[en] Background: Understanding the influence of genetic variantson DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL) but also for discriminating general from cell-type-specific effects.
Results: Here, we present a two-step computational framework MAGAR, which fully supports identification of methQTLs from matched genotyping and DNA methylation data, and additionally the identification of quantitative cell-type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T-cells, B-cells) from healthy individuals and demonstrate the discrimination of common from cell-type-specific methQTLs. We experimentally validate both types of methQTLs in an independent dataset comprising additional cell types and tissues. Finally, we validate selected methQTLs (PON1, ZNF155, NRG2) by ultra-deep local sequencing. In line with previous reports, we find cell-type-specific methQTLs to be preferentially located in enhancer elements.
Conclusions: Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell-type-specific epigenomic variation.
Disciplines :
Genetics & genetic processes
Author, co-author :
Scherer, Michael
Gasparoni, Gilles
Rahmouni, Souad ; Université de Liège - ULiège > GIGA Medical Genomics - Unit of Animal Genomics
Shashkova, Tatiana
Arnoux, Marion
Louis, Edouard ; Université de Liège - ULiège > Département des sciences cliniques > Hépato-gastroentérologie
Nostaeva, Arina
Avalos, Diana
Dermitzakis, Emmanouil T.
Aulchenko, Yurii S.
Lengauer, Thomas
Lyons, Paul A.
Georges, Michel ; Université de Liège - ULiège > Dpt. de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Durek P, Nordström K, Gasparoni G, Salhab A, Kressler C, de Almeida M, et al. Epigenomic profiling of human CD4+ T cells supports a linear differentiation model and highlights molecular regulators of memory development. Immunity. 2016;45:1148–61. 10.1016/j.immuni.2016.10.022. DOI: 10.1016/j.immuni.2016.10.022
Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37:853–62. 10.1038/ng1598. DOI: 10.1038/ng1598
Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32. 10.1038/35047554. DOI: 10.1038/35047554
Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012;148:816–31. 10.1016/j.cell.2011.12.035. DOI: 10.1016/j.cell.2011.12.035
Fang F, Hodges E, Molaro A, Dean M, Hannon GJ, Smith AD. Genomic landscape of human allele-specific DNA methylation. Proc Natl Acad Sci U S A. 2012;109:7332–7. 10.1073/pnas.1201310109. DOI: 10.1073/pnas.1201310109
Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13:86. 10.1186/1471-2105-13-86. DOI: 10.1186/1471-2105-13-86
Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15:R31. 10.1186/gb-2014-15-2-r31. DOI: 10.1186/gb-2014-15-2-r31
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19:371–84. 10.1038/s41576-018-0004-3. DOI: 10.1038/s41576-018-0004-3
Almén MS, Nilsson EK, Jacobsson JA, Kalnina I, Klovins J, Fredriksson R, et al. Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity. Gene. 2014;548:61–7. 10.1016/j.gene.2014.07.009. DOI: 10.1016/j.gene.2014.07.009
Gao X, Jia M, Zhang Y, Breitling LP, Brenner H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenet. 2015;7:113. 10.1186/s13148-015-0148-3. DOI: 10.1186/s13148-015-0148-3
Scherer M, Nazarov PV, Toth R, Sahay S, Kaoma T, Maurer V, et al. Reference-free deconvolution, visualization and interpretation of complex DNA methylation data using DecompPipeline, MeDeCom and FactorViz. Nat Protoc. 2020;15:3240–63. 10.1038/s41596-020-0369-6. DOI: 10.1038/s41596-020-0369-6
