Deep material network; Finite strain; Data driven; Closed form implementation
Abstract :
[en] A material network consists of discrete material nodes, which, when interacting, can represent
complex microstructure responses. In this work, we investigate this concept of material networks under the viewpoint of the hierarchical network interactions. Within this viewpoint, the response of the material network is governed by a well-defined system of equations and an arbitrary number of phases can be considered, independently of the network architecture.
The predictive capability is achieved by, on the one hand, sufficiently deep and rich network interactions to tie the discrete material nodes together, and, on the other hand, an efficient
offline training procedure. For this purpose, a unified and efficient framework for an arbitrary
network architecture is developed, not only for the offline training, but also for the online
evaluation. The efficiency and prediction accuracy of the material network as a surrogate of a
homogenization-based multiscale model in predicting the stress-strain response in both contexts
of a virtual test and of FE2 multiscale simulations are demonstrated through numerical
examples with two-phase and three-phase fiber-reinforced composites.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège Tier1
Disciplines :
Mechanical engineering
Author, co-author :
Nguyen, Van Dung ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites
Publication date :
January 2022
Journal title :
European Journal of Mechanics. A, Solids
ISSN :
0997-7538
Publisher :
Elsevier, Netherlands
Volume :
91
Pages :
104384
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bessa, M., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., Liu, W.K., A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput. Methods Appl. Mech. Engrg. 320 (2017), 633–667, 10.1016/j.cma.2017.03.037.
Cuitino, A., Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng. Comput., 9, 1992, 437.
Fritzen, F., Fernández, M., Larsson, F., On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials, 6, 2019, 75, 10.3389/fmats.2019.00075.
Furukawa, T., Yagawa, G., Implicit constitutive modelling for viscoplasticity using neural networks. Internat. J. Numer. Methods Engrg. 43:2 (1998), 195–219.
Gajek, S., Schneider, M., Böhlke, T., On the micromechanics of deep material networks. J. Mech. Phys. Solids, 142, 2020, 103984, 10.1016/j.jmps.2020.103984.
Gajek, S., Schneider, M., Böhlke, T., An fe-dmn method for the multiscale analysis of fiber reinforced plastic components. 2021 arXiv preprint arXiv:2103.08253.
Geers, M.G., Kouznetsova, V.G., Matouš, K., Yvonnet, J., Homogenization methods and multiscale modeling: nonlinear problems. Encyclopedia of Computational Mechanics, second ed., 2017, 1–34.
Ghaboussi, J., Sidarta, D., New nested adaptive neural networks (nann) for constitutive modeling. Comput. Geotech. 22:1 (1998), 29–52, 10.1016/S0266-352X(97)00034-7.
Ghavamian, F., Simone, A., Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. Comput. Methods Appl. Mech. Engrg., 357, 2019, 112594, 10.1016/j.cma.2019.112594.
Gorji, M.B., Mozaffar, M., Heidenreich, J.N., Cao, J., Mohr, D., On the potential of recurrent neural networks for modeling path dependent plasticity. J. Mech. Phys. Solids, 143, 2020, 103972, 10.1016/j.jmps.2020.103972.
Hernández, J., Oliver, J., Huespe, A., Caicedo, M., Cante, J., High-performance model reduction techniques in computational multiscale homogenization. Comput. Methods Appl. Mech. Engrg. 276 (2014), 149–189, 10.1016/j.cma.2014.03.011.
Huang, D., Fuhg, J.N., Weißenfels, C., Wriggers, P., A machine learning based plasticity model using proper orthogonal decomposition. Comput. Methods Appl. Mech. Engrg., 365, 2020, 113008, 10.1016/j.cma.2020.113008.
Jung, S., Ghaboussi, J., Neural network constitutive model for rate-dependent materials. Comput. Struct. 84:15 (2006), 955–963, 10.1016/j.compstruc.2006.02.015.
Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D., Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40:13 (2003), 3647–3679, 10.1016/S0020-7683(03)00143-4.
Kanouté, P., Boso, D., Chaboche, J., Schrefler, B., Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16:1 (2009), 31–75.
Le, B.A., Yvonnet, J., He, Q.C., Computational homogenization of nonlinear elastic materials using neural networks. Internat. J. Numer. Methods Engrg. 104:12 (2015), 1061–1084, 10.1002/nme.4953.
Lefik, M., Schrefler, B., Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput. Methods Appl. Mech. Engrg. 192:28 (2003), 3265–3283, 10.1016/S0045-7825(03)00350-5 Multiscale Computational Mechanics for Materials and Structures.
Liu, Z., Deep material network with cohesive layers: Multi-stage training and interfacial failure analysis. Comput. Methods Appl. Mech. Engrg., 363, 2020, 112913, 10.1016/j.cma.2020.112913.
Liu, Z., Bessa, M., Liu, W.K., Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Engrg. 306 (2016), 319–341, 10.1016/j.cma.2016.04.004.
