Cardiopulmonary Exercise Testing in Critically Ill Coronavirus Disease 2019 Survivors: Evidence of a Sustained Exercise Intolerance and Hypermetabolism
MINGUET, Pauline ; Centre Hospitalier Universitaire de Liège - CHU > Département infirmier > Soins intensifs chirurgie (+1C)
COLSON, Camille ; Centre Hospitalier Universitaire de Liège - CHU > Département infirmier > Soins intensifs chirurgie (+1D)
JORIS, Jean ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
FADEUR, Marjorie ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de diabétologie, nutrition, maladies métaboliques
MINGUET, Grégory ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
GUIOT, Julien ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de pneumologie - allergologie
Misset, Benoît ; Université de Liège - ULiège > Département des sciences cliniques > Soins intensifs
ROUSSEAU, Anne-Françoise ; Centre Hospitalier Universitaire de Liège - CHU > Autres Services Médicaux > Service des soins intensifs
Language :
English
Title :
Cardiopulmonary Exercise Testing in Critically Ill Coronavirus Disease 2019 Survivors: Evidence of a Sustained Exercise Intolerance and Hypermetabolism
Publication date :
July 2021
Journal title :
Critical Care Explorations
eISSN :
2639-8028
Publisher :
Wolters Kluwer Health, Philadelphia, United States - Pennsylvania
Rousseau AF, Prescott HC, Brett SJ,. Long-Term outcomes after critical illness: Recent insights. Crit Care 2021; 25: 108
Herridge MS, Tansey CM, Matté A, Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011; 364: 1293-1304
Parry SM, Nalamalapu SR, Nunna K,. Six-minute walk distance after critical illness: A systematic review and meta-Analysis. J Intensive Care Med 2021; 36: 343-351
Denehy L, Skinner EH, Edbrooke L,. Exercise rehabilitation for patients with critical illness: A randomized controlled trial with 12 months of follow-up. Crit Care 2013; 17: R156
Dinglas VD, Chessare CM, Davis WE,. Perspectives of survivors, families and researchers on key outcomes for research in acute respiratory failure. Thorax 2018; 73: 7-12
Vanhorebeek I, Latronico N, Van den Berghe G,. ICU-Acquired weakness. Intensive Care Med 2020; 46: 637-653
Bloch S, Polkey MI, Griffiths M,. Molecular mechanisms of intensive care unit-Acquired weakness. Eur Respir J 2012; 39: 1000-1011
Mezzani A,. Cardiopulmonary exercise testing: Basics of methodology and measurements. Ann Am Thorac Soc 2017; 14 (Suppl-1): S3-S11
Molinger J, Pastva AM, Whittle J,. Novel approaches to metabolic assessment and structured exercise to promote recovery in ICU survivors. Curr Opin Crit Care 2020; 26: 369-378
Ong KC, Ng AW, Lee LS,. Pulmonary function and exercise capacity in survivors of severe acute respiratory syndrome. Eur Respir J 2004; 24: 436-442
Benington S, McWilliams D, Eddleston J,. Exercise testing in survivors of intensive care-is there a role for cardiopulmonary exercise testing? J Crit Care 2012; 27: 89-94
Grieco DL, Bongiovanni F, Chen L,. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care 2020; 24: 529
McCue C, Cowan R, Quasim T,. Long term outcomes of critically ill COVID-19 pneumonia patients: Early learning. Intensive Care Med 2021; 47: 240-241
Valent A, Dudoignon E, Ressaire Q,. Three-month quality of life in survivors of ARDS due to COVID-19: A preliminary report from a French academic centre. Anaesth Crit Care Pain Med 2020; 39: 740-741
Graham BL, Steenbruggen I, Miller MR,. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med 2019; 200: e70-e88
American Thoracic Society; American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003; 167: 211-277
Miller MR, Crapo R, Hankinson J, ATS/ERS Task Force. General considerations for lung function testing. Eur Respir J 2005; 26: 153-161
Mahoney FI, Barthel DW,. Functional evaluation: The barthel index. Md State Med J 1965; 14: 61-65
Puntmann VO, Carerj ML, Wieters I,. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5: 1265-1273
Baratto C, Caravita S, Faini A,. Impact of COVID-19 on exercise pathophysiology. A combined cardiopulmonary and echocardiographic exercise study. J Appl Physiol (1985) 2021; 130: 1470-1478
Jeschke MG, Chinkes DL, Finnerty CC,. Pathophysiologic response to severe burn injury. Ann Surg 2008; 248: 387-401
Wischmeyer PE, San-Millan I,. Winning the war against ICU-Acquired weakness: New innovations in nutrition and exercise physiology. Crit Care 2015; 19 (Suppl 3): S6
Vanhorebeek I, Van den Berghe G,. The neuroendocrine response to critical illness is a dynamic process. Crit Care Clin 2006; 22: 1-15, v
Preiser JC, Ichai C, Orban JC,. Metabolic response to the stress of critical illness. Br J Anaesth 2014; 113: 945-954
Stanojcic M, Finnerty CC, Jeschke MG,. Anabolic and anticatabolic agents in critical care. Curr Opin Crit Care 2016; 22: 325-331
Jiroutková K, Krajčová A, Ziak J,. Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-Acquired weakness. Crit Care 2015; 19: 448
Puthucheary ZA, Astin R, Mcphail MJW,. Metabolic phenotype of skeletal muscle in early critical illness. Thorax 2018; 73: 926-935
Singer M,. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014; 5: 66-72
Brealey D, Brand M, Hargreaves I,. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002; 360: 219-223
Owen AM, Patel SP, Smith JD,. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. Elife 2019; 8: e49920
Moonen HPFX, Van Zanten ARH,. Mitochondrial dysfunction in critical illness during acute metabolic stress and convalescence: Consequences for nutrition therapy. Curr Opin Crit Care 2020; 26: 346-354
Cuesta JM, Singer M,. The stress response and critical illness: A review. Crit Care Med 2012; 40: 3283-3289
Galley HF,. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 2011; 107: 57-64
Pincemail J, Cavalier E, Charlier C,. Oxidative stress status in COVID-19 patients hospitalized in Intensive Care Unit for severe pneumonia. A pilot study. Antioxidants (Basel) 2021; 10: 257
Cox CE,. Persistent systemic inflammation in chronic critical illness. Respir Care 2012; 57: 859-864
Griffith DM, Lewis S, Rossi AG, RECOVER Investigators. Systemic inflammation after critical illness: Relationship with physical recovery and exploration of potential mechanisms. Thorax 2016; 71: 820-829
Bateman AP, McArdle F, Walsh TS,. Time course of anemia during six months follow up following intensive care discharge and factors associated with impaired recovery of erythropoiesis. Crit Care Med 2009; 37: 1906-1912
Herndon DN, Hart DW, Wolf SE,. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 2001; 345: 1223-1229
Li H, Guo Y, Yang Z,. The efficacy and safety of oxandrolone treatment for patients with severe burns: A systematic review and meta-Analysis. Burns 2016; 42: 717-727
Rehou S, Shahrokhi S, Natanson R,. Antioxidant and trace element supplementation reduce the inflammatory response in critically ill burn patients. J Burn Care Res 2018; 39: 1-9
Bangash MN, Owen A, Alderman JE,. COVID-19 recovery: Potential treatments for post-intensive care syndrome. Lancet Respir Med 2020; 8: 1071-1073
Nalbandian A, Sehgal K, Gupta A,. Post-Acute COVID-19 syndrome. Nat Med 2021; 27: 601-615