McRae AF, Marioni RE, Shah S, Yang J, Powell JE, Harris SE, et al. Identification of 55,000 replicated DNA methylation QTL. Sci Rep. 2018;8:17605. 10.1038/s41598-018-35871-w. DOI: 10.1038/s41598-018-35871-w
Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 2016;17:61. 10.1186/s13059-016-0926-z. DOI: 10.1186/s13059-016-0926-z
Morrow JD, Glass K, Cho MH, Hersh CP, Pinto-Plata V, Celli B, et al. Human lung DNA methylation quantitative trait loci colocalize with chronic obstructive pulmonary disease genome-Wide association loci. Am J Respir Crit Care Med. 2018;197:1275–84. 10.1164/rccm.201707-1434OC. DOI: 10.1164/rccm.201707-1434OC
Dai JY, Wang X, Wang B, Sun W, Jordahl KM, Kolb S, et al. DNA methylation and cis-regulation of gene expression by prostate cancer risk SNPs. PLoS Genet. 2020;16: e1008667. 10.1371/journal.pgen.1008667. DOI: 10.1371/journal.pgen.1008667
Rice SJ, Cheung K, Reynard LN, Loughlin J. Discovery and analysis of methylation quantitative trait loci (mQTLs) mapping to novel osteoarthritis genetic risk signals. Osteoarthr Cartil. 2019;27:1545–56. 10.1016/j.joca.2019.05.017. DOI: 10.1016/j.joca.2019.05.017
Clark AD, Nair N, Anderson AE, Thalayasingam N, Naamane N, Skelton AJ, et al. Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci. J Allergy Clin Immunol. 2020;145:1438–51. 10.1016/j.jaci.2019.12.910. DOI: 10.1016/j.jaci.2019.12.910
Kim S, Forno E, Yan Q, Jiang Y, Zhang R, Boutaoui N, et al. SNPs identified by GWAS affect asthma risk through DNA methylation and expression of cis-genes in airway epithelium. Eur Respir J. 2020;55:1902079. 10.1183/13993003.02079-2019. DOI: 10.1183/13993003.02079-2019
Gao X, Thomsen H, Zhang Y, Breitling LP, Brenner H. The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes. Clin Epigenet. 2017;9:87. 10.1186/s13148-017-0387-6. DOI: 10.1186/s13148-017-0387-6
Hannon E, Gorrie-Stone TJ, Smart MC, Burrage J, Hughes A, Bao Y, et al. Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. Am J Hum Genet. 2018;103:654–65. 10.1016/j.ajhg.2018.09.007. DOI: 10.1016/j.ajhg.2018.09.007
Zhao T, Hu Y, Zang T, Wang Y. Integrate GWAS, eQTL, and mQTL data to identify Alzheimer’s disease-related genes. Front Genet. 2019;10:1–8. 10.3389/fgene.2019.01021. DOI: 10.3389/fgene.2019.01021
Pierce BL, Tong L, Argos M, Demanelis K, Jasmine F, Rakibuz-Zaman M, et al. Co-occurring expression and methylation QTLs allow detection of common causal variants and shared biological mechanisms. Nat Commun. 2018;9:804. 10.1038/s41467-018-03209-9. DOI: 10.1038/s41467-018-03209-9
Villicaña S, Bell JT. Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biol. 2021;22:127. 10.1186/s13059-021-02347-6. DOI: 10.1186/s13059-021-02347-6
Gutierrez-Arcelus M, Ongen H, Lappalainen T, Montgomery SB, Buil A, Yurovsky A, et al. Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. PLoS Genet. 2015;11: e1004958. 10.1371/journal.pgen.1004958. DOI: 10.1371/journal.pgen.1004958
Kim-Hellmuth S, Aguet F, Oliva M, Muñoz-Aguirre M, Kasela S, Wucher V, et al. Cell type–specific genetic regulation of gene expression across human tissues. Science (80-). 2020;369:eaaz8528. 10.1126/science.aaz8528. DOI: 10.1126/science.aaz8528
Peters JE, Lyons PA, Lee JC, Richard AC, Fortune MD, Newcombe PJ, et al. Insight into genotype-phenotype associations through eQTL mapping in multiple cell types in health and immune-mediated disease. PLoS Genet. 2016;12: e1005908. 10.1371/journal.pgen.1005908. DOI: 10.1371/journal.pgen.1005908
Shabalin AA. Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28:1353–8. 10.1093/bioinformatics/bts163. DOI: 10.1093/bioinformatics/bts163
Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics. 2016;32:1479–85. 10.1093/bioinformatics/btv722. DOI: 10.1093/bioinformatics/btv722
Pan H, Holbrook JD, Karnani N, Kwoh CK. Gene, Environment and Methylation (GEM): a tool suite to efficiently navigate large scale epigenome wide association studies and integrate genotype and interaction between genotype and environment. BMC Bioinform. 2016;17:299. 10.1186/s12859-016-1161-z. DOI: 10.1186/s12859-016-1161-z
Assenov Y, Müller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11:1138–40. 10.1038/nmeth.3115. DOI: 10.1038/nmeth.3115
Müller F, Scherer M, Assenov Y, Lutsik P, Walter J, Lengauer T, et al. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol. 2019;20:55. 10.1186/s13059-019-1664-9. DOI: 10.1186/s13059-019-1664-9
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. 10.1086/519795. DOI: 10.1086/519795
Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015;6:8971. 10.1038/ncomms9971. DOI: 10.1038/ncomms9971
Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85. 10.1038/nri3738. DOI: 10.1038/nri3738
Scharpf RB, Irizarry RA, Ritchie ME, Carvalho B, Ruczinski I. Using the R package crlmm for genotyping and copy number estimation. J Stat Softw. 2011. 10.18637/jss.v040.i12. DOI: 10.18637/jss.v040.i12
Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38:1378–85. 10.1038/ng1909. DOI: 10.1038/ng1909
Hannon E, Spiers H, Viana J, Pidsley R, Burrage J, Murphy TM, et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat Neurosci. 2015;19:48–54. 10.1038/nn.4182. DOI: 10.1038/nn.4182
Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7. 10.1038/ng.3538. DOI: 10.1038/ng.3538
Huen K, Yousefi P, Street K, Eskenazi B, Holland N. PON1 as a model for integration of genetic, epigenetic, and expression data on candidate susceptibility genes. Environ Epigenet. 2015;1:1–11. 10.1093/eep/dvv003. DOI: 10.1093/eep/dvv003
Volkov P, Olsson AH, Gillberg L, Jørgensen SW, Brøns C, Eriksson K-F, et al. A genome-wide mQTL analysis in human adipose tissue identifies genetic variants associated with DNA methylation, gene expression and metabolic traits. PLoS ONE. 2016;11: e0157776. 10.1371/journal.pone.0157776. DOI: 10.1371/journal.pone.0157776
Wragg D, Liu Q, Lin Z, Riggio V, Pugh CA, Beveridge AJ, et al. Using regulatory variants to detect gene–gene interactions identifies networks of genes linked to cell immortalisation. Nat Commun. 2020;11:343. 10.1038/s41467-019-13762-6. DOI: 10.1038/s41467-019-13762-6
Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek PR. The ensembl regulatory build. Genome Biol. 2015;16:56. 10.1186/s13059-015-0621-5. DOI: 10.1186/s13059-015-0621-5
Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. Bioinformatics. 2016;32:587–9. 10.1093/bioinformatics/btv612. DOI: 10.1093/bioinformatics/btv612
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8. 10.1093/bioinformatics/btl567. DOI: 10.1093/bioinformatics/btl567
Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med. 2015;7:283ra53. 10.1126/scitranslmed.aaa7161. DOI: 10.1126/scitranslmed.aaa7161
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–74. 10.1038/nature26000. DOI: 10.1038/nature26000
Fan Y, Vilgalys TP, Sun S, Peng Q, Tung J, Zhou X. IMAGE: high-powered detection of genetic effects on DNA methylation using integrated methylation QTL mapping and allele-specific analysis. Genome Biol. 2019;20:220. 10.1186/s13059-019-1813-1. DOI: 10.1186/s13059-019-1813-1
