description of LN lymphangiogenesis and its role in the 
metastatic process is relatively recent. Only a small number 
of clinical studies to date have documented pre-metastatic 
lymphangiogenic variations in the sentinel LNs of patients 
with cervical, breast, lung and oral squamous carcinomas 
[2, 97, 175–177]. These studies supported the concept of 
the LN pre-metastatic niche and revealed that LV density 
was increased in pre-metastatic sentinels in comparison with 
non-sentinel LNs. Notably, LV remodeling is also associated 
with modifications in the immune landscape [2]. Therefore, 
LN lymphangiogenesis is viewed as a potential target to treat 
or prevent metastatic disease. In this context, and given the 
crucial role of the VEGF-C/VEGFR-3 signaling pathway 
in lymphangiogenesis, a majority of studies aim to develop 
therapeutic drugs targeting this pathway. A phase 1 clini-
cal trial evaluated an antibody directed against VEGFR-3. 
Unfortunately, disease control was only observed for a small 
percentage of patients (19%) [178]. A lack of response of 
LN metastasis to treatment with inhibitors of VEGFR-2 
and VEGFR-3 has also been shown in mouse models [179], 
but, to date, both pre-clinical and clinical data have failed to 
demonstrate the efficacy of VEGFR inhibitors on LN metas-
tases. These data emphasize the importance of searching 
for other putative therapeutic targets. Another clinical trial 
has used VGX-100, a VEGF-C neutralizing antibody, but 
no data have been published yet (NCT01514123). Recently, 
simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase inhibitor, was tested for LN metas-
tasis in mice. Its interest relies on its capacity to decrease 
inflammatory cytokine synthesis and circulating VEGF lev-
els. Simvastatin appears to play a potential role in tumor 
lymphangiogenesis and LN metastasis, suggesting that its 
combination with other agents could reduce LN lymphangi-
ogenesis and tumor progression [180]. As highlighted in this 
review, LN pre-metastatic niche formation not only relies on 
LN lymphangiogenesis but also results from important, but 
still poorly documented, remodeling of different cellular and 
matrix components. Therefore, it is probable that a narrow 
focus on a unique biological process such as lymphangiogen-
esis or one of these molecular pathways will be unsuccessful 
for therapeutic development.

A large number of questions remain unanswered. What 
are the dynamics of LN pre-metastatic formation? It is 
largely unknown how different ECM components interact 
in the pre-metastatic niche and exert cooperative/synergis-
tic or antagonistic effects on metastatic tumor cells. Which 
markers or signatures could be used to stratify patients and/
or predict their potential to form LN and distant metastases? 
Understanding how and when the key cross-talk between the 
primary tumor and LN is established to prime the organ is a 
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prerequisite to identify the best potential molecular target(s). 
Consequently, it is crucial that basic scientists and clinicians 
work together to explore all facets of the pre-metastatic LN 
niche for diagnostic, prognostic and therapeutic purposes.
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