[en] BACKGROUND: Isokinetic evaluation is considered the gold standard in muscle strength measurement due to its sensitivity, intra-dynamometer reproducibility and usefulness in the injury prevention screening and follow up of subjects with musculoskeletal pathologies, neurological disease or after surgical operation. However, can one switch among different isokinetic dynamometers for the purpose of knee muscles evaluation?
OBJECTIVES: To comprehensively evaluate the compatibility of the isokinetic short concentric and eccentric strength evaluation protocol and of the fatigability resistance evaluation between three different isokinetic devices.
METHODS: Eighteen recreationally active men underwent three isokinetic knee testing sessions on three different isokinetic devices with 7–10 days of rest between each session. Relative (Pearson’s r product-moment correlation coefficient – PCC) and absolute (standard error of measurement – SEM, Cohen effect sizes (d) and probabilistic inferences – MBI) parameters of reproducibility were determined to assess the inter-dynamometer agreement.
RESULTS: For the short concentric and eccentric strength evaluation protocol, the extensors in concentric mode and the flexors in eccentric mode can be compared (eventually with transposition formulas provided) between Biodex, Con-Trex and Cybex (almost all PCC 0.80). The DCR could be compared between Con-Trex and Cybex and between Biodex and Cybex pairs (eventually with transposition formula provided). For the fatigability resistance evaluation protocol, the total sum can be compared for extensors (eventually with transposition formulas provided) for PM for all dynamometer pairs considered and, in the case of MW, only for Biodex and Con-Trex (PCC 0.80).
CONCLUSIONS: Only some of the parameters derived either from the short concentric and eccentric strength evaluation protocol or the fatigability resistance evaluation protocol may be interchangeable providing transposition formulas are applied. Otherwise, isokinetic findings are largely system-dependent save some specific instances.
Disciplines :
Human health sciences: Multidisciplinary, general & others
Schwartz, Cédric ; Université de Liège - ULiège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
FORTHOMME, Bénédicte ; Centre Hospitalier Universitaire de Liège - CHU > Autres Services Médicaux > Médecine de l'appareil locomoteur (Kiné - ST polyclinique)
Kaux, Jean-François ; Université de Liège - ULiège > Département des sciences de la motricité > Médecine physique, réadaptation et traumatologie du sport
CROISIER, Jean-Louis ; Centre Hospitalier Universitaire de Liège - CHU > Autres Services Médicaux > Médecine de l'appareil locomoteur (Kiné - ST polyclinique)
Other collaborator :
Pauls, Jerome; Medical Luxembourg Olympic Centre, Clinical Centre of Sport and Orthopaedic, Luxemburg, Duchy of Luxemburg
Radizzi, Laurent; Medical Luxembourg Olympic Centre, Clinical Centre of Sport and Orthopaedic, Luxemburg, Duchy of Luxemburg
Krecke, Laurent; Medical Luxembourg Olympic Centre, Clinical Centre of Sport and Orthopaedic, Luxemburg, Duchy of Luxemburg
Bury, Thierry ; Université de Liège - ULiège > Département des sciences de la motricité > Physiologie humaine et physiologie de l'effort physique
Le Goff, Caroline ; Université de Liège - ULiège > Département des sciences de la santé publique > Département des sciences de la santé publique
Laly, Arnaud; Training Centre of the Ligue Belge Francophone de Rugby, Liege, Belgium
Language :
English
Title :
Knee strength measurement: Can we switch between isokinetic dynamometers?
Tsiros MD, Grimshaw PN, Schield AJ, Buckley JD. Test-retest reliability of the biodex system 4 isokinetic dynamometer for knee strength assessment in paediatric populations. Journal of Allied Health. 2011; 40(3): 115-9.
Taylor JD, Fletcher JP. Correlation between the 8-repetition maximum test and isokinetic dynamometry in the measurement of muscle strength of the knee extensors: a concurrent validity study. Physiotherapy Theory and Practice. 2013; 29(4): 335-41.
Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. European Journal of Applied Physiology. 2004; 91(1): 22-9.
Maffiuletti NA, Bizzini M, Desbrosses K, Babault N, Munzinger U. Reliability of knee extension and flexion measurements using the Con-Trex isokinetic dynamometer. Clinical Physiology and Functional Imaging. 2007; 27(6): 346-53.
Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, Maffiuletti NA. Reliability of isokinetic strength imbalance ratios measured using the cybex NORM dynamometer. Clinical Physiology and Functional Imaging. 2008; 28(2): 113-9.
Gleeson NP, Mercer TH. The utility of isokinetic dynamometry in the assessment of human muscle function. Sports Medicine (Auckland, NZ). 1996; 21(1): 18-34.
de Araujo Ribeiro Alvares JB, Rodrigues R, de Azevedo Franke R, da Silva BGC, Pinto RS, Vaz MA, et al. Intermachine reliability of the biodex and cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys Ther Sport. 2015; 16(1): 59-65.