Sofer T, Schifano ED, Hoppin JA, Hou L, Baccarelli AA. A-clustering: a novel method for the detection of co-regulated methylation regions, and regions associated with exposure. Bioinformatics. 2013;29:2884–91. 10.1093/bioinformatics/btt498. DOI: 10.1093/bioinformatics/btt498
Gatev E, Gladish N, Mostafavi S, Kobor MS. CoMeBack: DNA methylation array data analysis for co-methylated regions. Bioinformatics. 2020;36:2675–83. 10.1093/bioinformatics/btaa049. DOI: 10.1093/bioinformatics/btaa049
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science (80-). 2012;337:1190–5. 10.1126/science.1222794. DOI: 10.1126/science.1222794
Aguirre-Gamboa R, de Klein N, di Tommaso J, Claringbould A, van der Wijst MG, de Vries D, et al. Deconvolution of bulk blood eQTL effects into immune cell subpopulations. BMC Bioinform. 2020;21:243. 10.1186/s12859-020-03576-5. DOI: 10.1186/s12859-020-03576-5
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7. 10.1038/ng.3656. DOI: 10.1038/ng.3656
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74. 10.1038/nature15393. DOI: 10.1038/nature15393
Prive F, Aschard H, Ziyatdinov A, Blum MGB. Efficient analysis of large-scale genome-wide data with two R packages: Bigstatsr and bigsnpr. Bioinformatics. 2018;34:2781–7. 10.1093/bioinformatics/bty185. DOI: 10.1093/bioinformatics/bty185
Salhab A, Nordström K, Gasparoni G, Kattler K, Ebert P, Ramirez F, et al. A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains. Genome Biol. 2018;19:9–11. 10.1186/s13059-018-1510-5. DOI: 10.1186/s13059-018-1510-5
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;2008:P10008. 10.1088/1742-5468/2008/10/P10008. DOI: 10.1088/1742-5468/2008/10/P10008
Csardi G, Nepusz T. The igraph software package for complex network research. InterJ. 2006;1695:1–9.
Momozawa Y, Dmitrieva J, Théâtre E, Deffontaine V, Rahmouni S, Charloteaux B, et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun. 2018;9:2427. 10.1038/s41467-018-04365-8. DOI: 10.1038/s41467-018-04365-8
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11. 10.1093/nar/29.1.308. DOI: 10.1093/nar/29.1.308
Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17:208. 10.1186/s13059-016-1066-1. DOI: 10.1186/s13059-016-1066-1
Pidsley R, Wong YCC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genom. 2013;14:293. 10.1186/1471-2164-14-293. DOI: 10.1186/1471-2164-14-293
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. 10.1111/j.2517-6161.1995.tb02031.x. DOI: 10.1111/j.2517-6161.1995.tb02031.x
Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9: e1003118. 10.1371/journal.pcbi.1003118. DOI: 10.1371/journal.pcbi.1003118
Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 2011;12:R83. 10.1186/gb-2011-12-8-r83. DOI: 10.1186/gb-2011-12-8-r83
Sánchez-Castillo M, Ruau D, Wilkinson AC, Ng FSL, Hannah R, Diamanti E, et al. CODEX: a next-generation sequencing experiment database for the haematopoietic and embryonic stem cell communities. Nucleic Acids Res. 2015;43:D1117–23. 10.1093/nar/gku895. DOI: 10.1093/nar/gku895
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. 10.1038/nature11247. DOI: 10.1038/nature11247
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ. 2011;17:10. 10.14806/ej.17.1.200. DOI: 10.14806/ej.17.1.200
Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63. 10.1093/bioinformatics/btr507. DOI: 10.1093/bioinformatics/btr507
Lutsik P, Feuerbach L, Arand J, Lengauer T, Walter J, Bock C. BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucleic Acids Res. 2011;39:W551–6. 10.1093/nar/gkr312. DOI: 10.1093/nar/gkr312
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.