Article (Scientific journals)
A deep generative model for probabilistic energy forecasting in power systems: normalizing flows
Dumas, Jonathan; Wehenkel, Antoine; Lanaspeze, damien et al.
2022In Applied Energy, 305, p. 117-871
Peer Reviewed verified by ORBi
 

Files


Full Text
Applied_Energy_deep_generative_modeling_revised_version.pdf
Author postprint (1.62 MB)
Download
Full Text Parts
1-s2.0-S0306261921011909-main.pdf
Publisher postprint (3.71 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Deep learning; Normalizing flows; Energy forecasting; Time series; Generative adversarial networks; Variational autoencoders
Abstract :
[en] Greater direct electrification of end-use sectors with a higher share of renewables is one of the pillars to power a carbon-neutral society by 2050. However, in contrast to conventional power plants, renewable energy is subject to uncertainty raising challenges for their interaction with power systems. Scenario-based probabilistic forecasting models have become an important tool to equip decision-makers. This paper proposes to present to the power systems forecasting practitioners a recent deep learning technique, the normalizing flows, to produce accurate scenario-based probabilistic forecasts that are crucial to face the new challenges in power systems applications. The strength of this technique is to directly learn the stochastic multivariate distribution of the underlying process by maximizing the likelihood. Through comprehensive empirical evaluations using the open data of the Global Energy Forecasting Competition 2014, we demonstrate that this methodology is competitive with other state-of-the-art deep learning generative models: generative adversarial networks and variational autoencoders. The models producing weather-based wind, solar power, and load scenarios are properly compared both in terms of forecast value, by considering the case study of an energy retailer, and quality using several complementary metrics. The numerical experiments are simple and easily reproducible. Thus, we hope it will encourage other forecasting practitioners to test and use normalizing flows in power system applications such as bidding on electricity markets, scheduling of power systems with high renewable energy sources penetration, energy management of virtual power plan or microgrids, and unit commitment.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Energy
Computer science
Author, co-author :
Dumas, Jonathan  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
Wehenkel, Antoine  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Lanaspeze, damien;  Mines ParisTech
Cornélusse, Bertrand  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
Sutera, Antonio ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
Language :
English
Title :
A deep generative model for probabilistic energy forecasting in power systems: normalizing flows
Publication date :
01 January 2022
Journal title :
Applied Energy
ISSN :
0306-2619
eISSN :
1872-9118
Publisher :
Elsevier, London, United Kingdom
Volume :
305
Pages :
117-871
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 31 July 2021

Statistics


Number of views
642 (26 by ULiège)
Number of downloads
259 (10 by ULiège)

Scopus citations®
 
59
Scopus citations®
without self-citations
57
OpenCitations
 
14
OpenAlex citations
 
65

Bibliography


Similar publications



Contact ORBi