Liu, Z., Wu, C., Exploring the 3d architectures of deep material network in data-driven multiscale mechanics. J. Mech. Phys. Solids 127 (2019), 20–46, 10.1016/j.jmps.2019.03.004.
Liu, Z., Wu, C., Koishi, M., A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Comput. Methods Appl. Mech. Engrg. 345 (2019), 1138–1168, 10.1016/j.cma.2018.09.020.
Matous̆, K., Geers, M.G., Kouznetsova, V.G., Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 330 (2017), 192–220, 10.1016/j.jcp.2016.10.070.
Michel, J.-C., Suquet, P., A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J. Mech. Phys. Solids 90 (2016), 254–285, 10.1016/j.jmps.2016.02.005.
Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A., Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 116:52 (2019), 26414–26420, 10.1073/pnas.1911815116.
Nguyen, V.-D., Béchet, E., Geuzaine, C., Noels, L., Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput. Mater. Sci. 55 (2012), 390–406, 10.1016/j.commatsci.2011.10.017.
Nguyen, V.-D., Noels, L., Data of micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites. 2021, 10.5281/zenodo.4743654.
Nguyen, V.-D., Wu, L., Noels, L., Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method. Comput. Mech. 59:3 (2017), 483–505, 10.1007/s00466-016-1358-z.
Noels, L., Wu, L., Adam, L., Seyfarth, J., Soni, G., Segurado, J., Laschet, G., Chen, G., Lesueur, M., Lobos, M., Böhlke, T., Reiter, T., Oberpeilsteiner, S., Salaberger, D., Weichert, D., Broeckmann, C., Effective properties. Handbook of Software Solutions for ICME, 2016, John Wiley & Sons, Ltd, 433–485, 10.1002/9783527693566.ch6 (Chapter 6).
Oliver, J., Caicedo, M., Huespe, A., Hernández, J., Roubin, E., Reduced order modeling strategies for computational multiscale fracture. Comput. Methods Appl. Mech. Engrg. 313 (2017), 560–595, 10.1016/j.cma.2016.09.039.
Perić, D., de Souza Neto, E.A., Feijóo, R.A., Partovi, M., Molina, A.J.C., On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Internat. J. Numer. Methods Engrg. 87:1–5 (2011), 149–170, 10.1002/nme.3014.
Rocha, I., Kerfriden, P., van der Meer, F., Micromechanics-based surrogate models for the response of composites: A critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks. Eur. J. Mech. A Solids, 82, 2020, 103995, 10.1016/j.euromechsol.2020.103995.
Ruder, S., An overview of gradient descent optimization algorithms. 2016 arXiv preprint arXiv:1609.04747.
Settgast, C., Hütter, G., Kuna, M., Abendroth, M., A hybrid approach to simulate the homogenized irreversible elastic–plastic deformations and damage of foams by neural networks. Int. J. Plast., 126, 2020, 102624, 10.1016/j.ijplas.2019.11.003.
Soldner, D., Brands, B., Zabihyan, R., Steinmann, P., Mergheim, J., A numerical study of different projection-based model reduction techniques applied to computational homogenisation. Comput. Mech. 60:4 (2017), 613–625.
Terada, K., Hori, M., Kyoya, T., Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37:16 (2000), 2285–2311, 10.1016/S0020-7683(98)00341-2.
Wu, L., Adam, L., Noels, L., Micro-mechanics and data-driven based reduced order models for multi-scale analyses of woven composites. Comput. Struct., 270, 2021, 114058, 10.1016/j.compstruct.2021.114058.
Wu, L., Nguyen, V.-D., Adam, L., Noels, L., An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites. Comput. Methods Appl. Mech. Engrg. 348 (2019), 97–138, 10.1016/j.cma.2019.01.016.
Wu, L., Nguyen, V.D., Kilingar, N.G., Noels, L., A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths. Comput. Methods Appl. Mech. Engrg., 369, 2020, 113234, 10.1016/j.cma.2020.113234.
Wulfinghoff, S., Cavaliere, F., Reese, S., Model order reduction of nonlinear homogenization problems using a hashin–shtrikman type finite element method. Comput. Methods Appl. Mech. Engrg. 330 (2018), 149–179, 10.1016/j.cma.2017.10.019.
Yang, H., Guo, X., Tang, S., Liu, W.K., Derivation of heterogeneous material laws via data-driven principal component expansions. Comput. Mech. 64:2 (2019), 365–379.
Yvonnet, J., Monteiro, E., He, Q.-C., Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int. J. Multiscale Comput. Eng., 11(3), 2013.
Zahr, M.J., Avery, P., Farhat, C., A multilevel projection-based model order reduction framework for nonlinear dynamic multiscale problems in structural and solid mechanics. Internat. J. Numer. Methods Engrg. 112:8 (2017), 855–881, 10.1002/nme.5535.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.