Keilani MY, Posch M, Zorn C, Knötig M, Pircher M, Quittan M, et al. Comparison of values generated during isokinetictesting of the knee extensor and flexor muscles using the cybex 6000 and biodex 3 isokinetic dynamometer. Phys Med Rehabil Kurortmed. 2007; 17(6): 327-33.
Lund H, Sondergaard K, Zachariassen T, Christensen R, Bulow P, Henriksen M, et al. Learning effect of isokinetic measurements in healthy subjects, and reliability and comparability of biodex and lido dynamometers. Clinical Physiology and Functional Imaging. 2005; 25(2): 75-82.
Bardis C, Kalamara E, Loucaides G, Michaelides M, Tsaklis P. Intramachine and intermachine reproducibility of concentric performance: a study of the Con-Trex MJ and the cybex norm dynamometers. Isokin Exer Sci. 2004; 12: 91-8.
Cotte T, Ferret JM. Comparative study of two isokinetics dynamometers: CYBEX NORM vs CON-TREX MJ. Isokinetics and Exercise Science. 2003; 11: 37-43.
Bandy WD, McLaughlin S. Intramachine and intermachine reliability for selected dynamic muscle performance tests. The Journal of Orthopaedic and Sports Physical Therapy. 1993; 18(5): 609-13.
Gross MT, Huffman GM, Phillip CN, Wray A. Intramachine and intermachine reliability of the biodex and cybexIIR for knee flexion and extension peak torque and angular work. Journal of Orthopaedic & Sports Physical Therapy. 1991; 13(6): 329-35.
Thompson MC, Shingleton LG, Kegerreis ST. Comparison of values generated during testing of the knee using the cybex II plusandR biodex model B-2000R isokinetic dynamometers. Journal of Orthopaedic and Sports Physical Therapy. 1989; 11(3): 108-15.
Wilk KE, Johnson RD, Levine BD. A comparison of peak torque values of knee extension and flexor muscle groups using biodex, cybex, and kincom isokinetic dynamometer. Physical Therapy. 1987; 67: 789-90.
Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 update. International Journal of Sports Medicine. 2013; 34(12): 1025-8.
Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. The American Journal of Sports Medicine. 2008; 36(8): 1469-75.
Bosquet L, Gouadec K, Berryman N, Duclos C, Gremeaux V, Croisier JL. Physiological interpretation of the slope during an isokinetic fatigue test. International Journal of Sports Medicine. 2015; 36(8): 680-3.
Bosquet L, Gouadec K, Berryman N, Duclos C, Gremeaux V, Croisier JL. The total work measured during a high intensity isokinetic fatigue test is associated with anaerobic work capacity. J Sports Sci Med. 2016; 15(1): 126-30.
Degache F, Édouard P, Calmels P. Cardiovascular and respiratory response during the expression of isokinetic muscle strength and fatigue. Lett Med Phys Readapt. 2013; 29(2): 59-63.
Ribeiro F, Lépine PA, Garceau-Bolduc C, Coats V, Allard É, Maltais F, et al. Test-retest reliability of lower limb isokinetic endurance in COPD: a comparison of angular velocities. Int J Chron Obstruct Pulmon Dis. 2015; 10: 1163-72.
Wang JH, Hsu WL, Lee SC, Wang TG, Rolf C, Su SC, et al. Neuromechanical characteristics in the knees of patients who had primary conservative treatment for a torn cruciate ligament and reconstruction afterward. J Formos Med Assoc. 2015; 114(12): 1240-9.
Bosquet L, Maquet D, Forthomme B, Nowak N, Lehance C, Croisier JL. Effect of the lengthening of the protocol on the reliability of muscle fatigue indicators. International Journal of Sports Medicine. 2010; 31(2): 82-8.
McNair PJ, Depledge J, Brettkelly M, Stanley SN. Verbal encouragement: effects on maximum effort voluntary muscle: action. British Journal of Sports Medicine. 1996; 30(3): 243-5.
Perrin DH, Robertson RJ, Ray RL. Bilateral lsokinetic peak torque, torque acceleration energy, power, and work relationships in athletes and nonathletes. The Journal of Orthopaedic and Sports Physical Therapy. 1987; 9(5): 184-9.
Manca A, Solinas G, Dragone D, Deriu F. Isokinetic testing of muscle performance: new concepts for strength assessment. Isokinetics and Exercise Science. 2015; 23(2): 69-75.
Morrissey MC. The relationship between peak torque and work of the quadriceps and hamstrings after meniscectomy. The Journal of Orthopaedic and Sports Physical Therapy. 1987; 8(8): 405-8.
Manca A, Dvir Z, Deriu F. Strength and work parameters in people with multiple sclerosis and in healthy individuals: a responsiveness study of the ankle dorsiflexors. Isokinetics and Exercise Science. 2017; Preprint(Preprint): 1-9.
Croisier J-L, Crielaard J-M. Hamstring muscle tear with recurrent complaints: an isokinetic profile Isokinetics and Exercise Science. 2000 8 3 175-80.
Paulus J, Bosquet L, Forthomme B, Donneau A-F, Grémeaux V, Croisier J-L. Measured and derived parameters of isokinetic fatigability of knee muscles: What can we apply, what should we not? Isokinetics and Exercise Science.
Vaz S, Falkmer T, Passmore AE, Parsons R, Andreou P. The case for using the repeatability coefficient when calculating test-retest reliability. PloS One. 2013; 8(9): e73990.
Evans JD. Straightforward statistics for the behavioral sciences. Pacific Grove: Brooks/Cole Pub. Co.; 1996. xxii, 600 p. p.
Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports medicine (Auckland, NZ). 1998; 26(4): 217-38.
Bruton A, Conway JH, Holgate ST. Reliability: what is it, and how is it measured? Physiotherapy. 2000; 86(2): 94-9.
Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise. 2009; 41(1): 3-13.
Wyrwich KW, Nienaber NA, Tierney WM, Wolinsky FD. Linking clinical relevance and statistical significance in evaluating intra-individual changes in health-related quality of life. Medical Care. 1999; 37(5): 469-78.
van Kernebeek WG, de Schipper AW, Savelsbergh GJP, Toussaint HM. Inter-rater and test-retest (between-sessions) reliability of the 4-skills scan for dutch elementary school children. Measurement in Physical Education and Exercise Science. 2018; 22(2): 129-37.
Wuang YP, Chang JJ, Wang MH, Lin HC. Test-retest reliabilities of hand-held dynamometer for lower-limb muscle strength in intellectual disabilities. Research in Developmental Disabilities. 2013; 34(8): 2281-90.
Wuang YP, Su JH, Su CY. Reliability and responsiveness of the movement assessment battery for children-second edition test in children with developmental coordination disorder. Developmental Medicine and Child Neurology. 2012; 54(2): 160-5.
Reimer AM, Cox RFA, Boonstra FN, Nijhuis-van der Sanden MWG. Measurement of fine-motor skills in young children with visual impairment. J Dev Phys Disabil. 2015; 27(5): 569-90.
Chou CY, Ou YC, Chiang TR. Psychometric comparisons of four disease-specific health-related quality of life measures for stroke survivors. Clinical rehabilitation. 2015; 29(8): 816-29.
Greenberger HB, Wilkowski T, Belyea B. Comparison of quadriceps peak torque using three different isokinetic dynamometers. Isokinetics and Exercise Science. 1994; 4(2): 70-5.
Francis K, Hoobler T. Comparison of peak torque values of the knee flexor and extensor muscle groups using the cybex IIR and lido 2.0R isokinetic dynamometers. Journal of Orthopaedic & Sports Physical Therapy. 1987; 8(10): 480-3.
Yeung SS, Suen AM, Yeung EW. A prospective cohort study of hamstring injuries in competitive sprinters: preseason muscle imbalance as a possible risk factor. British Journal of Sports Medicine. 2009; 43(8): 589-94.
Dauty M, Menu P, Fouasson-Chailloux A, Ferréol S, Dubois C. Prediction of hamstring injury in professional soccer players by isokinetic measurements. Muscles, Ligaments and Tendons Journal. 2016; 6(1): 116-23.
Rand-Hendriksen K, Ramos-Goni JM, Augestad LA, Luo N. Less is more: cross-validation testing of simplified nonlinear regression model specifications for EQ-5D-5L health state values. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research. 2017; 20(7): 945-52.
Croisier JL. Factors associated with recurrent hamstring injuries. Sports Medicine (Auckland, NZ). 2004; 34(10): 681-95.
Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research/National Strength & Conditioning Association. 2005; 19(1): 231-40.
de Vet HC, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. Journal of Clinical Epidemiology. 2006; 59(10): 1033-9.
Paulus J, Bosquet L, Forthomme B, Donneau A-F, Grémeaux V, Croisier J-L. Measured and derived parameters of isokinetic fatigability of knee muscles: what can we apply, what should we not? Isokinetics and Exercise Science. 2019; 27: 41-54.
Fleiss J. The design and analysis of clinical experiments.Wiley, New York-Chichester-Brislane-Toronto-Singapore 1986, 432 S., 8.35. New York: John Wiley Sons; 1986.